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Abstract
Novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became pandemic by the end of March 2020. In con-
trast to the 2002–2003 SARS-CoV outbreak, which had a higher pathogenicity and lead to higher mortality rates, SARSCoV-2 
infection appears to be much more contagious. Moreover, many SARS-CoV-2 infected patients are reported to develop low-
titer neutralizing antibody and usually suffer prolonged illness, suggesting a more effective SARS-CoV-2 immune surveillance 
evasion than SARS-CoV. This paper summarizes the current state of art about the differences and similarities between the 
pathogenesis of the two coronaviruses, focusing on receptor binding domain, host cell entry and protease activation. Such 
differences may provide insight into possible intervention strategies to fight the pandemic.
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Introduction

At the end of December 2019, Chinese public health officials 
announced to the World Health Organization (WHO) that 
a novel virus caused in Wuhan a disease with symptoms 
similar to pneumonia [1]. They recognized that the virus was 
from the coronavirus family and was formally named severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 
SARS-CoV-2 rapidly became pandemic by the end of March 
2020, forcing much of the world to adopt lockdown strate-
gies and putting health care systems under pressure while 
major concern about global health and economic stability 
arose. In contrast to the 2002–2003 SARS-CoV outbreak, 
which had a higher pathogenicity and lead to higher mortal-
ity rates, SARS-CoV-2 infection appears to be much more 
contagious, rapidly spreading to all continents. Compared 
to SARS-CoV, SARS-CoV-2 infection is characterized by a 
wider clinical spectrum, including asymptomatic infection, 

mild upper respiratory tract illness, severe viral pneumonia 
with respiratory failure and death [1, 2]. In contrast to SARS-
CoV, many SARS-CoV-2-infected patients are reported to 
develop low-titer neutralizing antibody and usually suffer 
prolonged illness, suggesting a more effective SARS-CoV-2 
immune surveillance evasion than SARS-CoV [3, 4]. Since 
the high transmission rate and viral immune escape may be 
involved in the SARS-CoV-2 widespread, both potentially 
representing a target for interventional strategies, it is of 
utmost importance to elucidate the molecular mechanisms 
which are involved in these atypical pathogenetic features.

Coronaviruses structure and replication

Human coronaviruses (hCoVs) are enveloped viruses with 
a positive-sense, single-stranded RNA genome [5]. HCoVs 
genome size is one of the largest among RNA viruses, rang-
ing from 26.4 to 31.7 kilobases. Viral particles and envelope 
average diameters are around 125 nm and 85 nm, respec-
tively. On electron microscopy, hCoVs show a characteristic 
club-shaped spikes that projects from their surface, creating 
an image reminiscent of the solar corona, from which their 
name originates [6]. The viral envelope consists of a lipid 
bilayer, in which the membrane (M), envelope (E) and spike 
(S) structural proteins are anchored (Fig. 1a) [5–7]. Inside 
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the envelope, viral genome is enclosed, i.e., a ribonucleo-
protein (RNP) core, comprising the nucleocapsid protein 
(N) that acts as a scaffold around the 29,900 nucleotides of 
RNA. The M and E proteins play a central role in forming 
the viral envelope and providing the structural integrity [7]. 
The surface spike (S) belongs to a class I fusion proteins 
which mediate the receptor binding and the fusion between 
virus and host cell membranes [8]. The S protein is com-
posed by the S1 subunit, which forms the head of the spike 
and hosts the receptor-binding domain (RBD), and by the 
S2 subunit, the stem which anchors the spike to the viral 
envelope and, following protease activation, enables host 
cell fusion (Fig. 1b) [8, 9]. After cell entry, viral genome 
is released into the cell cytoplasm, host ribosomes begin 
to translate the first reading frame from the viral genome 
and then via the neo-formed RNA-dependent polymerases, 
the numerous sub-genomic RNAs are transcribed and then 
translated [10, 11]. Following genomic RNA replication, 
the viral structural proteins E and M move along the secre-
tory pathway into the Golgi compartment and maturation 
of structural proteins occurs. M proteins direct most protein 
interactions required for assembly of viruses, whilst E pro-
teins are involved in several other aspects of the virus’ life 
cycle, including envelope formation and budding [7, 11]. In 
addition to the 4 main structural proteins, hCoVs possess 16 
non-structural proteins which assemble to form a multi-pro-
tein replicase–transcriptase complex (RTC). RTC promotes 
viral RNA replication, favors viral survival through inhibi-
tion of innate immunity responses, and enhances virulence 
power [7, 12]. Progeny viruses are released from the host 
cell by exocytosis through secretory vesicles. In humans, 
hCoVs infections can affect the respiratory, gastrointesti-
nal, liver and central nervous systems [11, 12]. SARS-CoV 
and the novel SARS-CoV-2 share 79.5% sequence identity 
[5, 13–15] and this explains why not only similarities, but 
also differences can be detected in the epidemiology and 

clinical features in the disorders they cause [12, 14, 16]. 
Structural–functional analysis has identified differences in 
the mechanisms involved in host cell infection which could 
partially explain the dissimilarity in efficiency and speed of 
virus transmission between SARS-CoV and SARS-CoV-2.

SARS‑CoV and SARS‑CoV‑2 host cell 
infection receptor recognition

Receptor recognition is an important determinant of 
hCoVs infection and pathogenesis. The specific surface 
protein that provides the entry door in human cells for both 
SARS-CoV and SARS-CoV-2 is angiotensin-converting 
enzyme 2 (ACE2) [17–19]. The first difference between 
the two SARS-CoVs is that SARS-CoV-2 receptor-binding 
domain (RBD) has a higher ACE2-binding affinity, a char-
acteristic which could lead to a more efficient cell entry 
[19]. However, ACE2-binding affinity of the entire SARS-
CoV-2 S protein seems to be comparable to or even lower 
than that of SARS-CoV entire S protein. This observa-
tion suggests that SARS-CoV-2 RBD, even though more 
potent, is probably less exposed than SARS-CoV RBD [4]. 
There have been conflicting reports in the literature on the 
ACE2-binding affinities of the two SARS-CoVs spike pro-
teins, probably because RBD constantly switches between 
a “standing-up” position and a “lying-down” position 
(Fig. 2a) [19, 20]. Evaluation by cryo-electron microscopy 
(Cryo-EM) of the crystal structure of the two SARS-CoVs 
RBD, complexed with ACE2 receptors, showed subtle, 
but functionally important differences [21]. SARS-CoV-2 
RBD was mostly in the “lying-down” position, a state 
associated with ineffective receptor binding [21]. This 
observation was confirmed by flow cytometry in a different 
study [22]. In contrast to SARS-CoV-2 spike, Cryo-EM 
studies showed that in SARS-CoV spike protein, the RBD 

Fig. 1  a Coronaviruses struc-
tures. The membrane (M), 
envelope (E) and spike (S) 
structural proteins are anchored 
to the viral envelope which 
contains the ribonucleoprotein 
core, i.e., the nucleocapsid pro-
tein (N) which acts as a scaffold 
surrounding the single-stranded 
RNA. b The surface spike is 
composed by the S1 subunit, 
which harbors the receptor 
binding domain (RBD), and 
by the S2 subunit, the stem 
which anchors the spike to the 
viral envelope and, following 
protease activation, enables host 
cell fusion
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is mostly in the “standing-up” state [23]. As shown in an 
animal study, the lower accessibility of the SARS-CoV-2 
RBD in “lying-down position”, a state associated with less 
effective receptor binding, may favor the immune evasion 
of SARS-CoV-2 as one of the conformational masking 
strategies. In mice, sera from SARS-CoV-infected animals 
poorly neutralized SARS-CoV-2 pseudovirus entry into 
host cells but they bound with high-affinity SARS-CoV 
RBD and potently neutralized SARS-CoV pseudovirus 
entry [4, 24, 25]. Conflicting reports on SARS-CoV-2 
pathogenicity may also be related to genetic differences 
in the expression of the SARS-CoV-2 host cell entry fac-
tors among individuals and between populations [26, 27]. 
Indeed, to maintain its high infectivity while keeping its 
RBD less accessible, SARS-CoV-2 relies on a second 
strategy, i.e. host protease activation.

Proteolytic activation

After initial receptor binding, hCoVs need to fuse their enve-
lope with the host cell membrane to deliver the viral nucle-
ocapsid into the target cells (Fig. 2b) [28–31]. To fuse mem-
branes, SARS-CoV spike needs to be proteolytically activated 
at the S1/S2 level. The S2 subunit, cleaved from S1 subunit 
by host cell proteases, facilitates membrane fusion, bringing 
the virion into the host cells (Fig. 3) [28]. The major proteases 
involved in the two SARS-CoVs entry are the cell surface 
transmembrane protease serine 2 (TMPRSS2) and the lyso-
somal proteases cathepsins [28, 29, 32]. SARS-CoV S proteins 
contains cleavage sites for both TMPRSS2 and cathepsins. 
In experimental SARS-CoV infection, inhibition of both pro-
teases is required to block SARS-CoV entry in cell cultures, 
however, only TMPRSS2 activity seems to be essential for 
inhibiting viral replication and spread [29, 32]. An important 

Fig. 2  Receptor-binding domain 
(RBD) of the S protein may 
constantly switch between a 
“lying-down” and a “standing-
up” position. In SARS-CoV-2, 
RBD is mostly in the “lying-
down” position, a state associ-
ated with not only ineffective 
receptor binding, but also 
immune evasion. In SARS-CoV, 
RBD is mostly in “standing-up” 
position, a state associated with 
not only high effective recep-
tor binding, but also immune 
recognition
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Fig. 3  After initial binding of 
the ACE2 receptor, SARS-CoV 
spike is proteolytically activated 
and enzymatically cleaved at the 
S1/S2 level. S1 than dissoci-
ates from S2 and the truncated 
2 subunit of the Spike protein 
facilitates fusion of viral and 
cellular membranes [28, 38]
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difference between the two SARS-CoVs is that SARS-CoV-2 
S proteins contains also a furin-like cleavage site, absent in the 
SARS-CoV S protein [4, 29, 32, 33]. Cleavage of S protein 
by furin at the S1/S2 site is an essential process for cell–cell 
fusion and SARS-CoV-2 entry into human lung cells [29, 
32–34]. Furin pre-activation provides a gain-of-function for 
a more efficient spreading, enhancing SARS-CoV-2 entry 
into cells with relatively low expressions of TMPRSS2 and/
or lysosomal cathepsins [4, 29, 32–34]. However, protease 
cleavage of CoVs spikes leads to major structural rearrange-
ment of the S2 subunit [35]. This process, which is irrevers-
ible, may reduce entry efficiency in some types of cells with 
high expressions of TMPRSS2 and cathepsins, as shown 
in in vitro studies performed in different cell line cultures 
[36]. Examining the whole native SARS-CoV-2 architec-
ture by transmission electron microscopy, it has been shown 
that many S molecules had already undergone the structural 
changes associated with less efficiency [4, 37]. As shown in 
in vitro experiments, the reduced viral entry capacity induced 
by furin pre-activation may be more relevant for “not fresh” 
virus particles [4]. Indeed, conformational modifications of the 
S molecules, which may slowly occur spontaneously, can be 
facilitated by a variety of environmental factors, such as physi-
cal force, high temperature or chemicals [4]. Like SARS-CoV, 
also SARS-CoV-2 spread depends on TMPRSS2 activity, but 
in vitro studies showed that a TMPRSS2 inhibitor, camostat 
mesylate [38], only partially blocked SARS-2-S-driven entry 
into human epithelial cell line cells. This finding suggests that 
that furin-mediated precleavage at the S1/S2 site in infected 
cells could promote subsequent TMPRSS2-dependent entry 
into target cells [32]. However, being a clinically proven and 
commercial serine protease inhibitor, camostat mesylate 
might be helpful for clinicians at intensive care unit treating 
severely ill COVID-19 patients [39]. Finally, SARS-CoV-2 
also infect endothelial cells and, during COVID-19, one of the 
serine-proteases activated is thrombin. Part of SARS-CoV-2 
pathogenesis is caused by enzymatic activation of the clot-
ting cascade by thrombin activation at the endothelial surface 
of capillaries with a significant risk of thrombotic compli-
cations, ranging from microvascular thrombosis, to venous 
thromboembolic, disseminated intravascular coagulation and 
endothelial plasma leakage and thus alveolar obstruction [40]. 
The growing awareness and mechanistic understanding of the 
prothrombotic state of COVID-19 patients is driving efforts to 
more stringent diagnostic screening and to the early institution 
of antithrombotic drugs for both prevention and treatment of 
thrombotic complications [40, 41].

Conclusions

Both SARS-CoV and SARS-CoV-2 use human ACE2 as 
entry receptor and human proteases as entry activators. 
In vitro studies have identified strategies that SARS-CoV-2 
adopts to infect human cells that potentially contribute to 
wide spread of the virus and to immune evasion. These 
cell entry mechanisms may represent substantial target for 
host immune surveillance and provide insight into possible 
intervention strategies to fight the pandemic induced by this 
novel agent.
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