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The elemental profile and oxygen isotope ratio (d18O) of 188 wine samples collected from

the Changji, Mile, and Changli regions in China were analyzed by inductively coupled

plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spec-

troscopy (ICP-OES) and isotope ratio mass spectrometry (IRMS), respectively. By combining

the data of d18O and the concentration data of 52 elements, the analysis of variance

(ANOVA) technique was firstly applied to obtain the important descriptors for the

discrimination of the three geographical origins. Ca, Al, Mg, B, Fe, K, Rb, Mn, Na, P, Co, Ga,

As, Sr, and d18O were identified as the key explanatory factors. In the second step, the key

elements were employed as input variables for the subsequent partial least squares

discrimination analysis (PLS-DA) and support vector machine (SVM) analyses. Then, cross

validation and random data splitting (training set: test set ¼ 70:30, %) were performed to

avoid the over-fitting problem. The average correct classification rates of the PLS-DA and

SVM models for the training set were both 98%, while for the test set, these values were

95%, 97%, respectively. Thus, it was suggested that the combination of oxygen isotope ratio

(d18O) and elemental profile with multi-step multivariate analysis is a promising approach

for the verification of the considered three geographical origins of Chinese wines.

Copyright © 2018, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many countries and geographical areas are well known

for producing high quality wines, underpinning that the

geographical origin of a wine is being of great commercial
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value [1]. After years of development, China has established

several important and distinctive geographical origins for

wine production such as the Changji, Mile, and Changli re-

gions. However, numerous economical profit-driven fraud-

ulent events have been reported in the Chinese wine
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industry concerning the false declaration of geographical

origins, thereby significantly damaging the reputation of the

Chinese wine market. Unfortunately, there is still no effec-

tive official method or national standard to verify the

geographical origin of wine produced in China. As such,

significant effort has been directed to develop a scientific

method for the characterization of Chinese wines according

to their geographical origin, which would be particularly

beneficial to individual producers, to the Chinese wine in-

dustry and to control authentication.

To date, studies concerning the geographical origins of

wines produced in China focused mainly on multi-element

analysis by inductively coupled plasma mass spectrometry

(ICP-MS) coupled with appropriate chemometric techniques

[2,3]. In addition, only a relatively low number of Chinesewine

samples have been analyzed using site-specific natural iso-

topic fractionation-nuclear magnetic resonance (SNIF-NMR),

isotope ratio mass spectrometry (IRMS) and 1H NMR tech-

niques [4e6]. These previous investigations were laboratory

researches with limited sample sizes in China. In addition,

although various wine databases in different parts of the

world have been established [7], these do not include Chinese

wines so far.

In the past few decades, a number of studies for assessing

the geographical origin of wines have been reported abroad

[8e11]. For example, the analysis of different isotope ratios

has been employed, including 88Sr/86Sr [12e14] and 11B/10B [15]

analyses using ICP-MS, and 13C/12C and d18O analyses in wine

ethanol and wine water, respectively, using IRMS [16e19].

Other approaches, such as Fourier transform infrared spec-

troscopy (FTIR), near infrared spectroscopy (NIR), and nuclear

magnetic resonance (NMR), are also suitable [4,20e22].

To date, various studies have demonstrated that multi-

elemental trace analysis methods based on ICP-MS are use-

ful to verify wine samples from different origins in Romanian

[23,24], Canada [25,26], South Africa [27e29], Spain [30e32],

Germany [33,34], Portugal [35], New Zealand [36], the Czech

Republic [37], Argentina [38], Portugal, and France [12]. Indeed,

the verification of the different geographical origins of wines

by multi-element multivariate analysis is demonstrated in

Table 1.

A combination of chemical composition determination

with subsequent multivariate data analysis can also be

regarded as a profiling approach to classify products based on

their origin, variety, or other properties [39]. The most com-

mon multivariate analysis methods for such verification

purposes include principal component analysis (PCA) and hi-

erarchical clustering analysis (HCA) for unsupervised

grouping, and discriminant analysis (DA) to select important

variables for discrimination [11]. Furthermore, we wish to

investigate the non-linear support vector machines (SVM)

model and the linear partial least squares discrimination

analysis (PLS-DA) technique in our study, as these methods

have rarely been used to authenticate the geographical origins

of Chinese wines.

In this study, we herein report 52 trace elements and ox-

ygen isotope ratio (d18O) of water in 188 wine samples

collected from the Changji, Mile, and Changli regions in China

were determined by ICP-MS, ICP-OES and IRMS, respectively.

Multivariate statistical techniques were used to extract
significant information relating to the geographical origin of

the wine samples based on oxygen isotope ratio (d18O) and

elemental profile. Initially, analysis of variance (ANOVA) was

employed to determine the key trace elements required to

discriminate between different geographical origins. Subse-

quent multivariate analysis (PLS-DA and SVM) was then car-

ried out for classification of the wine samples.
2. Materials and methods

2.1. Chemicals and reagents

All reagents used in this study were of analytical grade or

better. The HNO3 and ethanol employed were of chromato-

graphic grade (Sigma Aldrich, USA). Ultrapure water (re-

sistivity, 18.2MU cm)was obtained from aMilli-Q system from

Millipore (Milford, MA, USA). Themicrowave digestion system

was purchased from CEM MARS, USA. Prior to use, all glass-

ware was washed by immersing in a 20% (v/v) HNO3 solution

over 24 h, then rinsing four times with ultrapure water.

The chemicals and regents used for IRMS analysis were

described in detail in our previous work for the rapid deter-

mination of the stable oxygen isotope ratio (d18O) of water in

alcoholic beverages [40].

2.2. Wine samples

A total of 188 wine samples were collected from three

distinctive wine-producing regions in China, namely the

Changji (90 samples), Mile (41 samples), and Changli (57

samples) regions. Five grape varieties of red wines (Cabernet

Sauvignon, Rose Honey, Merlot, Pinot Noir, Cabernet Ger-

nischt) and four grape varieties of white wines (Long Yan,

Chardonnay, Crystal, Riesling) were examined. All wine

samples were stored at 4 �C and in the absence of light. To

guarantee the authenticity of the samples, all wine samples

were taken from different wine-producing manufacturers,

collected from the vintage years of 2010, 2011, 2012, 2013 and

2014. Each wine sample was obtained from one variety only

and all wine samples met the requirements of the executive

national standard of China [41]. The wine samples grown

in the three geographical origins are outlined in Table 2.

Different wine varieties from the Changji and Mile regions

were collected, which covered themajor grape varieties in the

different geographical origins.

2.3. Sample preparation for ICP-MS and ICP-OES
analysis

The organic components in the wine samples were removed

using a microwave digestion method. More specifically, the

wine sample (5 mL) was transferred into the digestion tube

and HNO3 (5 mL) was added. The resulting mixture was then

transferred into the microwave and digestion was carried out

according to the following temperature program: 120 �C for

5 min, 160 �C for 5 min, and 180 �C for 15 min. After cooling to

25 �C, the mixture was transferred into a 50 mL volumetric

flask. The digestion tubes were rinsed four times with ultra-

purewater, and thiswaterwas transferred into the volumetric

https://doi.org/10.1016/j.jfda.2017.12.009
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Table 1 e ICP-MS method presented in the literature for the verification of geographical origin of wines.

Elements employed Chemometric
methods

Geographical
origin

References

Cr, Sr, Rb, Ni, Ag, Cu, Co, Be, V, Pb, Zn, Mn PCA Romanian [23]

As, Cd, Cs, Li, Te, Zr, Mo, Ni, Sb, Ti, U, Y, REEs, Nb, Rb, Be, Co, Ga, TI, W PCA Germany [34]

Al, Cd, V, Ba, Li, Ni, Co, Pb, Sb PCA and LDA Spain [31]

Cs, Ga, Ni, Pb, Rb, Sr, Cd, Co, Mn LDA New Zealand [36]

Bi, Sb, Fe, Mo, Ni, As, Ba, Th, Cs, Cu, Rb, Al, B, Ti, TI, Br, Cd, Co, Se, Sr, P, Pb,

U, Ag, Mn, Cl, V, Ca, Ce, Zn, La, Li, Mg

PCA and DA Canada [26]

B, Nb, Se, Si, TI, U, Cs, Cl, Mn, Ga, Li, Sr, Ni, Ba, Rb, Sc, W, Mg, La, Al DA South Africa [27]

REEs, Au, Pd, Sb, Zr, Ni, Pb, Co, Cu, Re, Ti, TI, Cd, Ga, Li, Pt, Rb, Sr, Te, V, W, Sn,

Cs, As, Ba, Be

SIMCA Spain (Canary Islands) [32]

Zn, As, Ba, Co, Li, V, Ni, Sr, Pb, Mo, Rb, Cd, Cu, La, U, Bi, Th, Cs, Ce MDS Canada [25]

Ca, Sr, Mg, Cs, V, Li, Rb, Zn, Co, Mn, B, Fe, Pb DA Germany [33]

Cs, Ag, Z, Ba, Rb, Li, Cu, Cd, Al, Sb, As, V, Ni, Be, Sr, Ti, U, Pb, Co, Cr PCA, HCA and FA Czech Republic [37]

Al, REEs, Y, Hf, B, Sc, Sr, Co, Cr, Cs, Fe, Mn, Mo, Ca, Zn, W, V, U, Cd, Ni, Th,

Ti, TI, Ga, Li, Cu, Rb, Nb, Be, As, Ba, Pb, Sb

QDA Portugal [35]

Tl, Li, Se, Rb, La, Ga, Cl, Sc, Nb, Cs, Mg, Al, U, Sr, Ba, W, B, Si, Mn, Ni DA South Africa [29]

Li, Be, V, Mn, Co, Ni, Cu, Ge, As, Rb, Sr, Mo, Cd, Ba, Hg, TI, Pb, Bi PCA and LDA Argentina [38]
11B/10B e South Africa [27]
87Sr/86Sr e Portugal and France [35]

PCA: Principal component analysis, HCA: hierarchical clustering analysis, LDA: linear discriminant analysis, DA: discriminant analysis, SIMCA:

soft independent modeling class analogy, QDA: quadratic discriminant analysis, MDS: multidimensional scaling, FA: factor analysis.

Table 2 e Wine samples measured in three geographical origins (Changli, Xinjiang and Yunnan).

Geographical
origin

Grape variety

Cabernet
Sauvignon

Riesling Pinot
Noir

Merlot Cabernet
Gernischet

Chardonnay Longyan Crystal Rose
honey

Chanli 57 e e e e e e e e

Changji 51 7 10 8 10 4 e e e

Mile e e e e 9 e 2 19 11

Table 3 e Optimized ICP-MS operating parameters for the
determination of trace elements.

Instrument parameters Condition

RF power 1500 W

Coolant gas 0 L min�1

Carrier gas 1.17 L min�1

Nebulizer pump 0.1 rsp

Integration time per point 0.1 s (As: 1s, Cd: 1s, Se: 1s)

Scanning mode Peak jumping

Observation point/peak 3

Sampling depth 8.0 mm

Replicates measured 3

Isotopes measured 7Li, 9Be, 47Ti, 51V, 52Cr, 59Co, 60Ni,
63Cu, 69Ga, 72Ge, 75As, 82Se, 88Sr, 89Y,
90Zr, 93Nb, 95Mo, 111Cd, 120Sn, 121Sb,
125Te, 138Ba, 140Ce, 141Pr, 146Nd,
147Sm, 153Eu, 157Gd, 159Tb, 163Dy,
165Ho, 166Er , 169Tm, 172Yb, 175Lu,
205Tl, 206Pb, 209Bi
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flask and diluted with ultrapure water to reach the desired

final volume of 50 mL. A blank calibration sample which was

made of HNO3 and water (2:98, v/v) and a quality control

sample were also prepared using the above procedure.

2.4. Sample preparation for IRMS analysis

The sample preparation procedures for IRMS analysis were

described in detail in our previous work [40].

2.5. IRMS analysis

GC-P-IRMS system and analytical conditions for IRMS analysis

were the same as our previous work [40].

2.6. ICP-MS and ICP-OES analysis

Experimental measurements were carried out using an iCAP-

6300 ICP-OES spectrometer (Thermo Fisher Scientific, USA)

and an iCAP Q ICP-MS instrument (Thermo Fisher Scientific,

USA). Following the preparation of each wine sample, all

measurements were carried out in triplicate and the results

were averaged. Detailed instrumental settings regarding the

optimized operating conditions for ICP-MS and ICP-OES ana-

lyses are presented in Tables 3 and 4.
External calibrating solutions (0, 1, 2.5, 5, 10, and 20 mg/L)

for ICP-MS analysis were prepared by combining the appro-

priate dilution of a 100 mg/L multi-element stock standard

solution (Analytical grade, General Research Institute for

Nonferrous Metals, Beijing, China) containing As, Be, Dy, Co,

https://doi.org/10.1016/j.jfda.2017.12.009
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Table 4 e Optimized ICP-OES operating parameters for
the determination of trace elements.

Instrument parameters Condition

RF power 1150 W

Plasma flow 15 L/min

Coolant gas 1.5 L/min

stabilization time 15 s

Washing time between

samples

30 s

Observation time 3 s

Sample uptake rate 1.5 mL/min

Replicates measured 3

Elements measured and

wavelengths (nm)

Mg (285.2), Al (396.1), Na (589.5), Si

(251.6), P (213.6), K (769.8), Ca

(317.9), Mn (257.6), Fe (259.9), Zn

(206.2), Rb (780.0), B (249.7), P

(178.7), Sr (421.5) Fig. 1 e The three Chinese wine-growing regions in a map.
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Er Cr, Ba, Cu, Nd, Li, V, Ni, Y, Cd, Pb, Ho, Sb, Tl, Sn, Yb, Sr, Ti, Ce,

Gd, Pr, Eu, Tb, Tm, Lu, Sm, Ga, Zr, Nb, Te, and Bi, and a 1 g/L

multi-element stock standard solution (Analytical grade,

General Research Institute for Nonferrous Metals, Beijing,

China) containing Ge, Mo, and Se.

External calibrating solutions (0, 1, 2.5, 5, 10, and 25 mg/L)

for ICP-OES analysis were prepared by combining the appro-

priate dilution of a 100 mg/L multi-element stock standard

solution (Analytical grade, General Research Institute for

Nonferrous Metals, Beijing, China) containing B, Al, Zn, Sr, Cu,

Fe, Mg, and Mn, and single standard element solutions

(100 mg/L) of P, Rb, Si, Ca, K, and Na (Analytical grade, General

Research Institute for Nonferrous Metals, Beijing, China).

Blank solutions and working standard solutions were pre-

pared by adding 2% (v/v) HNO3 and 8% (v/v) ethanol. To correct

for instrumental drift, In (2 mg/L) was used as an internal

standard. Weighted regression of the calibration curves was

employed to quantify the concentrations of trace elements.

A total of 188 wine samples from three different regions of

China were investigated by ICP-MS, ICP-OES and IRMS,

respectively. Trace analyses were performed by these

methods to determine elemental profile and oxygen isotope

ratio (d18O) of water in the wine samples.

2.7. Statistical analysis

To facilitate data processing, all wine samples belonging to

the same region were assigned to following codes (CJ for

Changji, ML for Mile, and CL for Changli). The geographical

locations of the three different Chinese wine-growing regions

investigated are herein shown in Fig. 1.

Multivariate data analysiswas then performed,where one-

way ANOVA was employed to detect any significant differ-

ences between the wine samples grouped by their indicated

origins [42]. Prior to the ANOVA test in which the level of

significance was set at p < 0.05, Levene's test and the Shapir-

oeWilk test were applied that a typical procedure required for

performing ANOVA to assess the homogeneity and normality

of variances. Fisher's least significant difference test was also

implemented to check for differences between the different

groups in the data matrix. The key elements for determining

the geographical origins of the samples were identified by
ANOVA in a first step, and were employed as input variables

for the subsequent PLS-DA and SVM analyses. The supervised

PLS-DA and SVM methods were employed for classification

analysis. Before all performed techniques, the data were

standardized to zero mean and unit variance using R version

3.2.3 (R Core Team, Vienna, Austria) statistical software.

Creation and evaluation of the classification model were

then performed by using splitting data sets: (1) the training set

(132 samples, 70%) for building classification model with in-

ternal cross validation, and (2) the test set (56 samples, 30%)

for external validation. The stratified random function was

used for data splitting by R software using the caret package.

The SPSS software version 19.0 (SPSS Inc., Chicago, USA) and R

software were used for statistical analysis. More specifically,

ANOVA analysis was carried out using SPSS, while PLS-DA

was carried out by R using the packages: mixOmics [43],

mdatools [44], while SVM was performed using the e1071

package [45].
3. Results and discussion

3.1. Quality control

The quality control for IRMS analysis was consistent with

our previous work [40]. For analysis by both ICP-MS and ICP-

OES, a 3-fold standard deviation of 10 replicate tests of the

blank solution was used to estimate the analytical limit of

detection (LOD) for each element [38]. The LODs of all

measured elements are shown in Table 5. As the concen-

trations of several elements (Zr, Nb, Te, Bi, and Ge) in all the

samples were mostly below their LODs, these elements were

not used for subsequent multivariate data analysis. There-

fore, the final data matrix contains 188 rows (wine samples)

and 48 columns (47 elements and d18O) (adding up in 9024

data points). The accuracy and reproducibility of the two

methods (i.e., ICP-MS and ICP-OES) were also assessed. More

specifically, the accuracy was checked by performing re-

covery experiments, where external calibrating solutions

(0.2, 0.4, and 0.8 mg/L) for ICP-OES and external calibrating

solutions (2.5, 5, and 10 mg/L) for ICP-MS were added to the

quality control sample. The spiked wine samples were then

https://doi.org/10.1016/j.jfda.2017.12.009
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Table 5 e Analytical characteristics (LOD, recovery) of the determination of elements of wines by ICP-OES and ICP-MS.

Analytical method Element LOD (mg/L) Recovery (%)a Element LOD (mg/L) Recovery (%)a

ICP-MS 7Li 0.8 120.5 ± 2 118Sn 1.7 104.8 ± 2
9Be 1.0 120 ± 3 125Te 0.9 93.6 ± 3
47Ti 6.8 103.5 ± 5 137Ba 1.2 103.7 ± 0.5
52Cr 0.4 98.5 ± 5 140Ce 0.4 104.5 ± 0.4
51V 0.2 115.7 ± 1 141Pr 1.8 103.9 ± 2
53Cr 7.2 106.1 ± 2 146Nd 1.3 94.1 ± 1
59Co 2.4 105.4 ± 4 147Sm 0.4 114 ± 2
60Ni 1.6 98.4 ± 4 153Eu 1.8 105.3 ± 3
121Sb 8.4 101.6 ± 3 157Gd 1.3 107.5 ± 0.9
69Ga 1.6 106.1 ± 1 159Tb 0.4 105.1 ± 0.8
72Ge 0.4 93 ± 4 163Dy 1.8 116.4 ± 2
75As 0.2 110.4 ± 3 165Ho 1.3 104.9 ± 1
82Se 5.8 99.4 ± 1 166Er 0.4 103.9 ± 3
88Sr 2.3 112.6 ± 2 169Tm 1.8 103.5 ± 0.7
89Y 0.7 106 ± 0.6 172Yb 1.3 102.7 ± 2
90Zr 2.6 117.7 ± 2 175Lu 0.4 104.6 ± 1
93Nb 1.9 109.6 ± 1 205Tl 1.8 96.6 ± 2
95Mo 0.7 109.8 ± 2 206Pb 1.3 103.8 ± 4
111Cd 1.9 101 ± 1 209Bi 1.9 95.6 ± 2

ICP-OES Na (589.5) 58.6 94.4 ± 1 Mn (257.6) 16.4 97.2 ± 2

Mg (285.2) 32.8 105.7 ± 3 Fe (259.9) 43.6 111 ± 2

Al (396.1) 16.2 97.9 ± 1 Zn (206.2) 24.4 102.8 ± 3

Si (251.6) 56.4 95.5 ± 2 Rb (780.0) 61.2 100.3 ± 1

P (213.6) 23.7 96.8 ± 0.7 B (249.7) 79.6 101.7 ± 0.8

K (769.8) 60.2 106.8 ± 2 Cu (327.3) 19.1 112.2 ± 2

Ca (317.9) 47.1 94.7 ± 2 Sr (421.5) 13.2 96.4 ± 1

a Mean ± standard deviation (n ¼ 10).
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measured 10 times, and the recoveries of the various ele-

ments were calculated. As indicated in Table 5, the re-

coveries ranged from 78 to 120% for ICP-OES and ranged from

94 to 112% for ICP-MS. Repeatability was then determined by

measuring the multi-element concentrations of multiple

bottles of the same kind of wine. Two kinds of wine (red and

white) were considered, with six bottles of each being ob-

tained. Three bottles of each kind of wine were randomly

selected, and these 6 bottles of wine were prepared for the

repeatability experiments according to the procedure

described in sample preparation section of this study. Each

wine sample was analyzed in triplicate. The relative stan-

dard deviations (RSDs) of the elemental concentrations in

red wine ranged from 6 to 10%, while the RSDs of the

elemental concentrations in white wine ranged from 5 to 9%,

thereby indicating that the analytical methods employed

herein were sufficiently repeatable. As all wine samples were

analyzed in a single analysis sequence, the interday repeat-

ability was not examined specifically. However, to ensure the

quality of the obtained data, a quality control sample and a

blank calibration sample were tested every six samples and

monitored carefully.
Table 6 e The frequencies of important elements used as desc

Elements Ca Al Mg B Fe

Frequencies 3 6 4 6 3

ANOVA is not the only one method used in the previous literature to extra

other approaches are also used.
3.2. Analysis of variance (ANOVA)

Following analysis of the various wine samples from three

different regions within China using ICP-OES, ICP-MS and

IRMS, ANOVAwas employed to identify the key variables from

52 elements and d18O that may differentiate between the

different geographical origins of the wine samples [46]. Based

on the ANOVA results, it was figured out that the wine sam-

ples from the CJ, ML, and CL regions could be discriminated by

their respective Ca, Al, Mg, B, Fe, K, Rb, Mn, Na, P, Co, Ga, As, Sr

contents and d18O values. After application of the ANOVA test,

these identified key elements were regarded as reliable de-

scriptors or explanatory factors [47]. The d18O has strong

relationship with the location, which is consistent with the

previous investigation of geographical origin for Romanian

wines [48]. A list of elements previously described in the

literature can be found in Table 1. Statistical analysis of Table

1 shows that elements identified herein were also used as

indicative descriptors for geographical origins in a number of

previous studies. As indicated in Table 6, Ca was found in

three studies. The frequencies of the other descriptors (i.e., Al,

Mg, B, Fe, Rb, Mn, P, Co, Ga, As, and Sr) found in previous
riptors in a number of previous studies.

Rb Mn P Co Ga As Sr

12 8 1 11 6 7 12

ct important elements for the discrimination of geographical origins,

https://doi.org/10.1016/j.jfda.2017.12.009
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Fig. 2 e Box plot of the concentration of important elements Al (a), B (b), Ca (c), Fe (d), K (e), Mg (f), Mn (g), Na (h), P (i), Rb (j), Co

(k), Ga (m), As (n), Sr (o), d18O (p) for the discrimination of wines from three geographical origins (Changli (CL), Changji (CJ),

Mile (ML)) in China.

j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 6 ( 2 0 1 8 ) 1 0 3 3e1 0 4 41038
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Fig. 2 e (continued)
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studies were 6, 4, 6, 3, 12, 8, 1, 11, 6, 7, and 12. Furthermore,

Table 1 only shows the ICP-MS method presented in the

literature; however, as Na and K are usually determined by

ICP-OES, these elements have been omitted from the table.

Fig. 2 shows a box plot of the concentrations of these key el-

ements found by our present study, where the bottom and top

of the box are the first and third quartiles of the data for each

geographical origin. From Fig. 2, it is apparent that it was not

possible to use each individual element for the discrimination

of the different geographical origins. Therefore it is necessary

to establish an robust model to accurately discriminate be-

tween Chinese wines from different geographical regions.

3.3. Partial least squares discrimination analysis (PLS-
DA)

The 14 mineral elements and d18O extracted by ANOVA were

used as the input variables for subsequent PLS-DA analysis to

achieve accurate classification [42,49]. The Bayes method

function was selected for the data analysis, as this function

has previously been widely used in discrimination analysis.

The lowest value of the predicted residual error sum of

squares (PRESS) can be calculated by leave-one-out cross

validation (LOOCV) and this is subsequently employed to

determine the optimum number of latent variables used in

the PLS-DA model. The latent variables can then be used for

subsequent linear model generation. Based on the cross-

validation rule, the first two latent variables (i.e., X-variate 1

and X-variate 2) were used to achieve the optimal prediction

accuracy. Fig. 3 demonstrates the score plot of the first two X-

variates for the entire data set located in the reduced 2-

dimensional space. As indicated, the first two latent vari-

ables (X-variate 1: 27% and X-variate 2: 22%) accounted for 49%

of the total variance in the raw data, allowing an obvious

distinction to be observed between the wine samples from the

three different origins. Indeed, PLS-DA is required to maxi-

mize the variance between groups rather than within groups,
Fig. 3 e Score plot of X-variate 1 vs X-variate 2 for wine samples

represent the 95% confidence interval (Hotellings T2 ellipsis).
ultimately providing key criteria for selecting the important

variables based on the model prediction ability. The impor-

tance of the variables generated from PLS-DA can be classified

as follows: Mn > K > Co > P > Rb > Ca > Sr > d18O > Fe > Mg >
Na > Al > B > Ga > As. Several overlapped wine samples from

the CJ and ML regions were also observed. A total of 8 wine

samples fell outside the 95% confidence interval (Hotellings T2

ellipsis) of the respective classes. The reason for these outlier

samples may be that the raw data of outlier samples was

recorded by artificial errors. The raw data should be checked

again. Although a number of samples could not be distin-

guished in this plane, the overall classification performance

figure achieved by PLS-DA was applied for discrimination of

the wine samples from different geographical origins in

China, as outlined in Table 7, which shows the internal LOOCV

classification results for the training set of PLS-DAmodel. The

correct classification rates of the three regions (i.e., CJ, ML, and

CL) for the training set were 100, 97, and 97%, respectively,

while those for the test set used for external validation were

100, 92, and 94%, respectively. In addition, the average correct

classification rates of the PLS-DA model for the training and

test sets were 98 and 95%, respectively. From the PLS-DA

classification results, it can be concluded that PLS-DA can be

considered an efficient method for discriminating between

the geographical origins of Chinese wines, although a few

samples were misclassified.

3.4. Support vector machine (SVM)

To test a second data evaluation method and verify the mis-

classified samples from the PLS-DA method, the SVM algo-

rithm was performed using the same training and test sets.

Suitable kernel functions and parameters were selected for

the SVMmodel to aid in establishing an optimizedmodel with

high stability and prediction accuracy [30,50]. In this study, the

radial basis function (RBF) kernel with a Gaussian profile was

chosen for non-linear SVM classification analysis [51].
(188) from three regions (CL, CJ and ML) in China. Solid lines
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Table 7 e PLS-DA and SVM classification results of China regional wines.

Data set Geographical origin PLS-DA SVM

MSa P (%)b P (%)c MSa P (%)b P (%)c

Training set CJ (n ¼ 61) 0 100 98 2 97 98

ML (n ¼ 32) 1 97 0 100

CL (n ¼ 39) 1 97 1 97

Test set CJ (n ¼ 26) 0 100 95 1 96 97

ML (n ¼ 12) 1 92 0 100

CL (n ¼ 18) 1 94 1 94

a Misclassified samples.
b Percentage of samples correctly classified.
c The average correct classified rates for the training set and the test set.
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Two of the most significant parameters for the RBF are C

and g, and so these parameters should be carefully consid-

ered. More specifically, C is the cost parameter, i.e., the pen-

alty that can balance the empirical risk minimization and

structural risk minimization principles. To a certain extent, C

can determine the performance of the SVM model. In addi-

tion, g is the bandwidth of the RBF kernel, and determines the

sensitivity of the SVM model. It also affects the function

regression error, which plays a vital role in selecting the

number of initial eigenvalues/eigenvectors for the SVM

model. As such, an inappropriate g value may lead to over-

fitting [52]. To reduce overfitting and achieve the optimal error

performance, a grid-search algorithm combined with 10-fold

cross-validation was employed. In this case, the grid-search

algorithm was based on an elaborate search in a restrained

range, and reflected a two-dimensionalminimization process.

In this study, C was optimized in the range of 2(�3:3), while g

was optimized in the range of 2(�4:1), to give values of C ¼ 0.5

and g ¼ 0.125 as optimal parameters for the SVM model.

Finally, a SVM model has been developed that employs the

RBF function to minimize the model error with the optimal

parameters (i.e., C and g) and the optimal hyper plane to

differentiate between the different geographical origins of

wines. Table 7 shows the internal 10-fold cross-validation

classification results for the training set of SVM model. As

indicated, the correct classification rates of the CL, CJ, and ML

regions for the training set were 97, 97, and 100%, respectively,

while those for the test set used for external validation were

94, 96, and 100%, respectively. As such, the average correct

classification rate of the CL, CJ, andML regions for the training

set was 98%, while for the test set, the average correct clas-

sification rate was 97%. These results suggest that the SVM

model is an effective approach for discriminating between

different regional wine samples.

3.5. Joint analysis of PLS-DA and SVM

As both PLS-DA and SVM are conducted using the same data

set, the misclassified samples for both methods are compa-

rable, and the correct classification performance of the SVM

model was found to be similar to that of the PLS-DAmodel. In

addition, the average rate of correct classification for both

models was >95%. We therefore propose that the joint data

analysis of PLS-DA and SVM techniques could be used to

successfully verify the geographical origins of wine samples.
The workflow chart of this joint data analysis is shown in

Fig. 4, where the prediction classification results of Chinese

wine based on their geographical origin were obtained by PLS-

DA in the first step, prior to use of the SVM model in a second

data evaluation step. As such, the prediction results from the

PLS-DA and SVM models can be used to verify one another,

thus if any wine samples are misclassified by both the PLS-DA

and SVMmodels, these samples require further investigation.

Therefore, the comprehensive classification results, obtained

using the described workflow chart, suggest that joint data

analysis using these methods may be preferable to determine

the authenticity of the three claimed geographical origins (i.e.,

CJ, ML, and CL) of Chinese wines.

3.6. Comparing with the results of previous study

The work of Thiel et al. [34], 88 German commercial wines

collected from four regions were analyzed for their concen-

tration of 33 elements by ICP-OES and ICP-MS. The important

discriminative elements (Li, Mg, Pb, W, Y, Cs, Sr, As, Si, Ti, B,

Be, Sn) for distinguishing geographical origins of German

white wines were identified by Plackett-Burman design and

stepwise discriminant analysis. In our work, 52 elementswere

determined by ICP-OES and ICP-MS, oxygen isotope ratio

(d18O) was also determined by IRMS. Even though more wine

samples collected from three regions were investigated in our

study, better classification rates (>95%) were achieved than

the work of Thiel et al. [34].

The latest work of Kokkinofta et al. [53], only four grape

varieties (including red and white wines) from two regions

were used for the geographic discrimination of Cypriot wines.

Mg, Na, P, K, Ca, Mn, Fe, Zn, B, and Cu at mg/L were deter-

mined by inductively coupled plasma atomic emission spec-

troscopy (ICP-AES). The trace elements at ug/L were not tested

in their study. Some important elements could contribute to

the discrimination of wine regions might be missed. In our

work, a total of 9 grape varieties (including red and white

wines) from three regions were considered. 14 elements at

mg/L and 38 elements at ug/L were determined. Therefore

more grape varieties in three geographical origins and more

mineral elements in our Chinese wine samples were

analyzed. SNIF-NMR which was used by Kokkinofta et al. [53],

was relative expensive equipment. Therefore it was not

possible for every winery in China to use this kind of

instrument.

https://doi.org/10.1016/j.jfda.2017.12.009
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Fig. 4 e The workflow chart of joint analysis of PLS-DA and SVM.
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The work of Gean�a et al. [13], 87Sr/86Sr isotope ratio, Ga and

Al, were identified as the key indicators for geographic differ-

entiation of the Romanian wines. In our present work, Mn, K

and Co which obtained from PLS-DA model, were the most

significant descriptors for discriminating Chinese wine re-

gions. Meanwhile, Mg, Al, Na, P, K, Ca, Mn, Fe, Zn, Rb, B, and P

which were determined by ICP-OES, are highly abundant ele-

ments in Chinese wine. The key important elements in our

present study for geographic differentiation also included

these elements. The same finding were also confirmed by

Gean�a et al. [13]. Highly abundant elements could contribute to

the discrimination of wine regions. Therefore ICP-OES method

appears to be advantageous by the fact that it is a simple and

low-cost technique. The work of Gean�a et al. [13], stepwise

linear discriminant analysis (LDA) was used to identify key

elements for classification of the wine samples, however, in

our work PLS-DA was employed. The methods used to extract

key elements for Romanian wines in the work of Gean�a et al.

[13] and Chinese wines in our work were totally different. The

work of Gean�a et al. [13], only red wines collected from pro-

tected designation of origin (PDO) were investigated. Similarly,

only white wines could be classified in the work of Thiel et al.

[34]. In our work, both red and white wines were covered for

the discrimination of Chinese regional wines.

The recent work of Dinca et al. [48], C and O stable isotope

ratios and ten trace elements (Co, V, Zn, Mn, Cu, Cr, Ni, Pb, Sr,

and Rb) was used for the discrimination of Romanian regional

wines. Only ANOVA and DA were used for multivariate data

analysis. Misclassified Romanian wine samples in their study

and previous work of Gean�a et al. [13], no second data evalu-

ation method was employed. On the other hand, only ten

trace elements and two stable isotope ratios were used and

100 wine samples collected from five regions were used in the
study by Dinca et al. [48]. In our work 14 mineral elements

from 52 elements and d18O were extracted by ANOVA to the

analysis of the discrimination of 188 wine samples collected

from three geographical origins. With large wine sample sizes

and more elements used for the multivariate data analysis,

better classification rates (>95%) of Chinese regional wines

could still be achieved in our study. In addition, in our work

SVM was employed as a second data evaluation method for

those misclassified samples from the PLS-DA method. The

prediction results from the PLS-DA and SVM models can be

used to verify against one another. Therefore our workflow for

discriminating geographical origins of wines was more accu-

rate, robust and rigorous than the previous work. Our results

also indicate that the variables employed for discrimination,

the selection of suitable multivariate methods and high-

quality data are imperative for achieving accurate and reli-

able classification results. The same viewpoint is supported by

both Cozzolino et al. [20] and Villagra et al. [54].
4. Conclusion

To the best of our knowledge, this is the first work to establish

elemental profile and oxygen isotope ratio (d18O) database for

Chinese wines. Herein we also reported first time an innova-

tive approach by the application of joint analysis of PLS-DA

and SVM models for the successful classification of Chinese

regional wines. A number of important descriptors for indi-

cating geographical origins were extracted by ANOVA, and

adequate classification rates (>95%) were obtained by both

PLS-DA and SVM models. It was demonstrated that the com-

bination of oxygen isotope ratio (d18O) and elemental profile

with multi-step multivariate analysis is a very promising tool

https://doi.org/10.1016/j.jfda.2017.12.009
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to verify the authenticity of Chinese wines from the Changji,

Mile, and Changli regions.

However, it needs to be underpinned that the research

reported herein represents only a starting point for a possible

strategy to control the quality and authenticity of Chinese

wines. For setting up a profound system for inspecting and

controlling the correct labeling of the geographical origin of

Chinese wines, additional samples with different vintages

from the three investigated regions should be analyzed and

samples originating from other geographical origins in China

or abroad should be also collected, analyzed, and taken into

the statistical model appropriately in the further. However,

the data collection methods and the demonstrated ap-

proaches for data evaluation proposed in this study are

considered to be essential to provide a solid backbone for the

establishment of a Chinese wine database.
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