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Abstract

Bloom Syndrome (BS) is an autosomal recessive disorder due to mutation in Bloom helicase (referred in literature
either as BLM helicase or BLM). Patients with BS are predisposed to almost all forms of cancer. BS patients are even
today diagnosed in the clinics by hyper-recombination phenotype that is manifested by high rates of Sister Chro-
matid Exchange. The function of BLM as a helicase and its role during the regulation of homologous recombina-
tion (HR) is well characterized. However in the last few years the role of BLM as a DNA damage sensor has been
revealed. For example, it has been demonstrated that BLM can stimulate the ATPase and chromatin remodeling
activities of RAD54 in vitro. This indicates that BLM may increase the accessibility of the sensor proteins that recog-
nize the lesion. Over the years evidence has accumulated that BLM is one of the earliest proteins that accumulates
at the site of the lesion. Finally BLM also acts like a “molecular node” by integrating the upstream signals and act-

ing as a bridge between the transducer and effector proteins (which again includes BLM itself), which in turn
repair the DNA damage. Hence BLM seems to be a protein involved in multiple functions - all of which may
together contribute to its reported role as a “caretaker tumor suppressor”. In this review the recent literature docu-
menting the upstream BLM functions has been elucidated and future directions indicated.

Role of protein phosphorylation in response to
DNA damage

Signal transduction during DNA damage response is
mediated by two proximal sensory kinases, ATM (ataxia
telangiectasia-mutated) and ATR (ATM-Rad3-related)
[1,2]. ATM and ATR initiate the signaling cascade via
phosphorylation of its downstream checkpoint effector
kinases, Chkl and Chk2 [3]. ATR and Chkl predominantly
sense the damage in response to the stalling and subse-
quent collapse of the replication forks (called stalled repli-
cation forks), leading to replication arrest. On other hand
ATM and Chk2 are involved in response to double strand
breaks (DSBs), typically generated in vivo by exposure of
cells to ionizing radiation (IR) or drugs like neocarzinosta-
tin or bleomycin. Both stalled replication forks and DSBs
lead to the generation of nuclear chromatinized foci called
stalled replication foci and ionizing radiation-induced foci
(IRIF), respectively. Replication arrest can also lead to the
generation of DSBs [4], thereby hinting at partial common
mechanistic framework in response to two common forms
of DNA damage. ATM/ATR along with Chk1/Chk2,
which accumulate at the chromatinized structures, are
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known to phosphorylate extensive network of downstream
substrates in response to DNA damage [5].

The protein that was initially demonstrated to accu-
mulate at the site of IRIF was the phosphorylated form
of histone variant H2AX (yH2AX) [6] (Figure 1B). How-
ever subsequently it was observed that H2AX phosphor-
ylation was dispensable for the initial recognition of
DNA breaks and was instead proposed to concentrate
proteins in the vicinity of DNA lesions [7]. Since then a
growing number of proteins, containing either or both
the phospho-protein binding motifs BRCA1 C-terminal
(BRCT) and forkhead associated (FHA) domains, have
been identified to be present both at IRIF and sites of
stalled replication.

One such FHA-BRCT domain containing protein that
accumulates at the sites of DNA damage is the mediator
of DNA damage checkpoint 1 (MDC1) (Figure 1B).
Recruitment of MDC1 occurs in a BRCT-dependent
manner by binding to the C-terminal phosphorylated tail
of H2AX [8]. MDC1 is required for intra-S phase DNA
damage checkpoint [9-11]. At the IRIF, MDC1 acts like a
molecular adaptor required for the localization of a num-
ber of other DNA damage response proteins including
MRE11-RAD50-NBS1 (MRN) complex.

NBS1 (named for Nijmegen breakage syndrome; also
called nibrin), a key member of the MRN complex,
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Figure 1 Proposed model for the functions of BLM helicase during DNA damage response. (A) DSBs (red line) are recognized after BLM
and/or RAD51-stimulated RAD54-dependent chromatin remodeling. BLM affects chromatin organization by interacting with and regulating the
function of CAF-1. On remodeled chromatin, BLM accumulates and helps in the optimal ATM activation and MRN complex accumulation. (B)
MRN complex promotes H2AX phosphorylation (yH2AX, red dots) which recruits MDC1. MRN complex, stabilized on the DNA lesion by MDCT,
promotes further accumulation of activated ATM. ATM phosphorylates MDC1 (purple dots), promoting the binding and recruitment of RNF8/
Ubc13 complex, which catalyzes the Lys63-linked ubiquitylation of H2A and H2AX (yellow dots), causing a more accessible conformation of the
chromatin. (C) RNF8/Ubc13 ubiquitylated histones recruits of RNF168. RNF168/Ubc13 attaches K63 linked polyubiquitin moieties to RNF8-
ubiquitylated histones (yellow dots). (D) Poly-ubiquitylated histones recruits RAP80, which helps in the accumulation of Abraxas/BRCA1/BARD1 at
DSBs. Constitutive methylation of histones H3 and H4 (blue dots) are probably exposed due to RNF168/Ubc13-dependent ubiquitylation. This
results in the efficient recruitment of 53BP1 to the site of DNA damage. BLM again accumulates on the lesion in a 53BP1-dependent manner.
Pro-recombinogenic proteins RAD51 and RAD54, interact with BLM, and accumulate at DSBs. (E) BLM functionally interacts with its partners like
RAD51, RAD54, 53BP1 and p53 during HR. RAD51 binds to the single stranded DNA by displacing replication protein A (green dots). While BLM,
53BP1 and p53 have anti-recombinogenic property; BLM also has a pro-recombinogenic resection function in coordination with Exo1l.
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accumulates at the IRIF due to its own phospho-peptide
binding FHA-BRCT domain [12] (Figure 1B). MDC1
stabilizes NBS1 at the sites of DNA damage, thereby
promoting further accumulation of the MRN complex
and activated ATM [13,14]. Recent studies have revealed
that phosphorylation of Ser-Asp-Thr-Asp (SDTD)
repeats within MDC1 mediate its interaction with the
FHA-BRCT domain of NBS1. This phospho-dependent
interaction mediates the retention of MRN complex at
the sites of DNA damage, thereby ensuring optimal S-
phase checkpoint activation [15-18].

Role of protein ubiquitylation in response to DNA
damage

The localization of conjugated ubiquitin at the sites of
DNA damage had been demonstrated quite sometime
back [19,20]. Subsequently receptor associated protein
80 (RAP80) that contains tandem ubiquitin interacting
motif (UIM) and binds to Lys63 and Lys6 polyubiquitin
chains was identified at the IRIF [21,22]. RAP80 targets
Breast Cancer gene 1 (BRCA1) and BRCA1-associated
Ring Domain 1 (BARD1) complex to the sites of DNA
damage utilizing its association with Abraxas (ABRA1)
[23-25]. The recruitment of BRCA1/BARD1 complex is
required for its function in DNA damage resistance,
intra-S and G2/M checkpoint control as well as DNA
repair [25].

Interestingly around this time it was reported that the
E3 ligase, Ring finger protein 8 (RNF8) assembles at the
site of DSBs via the interaction of its FHA domain with
the conserved Thr-Gln-any amino acid-Phe (TQXF)
motif in MDC1. Phosphorylation of the MDC1 TQXF
motifs by ATM and ATR is required for the interaction
with RNF8 [26-28] (Figure 1B). Once recruited RNF8
and E2 conjugating enzyme Ubcl3 catalyzes the Lys63-
linked ubiquitylation of H2A and H2AX. This ubiquity-
lation promotes the transition of chromatin into a more
accessible conformation leading to the recruitment of
p53 binding protein 1 (53BP1) and RAP80/Abraxas/
BRCA1 complex to the DNA damage foci [26-29].

A subsequent study reported that a patient with RID-
DLE syndrome (radiosensitivity, immunodeficiency, dys-
morphic features and learning difficulties) was defective in
the recruitment of 53BP1 and BRCA1 to the DSBs [30],
indicating the presence of another protein in the RNF8-
dependent 53BP1 recruitment process. A siRNA screen
using 53BP1 foci formation as the readout revealed an E3
ligase, Ring finger protein 168 (RNF168), as the gene
mutated in RIDDLE syndrome [31,32]. RNF168, which
contains two motifs that interact with ubiquitin (MIU), is
recruited to the to sites of DNA damage by binding to ubi-
quitinated H2A. The assembly of RNF168 at DSBs occurs
in RNF8-dependent manner and leads to the amplification
of RNF8-dependent substrate ubiquitylation (Figure 1C).
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RNF168/Ubc13 mediated histone poly-ubiquitylation
recruits RAP8O0 to the sites of DNA damage, which in turn
helps in the accumulation of Abraxas/BRCA1/BARD1 at
DSBs (Figure 1D).

53BP1 accumulates at IRIF by interacting with methy-
lated histones H3 and H4 via its Tudor domain [33,34].
Histones H3 and H4 are constitutively methylated.
However exposure to DNA damage causes a transition
of histone H3 and H4 to a more accessible conforma-
tion due to RNF8/RNF168/Ubc13-dependent poly-
ubiquitylation, which exposes the H4-K20 and/or K3-K79,
methylated histones. This results in the recruitment of
53BP1 to the site of DNA damage (Figure 1D). Hence lack
of both RNF8 and RNF168 leads to disruption in the
recruitment of 53BP1.

Bloom (BLM) helicase and DNA damage response
BLM helicase and cancer

Bloom Syndrome (BS) is an autosomal recessive disorder
that is associated with predisposition to cancer [35]. BS is
characterized by proportional dwarfism, sun-induced
chronic erythema, type II diabetes, male infertility and
female subfertility and frequent infections due to
immune deficiency. The BS afflicted individuals are pre-
disposed to cancers. However unlike other cancer predis-
position syndromes, BS patients suffer from almost all
the major types of cancer [36]. This indicates that BLM is
possibly involved at an early stage during neoplastic
transformation - a step that maybe common for all forms
of cancer. Hence understanding the cascades which regu-
lates BLM functions and also deciphering the processes
that the helicase itself regulates can give clues regarding
the “common master regulatory step” which may precede
the divergent epigenetic and genetic alterations that sub-
sequently drive tumor formation.

The mean age of cancer diagnosis in BLM patients is 24
years and death is generally associated before the age of 30
[36,37]. Germ line mutations in BLM give rise to BS.
Though BS patients are rare, BLM heterozygotes that
carry a BLM mutation may be faced with a higher prob-
ability of developing colorectal cancer [38]. The exact per-
centage of BLM heterozygous individuals in general
population is unknown. However in Ashkenazi Jewish
population the frequency of BS is approximately 1 in
48,000. This is due to a founder effect, approximately 1%
of the Ashkenazi Jewish population being heterozygous
carriers of the BLM“*" mutation (a six nucleotide deletion
and a seven nucleotide insertion at position 2281 of the
¢DNA) [39]. Transgenic mouse model studies also support
the hypothesis that carriers of a single defective BLM allele
are cancer prone [40]. Based on recent studies (described
below) is quite possible that BLM is involved in the detec-
tion, transmission and finally the resolution of damaged
DNA - in collaboration of other stage specific regulatory
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partners. Hence it can be hypothesized that the lack of
BLM, may lead to a change in the stoichiometry of the
proteins involved in DNA damage sensing and repair,
which in turn may have an adverse effect during the neo-
plastic transformation process.

Multiple functions of BLM helicase during DNA damage
response
Though the functions of BLM in the resolution of DNA
damage are well characterized, the role of this helicase in
the DNA damage response is yet to be fully deciphered.
The response of BLM to DNA damage signal is a direct
consequence of the changes in the intranuclear localiza-
tion of the helicase. In asynchronous cells BLM is found
to be in promyelocytic leukemia nuclear bodies (PML
NBs) and nucleolus [41,42]. Exposure to replication inhibi-
tors (like hydroxyurea, HU) results in relocalization of
BLM to the sites of stalled replication forks. It has been
recently demonstrated that Chk1 constitutively phosphor-
ylates BLM at Ser646, and this specific phosphorylation
event rapidly decreases after exposure to DNA damage
[43]. Lack of Ser646 phosphorylation post-DNA damage
results in diminished interaction of BLM with nucleolin
and PML isoforms and consequently leads to decrease in
the accumulation of the helicase in nucleolus and PML
NBs. Instead post-damage BLM colocalizes and associates
with MRE11-Rad50-NBS1 complex [43-45], ATM [46,47]
and ATR [45,48]. Both ATM and ATR phosphorylate
BLM, indicating a possible role of the helicase in the
recognition of DSBs and stalled replication [47,48].
Multiple lines of evidence exist indicating that BLM
may function very early in response to DNA damage
(Figure 1A). BLM is induced by treatment of cells with
y-irradiation in an ATM independent manner. This
induction depends on G2 delay because it fails to occur
when G2 phase is prevented or bypassed [49]. Secondly,
ATR and ATM-dependent intranuclear trafficking of
BLM helicase also occurs during replication stress, which
ensures optimal ATM activation and 53BP1 focus forma-
tion [50]. Hence cells from BS patients undergo delayed
assembly of BRCA1 and NBS1 repair complexes at stalled
replication forks [44]. Thirdly, both endogenous and
overexpressed BLM accumulates at sites of laser-induced
DSBs within 10 seconds and colocalizes with y-H2AX
and ATM. The early accumulation of BLM at DSBs is
independent of ATM, RAD17 and NBS1 [51]. Finally,
absence of BLM impairs the ability of Chromatin Acces-
sibility Factor-1 (CAF-1) to be mobilized at the sites of
DNA damage within the nucleus [52], thereby indicating
that BLM may have an effect at the chromatin remodel-
ing stage. Incidentally apart from its functions during the
presynaptic, synaptic and post-synaptic phases of HR
[53,54], RAD54 also functions as a chromatin remodeller,
both in vitro [55-57] and in vivo [58]. BLM stimulates the
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ATPase and chromatin remodeling activities of RAD54
in vitro [59], and is therefore potentially capable of
enhancing the accessibility of the DNA damage sensor
proteins to the DNA lesion in vivo. Using Fluorescence
Recovery After Photobleaching (FRAP) the residence
time of BLM in the HU-induced foci is only 7.2 seconds,
providing evidence about the transitory nature of BLM
during the sensing and recognition of DNA damage.

However it has been reported that BLM also accumu-
lates at the site of stalled replication around 1 hour
post-HU-treatment [60,61]. This second wave of BLM
accumulation depends on 53BP1 with which it physically
interacts (Figure 1D). The accumulation of BLM/53BP1
foci and the physical interaction between them was depen-
dent on phosphorylation-mediated interactions [62].
These observations have led to the hypothesis that BLM
also plays a role at a relatively later stage in the hierarchy
of proteins accumulating at the site of damage. According
to this model BLM acts as a “molecular node” in response
to replication stress during S-phase checkpoint. During
this step BLM may integrate the signal(s) obtained from
the upstream damage recognizing proteins and coordinate
with repair and recombination proteins downstream to
efficiently remove the deleterious lesion [60,61].

Hence BLM seems to have roles in multiple phases of
the DNA damage response pathway. In the immediate
early phase BLM acts independently in the pathway, not
even requiring other known early sensors of DNA
damage like yYH2AX, MDC1 and 53BP1. In the inter-
mediate phase BLM acts as a molecular node, physically
and functionally interacting with multiple proteins
already associated at the site of damage and acting
either in hierarchical or combinatorial manner so that
the downstream repair proteins can receive and process
the DNA damage signal. It is in this last step, the repair
phase (Figure 1E), BLM acts in combination with its
partners like RAD51 [60,63-67], RAD54 [59,68], 53BP1
[62,66] and p53 [60] to remove the deleterious lesions
so that the genome integrity can be maintained. While
the predominant function of BLM is anti-recombinogenic
[59], the helicase also interacts with human exonuclease
1 (Exol) to resect DNA and initiate the process of DNA
repair [69,70]. This process indicates a pro-recombino-
genic function of BLM. Detailed description of BLM
functions in the repair phase can be obtained from sev-
eral excellent recent reviews [71-75], and hence have not
been described in detail here.

Conclusions

BLM helicase has attracted much attention due to the
hyper-recombinogenic phenotype of BS patients and
their predisposition to almost all forms of cancers
known to human. Since BLM was first discovered to be
a helicase [76], its in vitro biochemical role during HR
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had become the focus of intense research. Maybe due
to the above reason and also possibly due to the non-
availability of the desired tools and reagents, initial stu-
dies deciphering the in vivo cellular functions of BLM
had been much fewer and less well characterized. How-
ever in the last half decade using a range of immorta-
lized genetically engineered cell lines, specific antibodies
that recognize endogenous BLM or its phosphorylated
forms and with the widespread availability of robust
microscopic techniques, the focus has shifted to towards
deciphering how the helicase functions in a cellular con-
text. This review had aimed to summarize all the impor-
tant findings in this emerging field.

Perhaps the most important message that emerges is
that BLM helicase has a fascinating “double life” apart
from its well-characterized role as a helicase functioning
during HR. Hence the functions of BLM are not confined
to its role during HR but much earlier when the cells are
exposed to the deleterious lesions. Hence BLM acts as a
sensor, transmitter and finally the effector at different
steps during the entire DNA damage signaling cascade -
effectively acting as the “caretaker tumor suppressor” [36].
The fact that BS patients are predisposed to almost all
forms of cancers can be interpreted to indicate that certain
functions common to neoplastic transformation process is
being regulated by BLM. Apart from HR, other repair
pathways are also employed by eukaryotic cells [77,78], on
which BLM does not seem to exert much or any control.
Hence regulation of repair pathways by BLM (essentially
HR) may not be the only reason for the wide spectrum
cancer phenotype observed in BS patience. It can be
argued that the “caretaker tumor suppressor” function of
BLM at least partially depends on its upstream DNA
damage sensor and transmission functions.

It is perhaps important to point out the similarity of the
proposed multiple functions of BLM with those of NBS1
and 53BP1. One of the first functions assigned to
MRE11-RAD50-NBS1 (MRN) complex was a role in the
repair of DNA double strand breaks [79]. Initially NBS1
was shown to be a substrate for ATM phosphorylation.
Thus cells from NBS patients were defective in check-
point response [79,80]. However evidence is accumulat-
ing that MRN complex also functions upstream of ATM
[81,82]. Recent mouse models have confirmed that NBS1
is required for activation of ATM during DNA double
strand breaks [83]. Similarly 53BP1 has been well charac-
terized as a DNA damage sensor protein recruited to the
site of damage by an ubiquitylation-dependent cascade
[84,85]. However recently a role of 53BP1 in DNA repair
has been established. 53BP1 has an anti-recombinogenic
function [86], which is dependent on both BLM [66] and
BRCAL1 [87]. 53BP1 also affects the classical and alternate
end-joining pathway during class switch recombination
[88,89]. Hence it is quite possible that proteins involved
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in either sensing and transmission of DNA damage signal
and those regulating DNA repair processes can have
additional functions which are different than that pre-
sently ascribed to them.

Finally the question arises - what are the future
directions of research on BLM especially in relation to
its role as a damage sensor. It remains to be firmly
established whether BLM can actually act as the uni-
versal damage sensor and transmitter as most of the
studies until now have been done on cells containing
either stalled forks or DSBs. The study of BLM post-
translational modifications (PTMs) individually and in
combination, and how the PTMs affect BLM functions
during signal recognition and transmission is bound to
be of much interest to researchers. But perhaps in the
genomics era, the time has come not to look at BLM
functions in isolation. With the help of high through-
put technologies it is imperative that BLM functions
are analyzed on a “global” scale perhaps in conjunc-
tions with the dynamicity of its interaction with its
chromatin (which is its actual in vivo substrate) but
also with its stage specific protein partners, a few
known but perhaps many unknown. The information
available till date already indicates that the time has
come for BLM helicase to bloom and show its true
potential to the researchers.
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