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ABSTRACT

Aberrant DNA methylation of CpG islands, CpG
island shores and first exons is known to play a
key role in the altered gene expression patterns in
all human cancers. To date, a systematic study on
the effect of DNA methylation on gene expression
using high resolution data has not been reported.
In this study, we conducted an integrated analysis
of MethylCap-sequencing data and Affymetrix gene
expression microarray data for 30 breast cancer cell
lines representing different breast tumor pheno-
types. As well-developed methods for the integrated
analysis do not currently exist, we created a series
of four different analysis methods. On the computa-
tional side, our goal is to develop methylome data
analysis protocols for the integrated analysis of
DNA methylation and gene expression data on the
genome scale. On the cancer biology side, we
present comprehensive genome-wide methylome
analysis results for differentially methylated
regions and their potential effect on gene expres-
sion in 30 breast cancer cell lines representing
three molecular phenotypes, luminal, basal A and
basal B. Our integrated analysis demonstrates that

methylation status of different genomic regions
may play a key role in establishing transcriptional
patterns in molecular subtypes of human breast
cancer.

INTRODUCTION

The addition of a methyl group to cytosine residues in
the context of CpG dinucleotides (i.e. 5-methylcytosine)
by the DNA methyltransferease enzymes is the most
well-studied epigenetic event. DNA methylation is
known to play significant roles in many cellular processes,
including embryonic development, genomic imprinting,
X-chromosome inactivation and preservation of chromo-
some stability. In addition, aberrant DNA methylation
has been shown to disrupt many cellular processes and
is frequently observed in most human diseases, including
cancer (1–4).

Methylation in CpG islands (CGIs), particularly in the
promoter and first exon regions, is known to block
genomic binding sites of activating transcription factors
(TFs) or other proteins, and it is strongly associated
with gene repression (1,5). In particular, the effect of
DNA methylation on tumor suppressor genes (TSGs)
has been extensively studied (6). Transcriptional silencing
of this key class of genes could contribute to defective
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regulatory processes in cancer, and the promoter CGI
hypermethylation of TSG has been observed in a
various types of cancers (7,8). However, few studies
have examined the complex relationship between DNA
methylation and gene expression on a genome-wide scale
using accurate high-resolution DNA methylation data.

Profiling of methylated CpG sequences is now possible
by using next-generation sequencing technologies, and a
number of recent studies have used high-throughput
approaches to study DNA methylation (9,10). Although
generating enormous amounts (terabytes) of data is
possible, single base pair resolution of bisulfite-converted
DNA is still costly and highly labor intensive. Recently,
cost effective genome-wide methylation approaches that
do not rely on bisulfite-treated DNA have been developed,
including methylation-sensitive restriction enzymes
approaches (11). One approach, the methylated-CpG
island recovery assay (12) followed by sequencing, uses
methylated-CpG-binding protein complexes with high
affinity to methylated CpG dinucleotides in genomic
DNA. Now, a technique known as methyl-CpG binding
domain-based capture (MBDCap)-seq (13) is able to use
double-stranded DNA, does not depend on the applica-
tion of methylation-sensitive restriction enzymes and gen-
erates DNA sequence variation data (14).

Motivation and research goals

The availability of high-resolution DNA methylation and
gene expression data on a genome scale now allows scien-
tists to investigate the functional consequence of DNA
methylation in various genomic regions, including CGIs,
which have been extensively investigated in the literature
(15–17). CGIs are often found near the promoter regions
of genes, and the CGI hypermethylation is known to have
significant inhibitory effect on gene expression. In normal
cells, CGIs are protected from methylation. However,
hypermethylation of promoter CGIs of important genes,
i.e. TSGs, is frequently observed in cancer cells (18). In
addition to CGIs, recent studies have reported that DNA
methylation of other genomic regions can alter down-
stream gene expression. It was recently reported that
methylation of CGIs near transcription start sites (TSSs)
of genes (18) or in CGI shores (19), regions �2 kb outside
of CGIs, were both strongly associated with gene expres-
sion. In addition, a strong correlation between methyla-
tion in the first exon and expression of the corresponding
genes was demonstrated (20). Although these recent
studies have clearly shown an association between DNA
methylation at various genomic regions and gene expres-
sion, several questions remain to be answered. Specifically,
in our study on the breast cancer cells, research questions
are as follows: How does DNA methylation in the differ-
ent genomic regions contribute to gene expression? Are
there subtype specific DNA methylation-gene expression
patterns in breast cancer? Does the methylation of TF-
binding sites (TFBS) impact TF binding and subsequent
gene expression?

To answer these questions, we used genome-wide
profiling data from 30 breast cancer cell lines from the
Integrated Cancer Biology Program (ICBP, http://icbp.

nci.nih.gov/). We integrated MBDCap-seq methylation
data and Affymetrix microarray gene expression data
(21). The important goals of our study were as follows:

(1) Genomic studies have established major breast
cancer intrinsic subtypes that show significant differ-
ences in incidence, survival and response to therapy
(22). Basal-like breast tumors display aggressive
clinical behavior and belong to the high-risk breast
cancers that typically carry the poorest prognoses
(23,24). To investigate whether phenotype specific
methylation and expression patterns exist in the
basal A, basal B and luminal breast cancer molecu-
lar subtypes, we used an information-theoretic
approach to identify genes with differentially
methylated DNA regions and differential expression
levels.

(2) To perform an integrated analysis of DNA methyla-
tion and gene expression data on a genome-wide
scale and to detect subtype-specific effects of DNA
methylation in breast cancer cells. We examined
relationships between DNA methylation and gene
expression using step-wise analysis starting from
genes whose expression was significantly altered in
a particular subtype.

(3) We used Pearson’s correlation analysis and decision
tree learning to investigate the effect of DNA methy-
lation in various regions (CGIs, CGI shores,
promoter regions, first exons, first introns and
second exons) on the breast cancer subtype differen-
tial gene expression.

(4) To investigate relationship between TFs and DNA
methylation in promoter regions, we examined the
relationship between DNA methylation specifically
at TFBSs and gene expression in the breast cancer
molecular subtypes.

MATERIALS AND METHODS

Data

We prepared methylation and gene expression data from
30 breast cancer cell lines representing three tumor pheno-
types found in patients (21): basal A, basal B and luminal
subtypes. Among 30 cell lines, 17 were basal-like and 13
were luminal-like subtypes (Table 1). The basal-like 17 cell
lines were further subdivided into 7 basal A and 10 basal B
subtypes.
Gene expression data from Affymetrix microarray ex-

periments (21) was downloaded. Genome-wide methyla-
tion profiles were measured using the MBDcap-seq
technique. The double-stranded methylated fragments
were sequenced, and reads were mapped to the human
reference genome. Methylation levels were calculated by
measuring the density of the read coverage (25), as we
have described previously.
The microarray gene expression data were processed

and analyzed using R and Bioconductor. The expression
values were centered by mean-adjusting each log abun-
dance value (subtracting each value from the mean expres-
sion value in the cell line).
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Profiling of DNA methylation patterns

To investigate DNA methylation characteristics across the
30 breast cancer cell genomes, methylation profiles were
measured on ±10kb genomic regions around the TSS of
each gene. We divided the genomic regions into bins with
a size of 100 bases. DNA methylation levels were then
measured as the number of mapped reads within each bin.

Identifying differentially methylated/expressed genes by
information theoretic analysis

We identified differentially methylated and expressed
genes in the three breast cancer subtypes using normalized
entropy. Entropy is a measure of uncertainty, defined as
follows:

H ¼ �
Xn

i¼1

pi log pi

where pi denotes the probability of the state i, and n is the
total number of the states. In this study, the state i is a
cancer phenotype, i.e. i ¼ ðbasalA,basalB,LuÞ. For methy-
lation profiles, the probability pi is measured by tji=cj,
where cj is sum of read counts for cell lines in a genomic
region j and tji is sum of reads for a phenotype i in the
region j. For gene expression, cj is sum of expression
values for cell lines in a gene j, and tji is sum of expression
for a phenotype i in the gene j. The entropy H achieves its
maximum value when all states are equally probable, that

is, it exhibits the lowest degree of uncertainty. If there is
only one state, then the entropy H is zero.

Normalized entropy is the ratio of entropy to maximum
entropy as follows:

H0 xð Þ ¼ H xð Þ=Hmax

where Hmax is maximum entropy value where the
probabilities are all equal.

We measured the normalized entropy and identified dif-
ferentially methylated regions and differentially expressed
genes. To avoid errors on the probability calculation, we
introduced pseudo-probability to every zero-valued
position.

Identifying downregulated genes in each subtype for
integrative analysis

Genes differentially expressed in each different molecular
subtype were further identified as follows. Suppose that egl
is an expression level of a gene g in a cell line l. As the cell
line l is clustered into a specific subtype i, we calculate the
median values Medianðeg,iÞ for the expression levels in
each subtype i per gene g. In this study, we measured
three median value Medianðeg,LuÞ, Medianðeg,BasalAÞ
and Medianðeg,BasalBÞ for each gene g.

If the median value Medianðeg,iÞ of a gene g in a type i
was significantly lower than those of other two types, we
defined the gene g as downregulated in a specific type. In
our study, log-ratio 1.5 was the criterion for significance.

Correlation between DNA methylation and gene
expression

To investigate the relationship between methylation in
various regions and gene expression in the 30 breast
cancer cells, we examined methylation levels in gene
promoter regions (2 kb upstream regions from TSSs),
CGIs, CGI shores, the first and second exon and the
first intron (Figure 1).The association between gene ex-
pression and methylation values of these data sets was
measured by a Pearson’s correlation coefficient. It was
calculated on the paired data of a gene expression level
and the methylation level in the genomic region.

Combinatorial effects of DNA methylation in various
genomic regions

To identify which regions have dominant effects on down-
stream gene expression and also to investigate on the com-
binatorial roles of DNA methylation of the various
genomic regions in each subtype, a decision tree was

Table 1. Thirty breast cancer cell lines

and molecular subtypes

Cell line Subtype

AU565 Lu
BT549 BaB
HCC1569 BaA
HCC1937 BaA
HCC1143 BaA
HCC1428 Lu
HCC202 Lu
MDAMB436 BaB
SUM185PE Lu
600MPE Lu
HCC1500 BaB
MDAMB231 BaB
SUM225CWN BaA
SKBR3 Lu
MDAMB453 Lu
SUM1315MO2 BaB
SUM52PE Lu
HSS78T BaB
MCF12A BaB
MDAMB157VII Lu
HCC70 BaA
HCC1954 BaA
SUM149PT BaB
GCC2185 Lu
LY2 Lu
MCF7 Lu
BT20 BaA
MCF10A BaB
BT474 Lu
SUM159PT BaB

Lu, luminal; BaA, basal A; BaB, basal B.

Figure 1. Genomic regions for studying DNA methylation profiles.
A gene body is composed of promoter and coding regions including
exons and introns. CGIs as well as these regions were studied for the
effect of DNA methylation on gene regulation.
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constructed using the methylation profiles in each region.
For the learning purpose, a gene was an instance of data,
and gene expression was considered as a class variable, i.e.
‘up- or downregulated genes’. The methylation value in
each genomic region was an attribute. For binary classifi-
cation, in training data set of each subtype, the class
values were discretized to high and low, i.e. ‘upregulated
or downregulated genes’. If a gene was significantly
downregulated in a subtype, but the gene was upregulated
in the other subtypes, the class values of the genes in the
cell lines within the subtype were designated as low. For
example, assume that the expression of a gene is signifi-
cantly downregulated in Lu subtype. Then among 30 cell
lines, 13 instances with Lu subtype are marked as low and
17 with the other types are high. The trees were built using
REPTree in WEKA software (26).

Analysis of TF-binding regions possibly blocked by DNA
methylation

For the integrative analysis of TFs, DNA methylation and
gene expression, we used four data sets: gene expression,
methylation profiles, cell specific DNA sequences and
information for TFBSs [TRANSFAC database (27)].
We considered only downregulated genes in each
subtype, as we were most interested in DNA methylation
of TFBSs, possible interference on TF binding, and sub-
sequent negative effect on gene expression. We referred
to these downregulated as ‘target genes’. Differentially
methylated genomic regions of the target genes were
identified by statistical testing (t-test) of methylation
levels at each 100 bp bin for the promotor regions.
Cell-specific consensus sequences were computed by
assembling short reads in the promotor regions of these
genes. TFBSs were searched on the cell-specific consensus
sequences corresponding to the hypermethylated bins,
using ‘minimize false positive’ option of the match tool
in the TRANSFAC package (28).

Among the collected TFs that could be potentially
blocked by TFBS methylation in the promotor region,
we selected TFs whose expression levels were not signifi-
cantly different in each phenotype (by t-test), as to exclude
cases where the downregulation of the target genes is as a
result by difference in the expression levels of TF, an ac-
tivator gene. In this way, we compiled cases where
downregulation of the target genes was due only to the
hypermethylation in the promotor region, not other
factors, such as the genomic sequences on the TFBSs
and the expression levels of the TF.

RESULTS

DNA methylation in 30 ICBP cell lines

We measured and compared the methylation density of
2 kb promoter regions for all genes in 30 breast cancer
cell lines. Figure 2 shows subtype-specific density plots
of promoter regions, excluding unmethylated genes.
Overall, the methylation density was similar in each
subtype. We observe that the number of highly methylated
(>50) promoter regions tended to be lower in basal B
(BaB). The density of the regions whose methylation

levels were over 50 was around 10% in Lu and basal A
(BaA), but 4% in BaB.
Next, we investigated CGI methylation around each

gene. CGIs are defined as regions of DNA of greater
than 500 bp with a G+C equal to or greater than
55% and observed CpG/expected CpG of 0.65 (29).
Using the position information of the CGIs from UCSC
genome browser, we checked the methylation profile in the
CGI near each gene. In the 30 breast cancer cell lines,
�47% of CGIs were methylated; however, distinct methy-
lation density for each subtype was not apparent
(Supplementary Figure S1).

Analysis protocol 1: information theoretic analysis of
phenotype-differentially methylated and expressed genes

To identify differentially methylated and expressed genes
across the breast cancer genome, we measured normalized
entropy. Lower entropy corresponded to genes more dif-
ferentially methylated or expressed in each subtype. First,
we determined which genes were differentially methylated.
Considering only genes with >3 mapped reads, there were
241 differentially methylated genes with the entropy
threshold 0.2 and 564 differentially expressed genes with
entropy threshold 0.5. Among these, only three genes were
common to both the differentially methylated and ex-
pressed gene sets (Supplementary Table S1). Thus, we
concluded that separate analysis of differentially
methylated and expressed gene sets based on information
theory is not effective for the integrated analysis of methy-
lation and gene expression, although these methods were
effective to highlight genes and genomic regions that were
different according to phenotypes.

Figure 2. Methylation density of promoter regions in 30 breast cancer
cell lines. Density was measured for each subtype. The methylation
levels are on the x-axis, and the y-axis is probabilistic density.
Unusual bulbs around 100 on the x-axis were because methylation
levels over 100 were truncated to 100. Lu, luminal; BaA, basal A;
BaB, basal B.
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Analysis protocol 2: integrated analysis of DNA
methylation and gene expression

To perform the integrated analysis of DNA methylation
and gene expression, we used a two-step analysis process:
(i) identify differentially expressed genes in each subtype
and (ii) for each genomic region, test whether there is a
strong negative correlation between methylation level at
the genomic region and the expression level of the gene.
To select differentially expressed genes in each subtype,

we measured median values of expression levels for each
of the three breast cancer phenotypes. If the median value
of a gene in one subtype was significantly higher or lower
than the median value in the other two subtypes, the gene
was considered to be differentially expressed in a specific
type. For such differentially expressed genes, variations of
methylation levels were then investigated.
As DNA methylation is known to inhibit gene expres-

sion and an inverse correlation between the DNA methy-
lation and gene expression has been shown to exist, we
were most interested in a negative correlation between
DNA methylation and gene expression for the integrated
analysis. As an example, Caveolin 1, CAV1, represents a
negative relationship between DNA methylation and gene
expression (Figure 3). The CAV1 gene has been shown by
us and others to regulate breast tumor growth and metas-
tasis and is overexpressed in basal-like subtypes (25,30,31).
CAV1 expression levels were clearly different in each
breast cancer subtype, higher in BaB subtypes and lower
in Lu subtypes. However, when the DNA methylation
profiles of the CAV1 TSS and CGI were examined, methy-
lation levels were significantly higher in the Lu compared

with BaA and BaB. Furthermore, differential methylation
of CGI shores, but not CGIs, significantly regulated
CAV1 expression, and breast cancer aggressiveness was
associated with CAV1 CGI shore methylation levels
(25). The aforementioned negative correlation was
measured by computing Pearson correlation coefficients.
The Pearson correlation is measured by paired input data
between DNA methylation profiles and gene expression
levels across the 30 breast cancer cell lines. As an
example, a correlation coefficient from CGI methylation
and gene expression levels was calculated across 30 cell
lines (Figure 4). The scatter plot for CAV1 gene shows
that gene expression and CGI methylation levels were
negatively correlated. The similar trends between DNA
methylation and gene expression were observed in many
other genes (Supplementary Figure S2).

We measured the methylation correlation for various
genomic regions of downregulated genes in Lu and BaB
subtype (Figures 5 and 6). As only two genes were
detected as downregulated in BaA subtype, the correlation
results for BaA subtype were not included. Interestingly,
when methylation in promoter regions was considered,
several genes showed a clear negative correlation at the
proximal regions of TSSs. Figure 5 is heatmaps that
visualize promoter region methylation and downstream
gene expression (light red colors mean that two vectors
(methylation profiles and expression levels) were highly
negatively correlated and bright green were positively
correlated), and the gene at each row is provided in
Supplementary Tables S2 and S3. In both Lu and BaB
subtypes, strong negative correlations were observed in

Figure 3. CGI methylation and gene expression of the CAV1 gene. Methylation and gene expression values from the 30 cell lines are grouped into
luminal (Lu), BaA and BaB subtypes. (a) A plot showing the density of methylation in the CGI and shore regions located near the TSS of the CAV1
gene. The black bar shows the location of the CGI and the small orange triangle is the TSS. (b) A boxplot showing the expression of the CAV1 gene.
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Figure 4. An example of the paired input data used to measure the Pearson correlation between gene expression and methylation. This paired data
are for CAV1 gene. (a) Gene expression and CGI methylation across 30 cell lines. (b) Plot of gene expression profiles (y-axis) versus methylation
levels (x-axis). Each pair in the cells is represented as a cross sign (Lu), a diamond (BaA) and a circle (BaB). A regression line is shown.

(a) (b)

Figure 5. Correlation between promoter region methylation profiles and expression levels of genes downregulated in (a) Lu and (b) BaB subtypes.
Unmethylated genes in the whole promoter region of 30 cell lines were excluded. Light red color was used for negative correlation and light green for
positive correlation. Columns from right to left denote positions getting away from TSS. Each row is a downregulated gene in the subtype.
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promotor regions, and methylation in the promotor
regions near TSS showed strongest negative correlations.
However, there were significant differences in promotor
methylation patterns in Lu and BaB subtypes. In Lu
subtypes, weaker negative correlations were observed at
genomic regions further away from TSS. On the contrary,
in BaB subtypes, consistently strong negative correlations
were observed in entire promotor regions. Supplementary
Table S4 shows the difference of the correlation coefficient
in each promoter region, measured by t-test. This result
implies that the DNA methylation on the promoter region
has stronger epigenetic inactivation in Basal-like subtypes
and the methylation of this region may contribute to
breast cancer progression.
Moreover, in most genes, first exon and CGI methyla-

tion levels were negatively correlated with expression
levels (Figure 6, Supplementary Tables S5 and S6).
From the multi-exon genes, we measured correlation co-
efficients between the DNA methylation profiles for each
exon and intron, and the expression level of the corres-
ponding gene. A clear negative correlation was observed
in the first exon, but this was not the case for second exons
and first introns, a result consistent with a previous study
showing that first exon methylation was closely associated
with low gene expression (20). When we examined CGIs
and CGI shore regions, negative patterns were also
apparent. CGI and CGI shore DNA methylation levels
were negatively correlated with gene expression levels in
most genes, but in CGIs, much stronger relationships were
shown in our data sets.

Analysis protocol 3: investigation of the combinatorial
effects of DNA methylation in various regions on
downstream gene expression levels

As DNA methylation occurs in many genomic regions, it
was of interest to examine the effect of the various regions
on downstream gene expression, particularly which
regions may have a dominant effect on gene expression
and whether the effects of the regions were similar in
each subtype. Toward this goal, we performed a compre-
hensive study using six distinct genomic regions: promoter
regions, CGIs, CGI shores, first and second exons and first
introns. Using the DNA methylation profiles in these
regions, we performed a machine-learning analysis.

The decision tree is a classification method that uses
conjunctions of features for predicting target values in a
tree-like hierarchical decision process. As decision tree
learning identifies the most informative attributes for clas-
sification, this approach was used to discover regions with
dominant and combinatorial effects on expression levels.
We normalized the methylation levels of each region in a
gene by adjusting the scale, then carried out the decision
tree analysis.

The decision tree was constructed with a constraint of
a maximum tree depth of three excluding leaf nodes, and,
in this case, the classification accuracy for genes, down-
regulated in Lu subtype, was 0.649 in a 10-fold cross-
validation (Figure 7a). In the decision tree, the right-most
branch means that the nodes in this branch were
hypermethylated, and the left-most that the regions were

(a) (b)

Figure 6. Correlation between methylation profiles on CGI, CGI shore, intron and exon regions and expression levels of genes down-regulated in
(a) Lu subtypes and (b) BaB subtypes.
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hypomethylated. Consistent with the correlation analysis,
CGIs were the most informative feature.

In the BaB subtype whose classification accuracy was
0.746 with the same maximum depth, the promoter
regions and the first exons had combinatorial effects on
gene expression (Figure 7b). In the left branch of the
decision tree where TSS1001-2000 were hypomethylated,
it is intuitive that genes were unregulated. However, in the
left branch, when TSS1-1000 was hypermethylated and
also the first exons were hypermethylated, genes were
downregulated. TSS1001-2000 region had the dominant
effect on the gene expression in the BaB subtype. This
was consistent with our previous correlation analysis
showing a clear negative correlation in much broader
regions (Figure 5). As CGI overlaps the first exon or
promoter regions, we carried out the analysis again by
separating into two cases: (i) CGI overlaps with the
regions and (ii) CGI does not overlap with the regions.
Even when we separated CGI overlapping cases, the
dominant factors (CGI for the Lu subtype and
TSS1001-2000 for the BaB subtype) remained the same
as when we did not separate CGI overlapping cases. The
decision trees when we did not separate CGI overlapping
cases were presented in the main text (Figure 7), and the
decision trees when we separated CGI overlapping cases
were presented in Supplementary Figures S3 and S4. The
decision tree results suggest that altered gene expression in
the two subtypes is associated with not only different

promoter methylation profiles but also different combina-
torial effects in various genomic regions.

Analysis protocol 4: integrative analysis of TFs, DNA
methylation and gene expression

We next sought to investigate the effect of DNA methy-
lation on the interaction between TF and DNA, i.e.
binding of a TF to the promotor region of a gene. To
investigate this important concept, we developed a
rigorous data mining protocol to compile a list of TF
that are potentially blocked by DNA methylation. The
schematic overview of the protocol is illustrated in
Supplementary Figure S5.
We first identified differentially methylated genes

among the downregulated genes, 60 genes in BaB
subtype and 52 genes in Lu subtype. Based on the
results of the one side standard t-test with a criterion for
being significant as P< 0.005, we observed eight genes
with significant hypermethylation in at least one 100 bp
in as follows: CDH1, CLDN4, ESRP1, GRHL2, KRT19,
PRR15L, AKR1B1 and PLOD2. Figure 8 shows the
promotor regions of the eight genes that are differentially
methylated according to the P-values.
Next, for the hypermethylated regions of the eight

genes, we generated cell line-specific consensus sequences
by assembling short reads mapped to the regions and
searched candidate TFs, which can be bound to these con-
sensus sequences by match tool (28) on the consensus se-
quences. To exclude the possibility that higher expression
of an activator gene might result in upregulation of target
genes, we discarded TFs whose expression levels were sig-
nificantly different across cell lines of different
phenotypes.
Table 2 summarizes the final selection of TFs and their

target genes. TFs appeared in at least 50% of cell lines of
the same phenotype (TFBS ‘Support Rate’ in the table is
percentage of the number of TF-containing cell lines).
Interestingly, the genes CDH1, ESRP1 and GRHL2
have been shown to play critical roles in epithelial-mesen-
chymal transition (EMT), a process associated with meta-
static events in cancer and also highly relevant to tumor
progression (32,33). Lombaerts et al. (34) reported that
CDH1 is downregulated by promoter methylation and
related to EMT in breast cancer cell lines. A study by
Dumont et al. (35) showed that the induction of EMT
was accompanied by repression of CDH1 expression and
subsequent DNA hypermethylation at its promoter in
basal-like breast cancer. Additionally, recent studies
showed that GRHL2 and CDH1 in human breast cancer
cells were highly correlated and suppressed EMT by re-
pressing expression of the ZEB1 gene (36,37). ESRP1 was
shown to regulate a switch in CD44 alternative splicing,
an event required for EMT and breast cancer progression
(38). Moreover, there might be potential interplay between
target genes. Overexpression of GRHL2 upregulated
ESRP1 expression (36) and GRHL2 was shown to be es-
sential for adequate expression of the CDH1 and CLDN4
(39). Thus, our approach may be useful to elucidate cell-
specific regulatory mechanism using the genome-wide
methylation data from the MBDCap-seq.

(a)

(b)

Figure 7. Decision tree analysis with downregulated genes in (a) Lu
subtypes and (b) in BaB. The attributes are represented by circles, in
where Exon1 is the first exon and CGIShore means 2 kb outside region
from CGI. TSS1-1000 means 1–1000 bp upstream region from TSS and
TSS1001-2000 means 1001–2000 bp upstream. The Down in leaf nodes
(rectangular boxes) means the gene is downregulated and Up means
upregulated.
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DISCUSSION

Recent developments in sequencing technologies have
made it possible to analyze genome-wideDNAmethylation
profiles at high resolution. Although altered DNA methy-
lation patterns are a hallmark of cancer, and promoter CGI
hypermethylation is known to repress gene expression,
only a few studies have examined DNA methylation-gene
expression relationships using genome-wide integrated
analyses (40–42). Several researchers have attempted to in-
vestigate the association of the DNA methylation with the
molecular subtypes in breast cancer cells (43,44). However,
high-resolution sequencing data were not used in those
studies. To better understand the relationship between
DNA methylation and gene expression in breast cancer
molecular subtypes, we used next-generation DNA methy-
lation sequencing data and gene expression profiles for
30 ICBP cell lines representing molecular subtypes of the
disease to perform a systematic analysis.

We first compared genome-wide methylation profiles of
breast cancer phenotypes. Although overall DNA methy-
lation profiles were similar in Lu, BaA and BaB, specific
genomic regions were differentially methylated among the
three subtypes. We then explored computational methods
for integrating DNA methylation and gene expression
data and started with differentially expressed genes for
discovering genes whose expressions were influenced by
DNA methylation.

DNA methylation of different genomic regions has
recently been associated with altered expression of down-
stream genes. To better understand possible transcrip-
tional regulatory roles of DNA methylation, we
performed a comprehensive study considering distinct
genomic regions: CGIs, CGI shores, promoter regions,
first exons, first introns and second exons. Based on
Pearson’s correlation coefficients, we verified that the
DNA methylation of several genomic regions including
CGI and CGI shores were negatively correlated with
downstream gene expression.

To investigate combinational effects of DNA methyla-
tion in these regions and to identify subtype-specific
events, we applied a decision tree algorithm using genes
downregulated in each subtype. Interestingly, we found
potential combinatorial effects of the first exon methyla-
tion and promoter region methylation on the downstream
gene expression (BaB subtype) and potential combinator-
ial effects of CGI methylation and CGI shore methylation
(Lu subtype). As gene expression is regulated by many
factors, it is difficult to predict gene expression levels
using only the DNA methylation profiles. However, the
classification accuracy was significantly high enough to
elucidate the contribution of each genomic region and
combinatorial effects of the regions. We showed that
DNA methylation had combinatorial roles on gene
expression, and the effects of DNA methylation in each
genomic region differed among the subtypes. Moreover,
our studies further imply that the aberrant DNA

Figure 8. Differentially methylated promoter regions of downregulated genes. Each rectangle in the upstream region means a 100 bp bin.

Table 2. Downregulated target gene with TFBS on hypermethylated

region

Target gene Binding TF TFBS support rate

CDH1 SMAD1 100.0
CDH1 FOXO1 100.0
CLDN4 CEBPA 62.5
CLDN4 CEBPB 62.5
CLDN4 CEBPD 62.5
CLDN4 CEBPE 62.5
CLDN4 CEBPG 62.5
ESRP1 CUX1 90.0
GRHL2 PDX1 100.0
KRT19 PAX6 60.0
PRR15L IKZF1 50.0
AKR1B1 E2F1 91.7
PLOD2 PAX3 100.0
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methylation state of the TF-associated regions could be
another contributing factor to gene repression, a subject of
future experimental validation.

It is now well established that different gene expression
patterns contribute to breast cancer heterogeneity (22). In
the current study, our integrated analysis further demon-
strates that methylation status of different genomic
regions may play a key role in establishing transcriptional
patterns in three molecular subtypes of human breast
cancer. Understanding the functional impact of distinct
regions of DNA methylation on gene expression
patterns may provide additional insight into breast
cancer progression and response to therapy, both critical
for improving management of the disease.
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