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Parkinson’s disease (PD) is one of the significant common neurological disorders of the current age that causes uncontrollable
movements like shaking, stiffness, and difficulty. The early clinical diagnosis of this disease is essential for preventing the
progression of PD. Hence, an innovative method is proposed here based on combining the crow search algorithm and decision
tree (CSADT) for the early PD diagnosis. This approach is used on four crucial Parkinson’s datasets, including meander, spiral,
voice, and speech-Sakar. Using the presented method, PD is effectively diagnosed by evaluating each dataset’s critical features
and extracting the primary practical outcomes. The used algorithm was compared with other machine learning algorithms of
k-nearest neighbor (KNN), support vector machine (SVM), naive Baye (NB), multilayer perceptron (MLP), decision tree (DT),
random tree, logistic regression, support vector machine of radial base functions (SVM of RBFs), and combined classifier in
terms of accuracy, recall, and combination measure F1. The analytical results emphasize the used algorithm’s superiority over
the other selected ones. The proposed model yields nearly 100% accuracy through various trials on the datasets. Notably, a
high detection speed achieved the lowest detection time of 2.6 seconds. The main novelty of this paper is attributed to the
accuracy of the presented PD diagnosis method, which is much higher than its counterparts.

1. Introduction

Nowadays, much attention has been devoted to Parkinson’s
disease (PD), a neurological disorder that has made a prodi-
gious impression on people globally [1, 2]. PD is a neurode-
generative disorder attributed to the deterioration of
dopamine-producing neurons in the substantia nigra of the
human brain [3]. Early clinical diagnosis of this disease is
critical for patients so that they can receive appropriate
treatment and care. Also, treatments like levodopa or carbi-
dopa are significantly effective when administered early in
the disease [3]. The early detection of Parkinson’s disease
is essential for preventing deteriorating health. More than
60% of dopaminergic neurons, which cause symptoms of
gradual dysfunction in their motor system, can be elimi-
nated with the initial control of the disease. PD is attributed
to dopamine in the brain cells, and people suffering from PD

have trouble doing their routines [4]. Other disease progres-
sion symptoms in the advanced stages include continuous
eye movements, irregular sleep, and loss of olfactory sense.
Such symptoms require proper diagnosis with accurate
tools, and proper treatments must be defined for the disease;
proposing an accurate method for early diagnosis of PD is of
great significance. Accordingly, much literature has devoted
much attention to this issue [5]. The presented papers com-
pete with each other in terms of accuracy, speed, and
authenticity. The obtained outcomes need to be reliable
compared to the empirical results. However, it is better to
avoid additional experiments to reach a generic diagnosis
approach. Also, it is essential to see what technology can be.

In recent years, metaheuristic algorithms have received
much attention for solving the complicated problems of
search, prediction, diagnosis, and discrete and continuous
optimizations. Such algorithms have brought appropriate
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solutions for continuous optimization problems, while the
mathematical methods have mainly failed to offer optimal
solutions, as mentioned in [6]. Metaheuristic algorithms, a
subbranch of artificial intelligence, have countless applica-
tions in medicine and treatment. The AI model has been sig-
nificantly developed for detecting the presence and severity
of PD, considering nocturnal breathing patterns [7]. An
umbrella term used for defining the application of machine
learning (ML) algorithms is AI in the healthcare industry,
with remarkable capabilities for diagnosis technologies in
medical services. Basically, AI offers an intelligent computer
system like humans for solving complicated problems, but
ML presents more accurate output as it enables machines
to learn from data [8]. Actually, ML employs mathematical
data models to help a computer learn regardless of direct
instruction. ML techniques contribute to analyzing the PD
symptoms for early diagnosis and timely treatment of the
disease [9, 10]. The significant drawback of PD diagnosis
or other diseases is the high number of features and medical
datasets that reduce accuracy, speed, and efficiency. In order
to tackle such problems, metaheuristic algorithms can be
used, and the optimization methods employed here play a
key role in reaching this aim [11, 12]. Besides considering
feature selection issues as an optimization problem, using
metaheuristic algorithms is a promising technique for
enhancing diagnosis accuracy [6].

The competition between the previous studies for pre-
senting the most accurate PD diagnosis method using meta-
heuristic algorithms continues. Hence, the present paper is
aimed at winning this competition by presenting an innova-
tive model, namely, the crow search algorithm and decision
tree (CSADT), for early PD diagnosis. The proposed model
operates on four crucial PD datasets, including meander,
spiral, voice, and speech-Sakar evaluating each dataset’s crit-
ical features. CSADT is expected to have better results than
other machine learning algorithms. Thus, the major innova-
tion of this paper only lies in the heart of the diagnostic
accuracy of the proposed method, which outperforms other
state-of-the-art ones. Notably, studies have yet to yield this
research’s results. Also, the detection speed of this model is
regarded as another novelty that competes with other related
research. The main contributions of the paper are as follows:

(i) Combining crow search and decision tree algo-
rithms (CSADT) for PD early diagnosis

(ii) Implementing CSADT on four crucial Parkinson
datasets, including meander, spiral, voice, and
speech-Sakar, to evaluate each dataset’s critical
features

(iii) Presenting high accuracy on the datasets

The rest of the paper is structured as follows: the previ-
ous work on using machine learning algorithms for PD pre-
diction and detection is reviewed in the second section to
highlight their significant gaps and shortcomings. Section 3
presents the preliminary details of the crow search algorithm
and the details of data preprocessing, data normalization,
and so forth for the proposed method. In Section 4, the

implementation results of the proposed method are pre-
sented according to valid Parkinson datasets. Finally, Section
5 provides conclusions and suggestions for future work.

2. Related Work

Many existing studies in the broader literature have exam-
ined the issue of PD diagnosis using various methods. In
2015, Shamir et al. addressed the issue of enlightening the
course of treatment for Parkinson’s disease by employing
machine learning [13]. The combined form of support vec-
tor machine (SVM) [14], naïve Bayes (NBs) [15], and ran-
dom forest (RF) [16] algorithms was presented to improve
the PD treatment period. The empirical results indicated
that the combination of NBs, SVM, and RF classifiers
attained an accuracy of 86%. Besides, in 2016, Prashanth
et al. scrutinized the accuracy of PD diagnosis using machine
learning for feature extraction [10]. The authors demon-
strated that among these three classification algorithms,
SVM achieved an unsurpassed level of performance with
96% accuracy. In 2018, Mostafa et al. presented three
important classifiers for PD diagnosis [17], in which multi-
layer perceptron (MLP) and decision tree (DT) [18] were
considered. The authors aimed to analyze each classifier
algorithm independently of its performance. The results
obtained on numerous trials indicated that 91.63% and
91.01% of the highest accuracies belonged to the decision
tree and multilayer perceptron, respectively, while the NBs
algorithm had the lowest accuracy (89%). In 2018, Gupta
et al. investigated the cuttlefish algorithm for diagnosing
PD [11]. An improved cuttlefish recovery algorithm-based
feature extraction method was developed. Comparing classi-
fier algorithms within the decision tree and k-nearest neigh-
bor (KNN) [19], the highest accuracy of 92% was obtained
for the proposed optimized cuttlefish algorithm (OCFA).
In 2018, Mostafa et al. evaluated several methods for diag-
nosing PD by classifying features [20]. Implementing five
different algorithms of SVM, RFs, neural network (NN),
NBs, and DT, a novel multiple feature evaluation approach
(MFEA) was obtained for diagnosing PD on a multiagent
system. The 10-fold cross-validation technique was used to
estimate the model performance. The average rates of
improvement were observed in the diagnostic accuracy of
SVM (9.13%), RFs (12.75%), NN (9.19%), NBs (15.22%),
and DT (10.51%) classifiers. In another study, Parisi et al.
[21] proposed a new hybrid feature-driven algorithm for
PD prediction, classification, and detection. The features
were selected using the multilayer perceptron (MLP)
approach and then classified through the Lagrangian sup-
port vector machine (LSVM) classifier. The proposed
MLP-LSVM model performed at 100% on the area under
the receiver operating characteristic curve, with relatively
faster convergence.

Studies of ML techniques for PD diagnosis are well
documented, but it is also well acknowledged that the
issue of accuracy has always been important. To mention
a few, in 2019, Chen et al. studied the effect of machine
learning on the clinical analysis of PD [12]. The new algo-
rithm was employed to extract the thalamic part, and
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then, SVM was used to predict PD from clinical condi-
tions. The empirical results indicated an accuracy of 95%
for the method employed in the PD diagnosis. In a
cutting-edge paper from 2020, Sahni et al. used a multi-
layer perceptron algorithm based on quantum particle
swarm optimization (QPSO) to address the issue of PD
diagnosis [22]. The proposed multilayer perceptron had
three layers to distinguish patients from healthy people.
The experimental results revealed 93% accuracy based on
the proposed algorithm. In another study, Senturk exam-
ined the early diagnosis of PD using machine learning
algorithms [23]. The utilized classifier algorithms were
regression tree (RT), artificial multilayer perceptron, and
SVM. SVM showed enhanced performance with an accu-
racy of 93% compared to other classifier algorithms. The
authors [24] used serum samples from a clinically well-
characterized longitudinally monitored Michael J Fox
Foundation cohort of Parkinson’s disease patients with
and without the prevalent LRRK2 G2019S mutation. The
authors [25] proposed an approach based on an artificial
neural network system with a backpropagation algorithm
to assist clinicians in detecting Parkinson’s disease. In this
paper, the N2A-SVM algorithm is proposed as a novel
prediction approach for Parkinson’s disease gene predic-
tion [26]. N2A-SVM consisted of three parts: a network
for extracting gene characteristics, a deep neural network
for lowering dimensions, and a machine learning method
for predicting Parkinson’s disease genes. Another study
proposed a unique deep learning-based method for diag-
nosing Parkinson’s disease using medical imaging [27].
Deep Convolutional and Recurrent Neural Networks
(DNNs) benefit from training on medical images such as
magnetic resonance images (MRIs) and DAT scans.

A large number of existing studies in the broader litera-
ture have examined many ML and deep learning (DL)
models for predicting PD [28]. In 2022, Singh et al. used var-
ious ML algorithms for predicting PD based on voice
recordings, and the results were acceptable [29]. In another
study, Varalakshmi et al. proposed hybrid models based on
DL and ML for feature extraction and feature classification
for diagnosing PD based on hand drawing [30]. Due to the
obtained results, the accuracy, sensitivity, and specificity
scores were, respectively, 98.45%, 99%, and 98%. In 2023,
deep belief network (DBN) was combined with neurofuzzy
techniques for diagnosing PD, considering an ensemble
learning method with the capability of online learning based
on large clinical datasets. In order to handle such a dataset, a
clustering method, namely, expectation maximization (EM),
was employed. Additionally, the electroencephalographic
(EEG) signals were employed as biomarkers for assessing
the performance of Hjorth features [31]. The authors used
SVM, KNN, and RF based on a 5-fold cross-validation
methodology for classification. Lu and Sorooshyari exam-
ined seven EEG features calculated at single or combined
spectral bands in sleep-wake and found that they differenti-
ated the midbrain substantia nigra pars compact (SNc)
lesions [32]. Besides, Table 1 outlines more related studies
conducted so far and compared the outcomes of such studies
in terms of accuracy.

Furthermore, feature extraction increases the accuracy of
learned models as the features are extracted from the input
data. The dimensionality of the data is also reduced at this
stage, leading to increased training and inference speeds.
Many previous and ongoing studies have used local pattern
transformation based on feature extraction. For instance, in
2019, Tuncer and Dogan introduced a new octopus as a
multiple-pooling method according to feature extraction
[43]. Employing the proposed octopus’s method for the sig-
nal in the preprocessing, the output signal was generated.
The previous studies used the features extracted from vocal
disorders as a precursor for PD detection since the patients
encounter vocal variations and impairments in the early
stages of PD [39, 44, 45]. Accordingly, Hoq et al. combined
two methods based on a support vector machine (SVM),
principal component analysis (PCA), and a sparse autoenco-
der (SAE) for detecting PD patients according to their vocal
features. In 2019, Xiong and Lu stated that the vocal features
of PD have an impact on individuals considering complex
computational models [46]. Considering the vocal patterns,
the PD diagnosis was examined by employing ML tech-
niques by Lahmiri and Shmuel in 2019 [47]. Considering
the Bayesian optimization method, the parameters of the
radial basis function kernel of the SVM classifier were opti-
mized, and acceptable results were presented. A novel mul-
tiagent feature filter (MAFT) algorithm was presented in
2021 to select the best features from the voice dataset and
achieve PD symptoms [48]. Using a hybrid model (HM)
combined with the MAFT increases the general accuracy
by 96.9% and reaches more acceptable results.

Despite the remarkable interest in this regard and many
studies conducted regarding efficient PD diagnosis models,
many gaps and shortcomings still need to be addressed. No
study has mentioned the benefit of using speech signal pro-
cessing algorithms for PD investigations. In the current
study [49], various speech signal processing algorithms are
employed to extract clinically valuable information for PD
diagnosis. The derived features are input to learning algo-
rithms to build dependable decision support systems. The
authors apply the tunable Q-factor wavelet transforms
(TQWT) to the voice signals of PD patients for feature
extraction, which has a higher frequency resolution than
the standard discrete wavelet transform. To our knowledge,
such a resolution has been observed for the first time. The
primary aim here is to present a system for early diagnosis
of PD based on a combination of decision tree and crow
search algorithms used for four primary datasets of PD. Its
final aim is to extract the essential features and design a
robust system for the early diagnosis of PD.

3. Proposed Method

This section gives the most crucial information about the
problem and the method proposed to solve it.

3.1. Preliminaries. In this study, four scientifically valid Par-
kinson’s disease (PD) datasets were used: speech-Sakar,
voice, meander, and spiral. Each dataset has its unique fea-
tures, as characterized in Table 1. The proposed method
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and other comparable algorithms in this research were run
on Python software. They paralleled each other in terms of
essential features such as accuracy, precision, and recall. In
Table 2, the Istanbul University of Neurology illustrated
and arranged the Speech-Sakar dataset of 188 patients. The
examined patients consisted of 107 males and 81 females.
The Voice database of 31 patients, which the University of
Oxford organized, was also studied. A total of 23 Parkinson’s
patients were included in this dataset. The meander dataset
consisted of a questionnaire form with 158 participants.
The Spiral dataset was also developed at the Faculty of Med-
icine of Botucatu, São Paulo State University, Brazil. The
four datasets are the most imperative and reliable datasets
on PD being used by researchers worldwide. Overall, an
innovative combined method, namely CAADT, is proposed
for early diagnosis of PD based on crew search and decision
tree algorithms using these four valid datasets (Figure 1).

The flowchart presented outlines the entire process that
must be considered in order to achieve the desired results.
Accordingly, the user data needs to be normalized in the first
step. Then, the crow search algorithm process initiates,
whose pseudocode and supplementary information are
given in Figure 2 (reprinted from [54]) and the Appendix.

When the solutions are converted to binary mode, the
sigmoid function process initiates by selecting the subfea-
tures. Accordingly, the reduced dataset consisting of test
and training data is entered into the decision tree. The out-
put obtained after this process is assessed to specify the novel
crows. Then, the memory is updated based on the invalid
results, which need to be considered in assessing the crows
and solutions. Notably, the normalization process is con-

ducted for speech, voice, meander, and spiral before imple-
menting the proposed method.

It should be noted that the voice dataset is regarded as a
creative common speech dataset that acoustically affects
reverberant environments with strong labels and truth data
for transcription, denoising, and speaker identification. The
primary sources used for extracting the voice dataset are
references [14, 15, 22], according to which the proposed
method is compared with the other selected algorithms,
namely, the traditional curve fitting algorithm (TCFA), opti-
mized cuttlefish algorithm (OCFA), and decision tree (DT).
Furthermore, the speech-Sakar dataset from reference [53] is
used to make additional comparisons to demonstrate the
validity of the proposed method.

3.2. Normalization. In this stage, data normalization was
performed on four PD datasets: meander, spiral, voice, and
speech-Sakar. Normalization was conducted on the full fea-
tures of each dataset. One of the essential methods of nor-
malization is standard normalization. In the proposed
method, each feature was normalized in the interval between
the minimum MinX and the maximum MaxX; then, this
interval was turned into a new interval of ½NewMinX, New
MaxX� based on Equation (1). Accordingly, each value of
V in each feature was normalized to a new one. The equa-
tion below states that the terms are used to normalize the
data. Hence, the obtained results are used as the selected
dataset for analysis.

NewValue =
V −MinX

MaxX −MinX
: ð1Þ

Table 1: A summary of the previous studies.

No. Year Method Metaheuristic algorithms/algorithms Accuracy

1 2018 [33]
An enhanced fuzzy k-nearest

neighbor (FKNN)

The chaotic bacterial foraging
optimization with Gauss mutation
(CBFO) approach with FKNN

96.97%

2 2018 [34]
Combination of cardiac (MIBG)
and cerebral 123I-ioflupane SPECT

A dual imaging 94%

3 2021 [35] Dissolved gas analysis (DGA)
An efficient teaching-learning-based

optimization (TLBO)
88.86%

4 2021 [36]
An automated tunable Q wavelet

transform (A-TQWT)
Support vector machine 98.56%

5 2020 [37] A new chaos-based stochastic model
Kernel-based naïve Bayes

(KNB) algorithm
90%

6 2019 [38] Eighteen feature extraction techniques Machine learning techniques 92.94%

7 2019 [39]
Random forest, k-nearest neighbor
classifier, and decision tree espy

The modified grey wolf optimization
(MGWO) algorithm

98.28%

8 2020 [40]
The unified Parkinson’s disease

rating scale (UPDRS) and principal
component analysis (PCA)

A deep neural network (DNN) model
based on the reduced input feature space
of Parkinson’s telemonitoring dataset

MAE, RMSE, and R2 values
of 0.926, 1.422, and 0.970

9 2022 [41]
The deep convolution neural
network (CNN) method and

ZFNet architecture
ML technique

The higher accuracy of 7.6%
compared to other DL methods

10 2022 [42]
A wrapper-based binary improved

grey wolf optimizer (BIGWO) method
BIGWO-V1 and BIGWO-V2 algorithms

Better than GA, PSO, BBA,
and MCS algorithms
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3.3. Crow Search Algorithm. In the proposed combined
method (CASDT), the crow search algorithm has been used
to select the features whose general introduction is given
here. The crow search algorithm is a population-based
metainnovative algorithm developed by Askarzadeh [54]
based on the basic concepts of life and how crows acquire

food. The main principles of this algorithm are restricted
as follows:

(i) Crows live in groups

(ii) Crows remember where they have hidden their food

(iii) Crows chase one another to steal each other’s food

(iv) Crows protect their store of food from being stolen

It is noteworthy that the primary reasons for using CSA
are its simple implementation, fewer parameters, flexibility,
and so on [55]. From the optimization point of view in
[54], crows are considered search agents and the natural
environment where they live in the search space. In this
algorithm, it is assumed that a certain number of crows are
in a d-dimensional environment where the number of crows
is denoted by the variable N , and the position of each crow is
shown in Equation (2) [54]:

xi,iter = xi,iter1 , xi,iter2 ,⋯, xi,iterd

Â Ã
, ð2Þ

i = 1, 2,⋯,N ; iter = 1, 2,⋯, itermax, ð3Þ

Table 2: Important and valid Parkinson’s datasets.

Dataset Number of features Number of classes Number of samples Ref.

Speech-Sakar 754 2 756 [49]

Voice 23 2 194 [50]

Spiral 15 2 264 [51]

Meander 15 2 264 [52]

Data normalization

Cr
ow

 se
ar

ch
 al

go
rit

hm
Set the initial parameters

Initial numbering of locations and 
memory of crows

Dataset

Speech Voice

Meander Spiral

Start

Evaluation of all crows or solutions

Production of new locations

Checking the new locations

Turning solutions to binary mode

Evaluation of all new crows

Updating the memory

Yes ResultsNo End
condition

Decision tree

Test dataset

Choosing sub-feathers

Reduced
dataset

Sigmoid function

Training dataset

Figure 1: Flowchart of the proposed process.

Figure 2: The pseudocode of the crow search algorithm (this figure
is reprinted from [54]).
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where i represents the number of crows or the solution in a
search space, and iter is the representative of the current
generation of iterations. The location of a crow in the search
space of d dimensions and the total number of iterations are,
respectively, shown by xi, iter, and itermax [54].

As indicated in Figure 3 (adapted from [54]), ri is a ran-
dom number with a uniform distribution between 0 and 1,
and f li,iter represents the flight length of crow i with iter repe-
tition. Figure 1 indicates the schematic of this mode and the
effect of fl on searchability. Small values of fl result in local
search, and large values result in global search. As
Figure 3(a) shows, if the value of fl is chosen less than 1, the
next position of crow i is on the dash between xi,iter and
mi,iter. According to Figure 3(b), if the value of fl is chosen to
be greater than 1, the next position of crow i is on the dash,
which may exceed mj. Moreover, each crow has a memory
to keep information in hiding. In the current iteration, the
location of the crow’s hiding place is displayed by mi,iter. In
reality, the best location is stored in the memory of each crow.
After initializing the location of hiding places of all crows,
crow i can follow another crow, such as crow j, to touch its
hiding place in which the two cases shown in the equation
occur. As regards Figure 3, in the first case, crow j does not
know that crow i is chasing him. Then, crow i finds the hiding
place of crow j. In this case, the new location of crow i is gotten
as Equation (3). In the second case, crow j knows crow i is
chasing him and thus deceives him by going to another ran-
dom location in the search space [54].

xi,iter+1 =
xi,iter + ri × fli,iter mj,iter − xi,iter

À Á
r j ≥APj,iter

a random location otherwise
:

(

ð4Þ

In Equation (4), ri refers to a random number with an
equal distribution between zero and one, and flj,iter indicates
the flight length of crow j in iter iteration. APi,iter indicates
the probability that crow i became aware of iter iteration. In
the first case, everything relies on the value of the parameter
flj,iter. Figure 3 shows this issue in [54] and the effect of flj,iter
parameter on the search. Based on Figure 3, small values of
fl lead to local searches in the vicinity of xi and iter, while large
values of fl lead to additional searches. Similar to other meta-
heuristic algorithms, this algorithm utilizes an awareness
probability (AP) parameter to balance exploration and pro-
ductivity. The crow search algorithm’s implementation pro-
cess is described in 8 steps.

3.3.1. Crow Search Algorithm for Initialization of the
Parameters and Definition of the Optimization Problem.
The optimization problem is initially defined in this step,
and quantitative and qualitative parameters are then fixed.
Some of these parameters, such as the minimum value of
each variable (X min) and the maximum value of each vari-
able (X max) and the number of problem dimensions (d),
are set according to the problem. The configurable parame-
ters of the crow search algorithm, such as crow population
size (N), the total number of iterations (itermix), flight

length (fL), and awareness probability (AP), are fixed before-
hand. In this algorithm, the initial response for intensifica-
tion and diversification is related to the parameters of AP.
Accordingly, CSA seeks to find the local area by reducing
the AP value where the best answer is. Using low AP levels,
the intensity is improved. The AP values are directly propor-
tional to the probability of searching in the current good
solution drop domain. Accordingly, CSA specifies the search
space randomly and improves diversity by employing high
AP values.

3.3.2. Crow Search Algorithm for Initialization of Location
and Memory of Crows. Based on the optimization made in
step one, the location and memory of crows are arbitrarily
initialized in this step. Each crow specifies a possible
response to the problem, and d signifies the number of deci-
sion variables. Providing that in the first iteration, crows
have no decomposition; they can hide their food in their
original locations. The location and memory of crows can
be, respectively, shown as Equations (5) and (6) [54]:

Location of crows =

X1,1 X1,2 X1,d

X2,1 X2,2 ⋯ ⋯ X2,d

⋮ ⋮ ⋯ ⋯ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

Xn,1 Xn,1 ⋯ ⋯ Xn,d

2
666666664

3
777777775
, ð5Þ

Memory of crows =

M1,1 M1,2 M1,d

M2,1 M2,2 ⋯ ⋯ M2,d

⋮ ⋮ ⋯ ⋯ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

Mn,1 Mn,1 ⋯ ⋯ Mn,d

2
666666664

3
777777775
:

ð6Þ

3.3.3. Crow Search Algorithm for Evaluation of All Crows or
Solutions. In this step, similar to other metaheuristic algo-
rithms, each solution is directed at the objective function
to evaluate its quality or suitability for the objective function.

3.3.4. Crow Search Algorithm for Production of New
Locations. At this step, all crows move to the new position
using Equation (4). The primary process of the crow search
algorithm will be accomplished truthfully in two cases. In
the first case, crow j does not know it is being chased by
crow i. In this case, crow i finds the food hiding place of
crow j. Then, the new location of crow i is obtained as Equa-
tion (4). In the second case, unlike the first case, crow j
knows crow i is chasing him. In this case, crow j deceives
crow i by going to another random place in the search space,
which corresponds to the case (otherwise) in Equation (4).

3.3.5. Crow Search Algorithm for Reviewing New Locations.
At this step, if the new location is feasible and conceivable
for each crow, that crow updates its location. Otherwise, it
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remains in its current location and makes no change to pro-
duce a new location.

3.3.6. Crow Search Algorithm for Evaluation of All Crows or
Solutions of New Locations. Each new solution, like the pre-
vious one, is sent to the objective function to determine its
quality or suitability.

3.3.7. Crow Search Algorithm for Memory Update. At this
step, the newly achieved solutions are compared with those
in the crow’s memory, and if they are improved, they should
be replaced in memory. Subsequently, crows update their
memory based on Equation (7) [54].

mi,iter =
xi,iter Ff xi,iter

À Á
> f mi,iterÀ Á

mi,iter otherwise
:

(
ð7Þ

Based on Equation (7), the crow memory will be
updated, in which f ð:Þ denotes the value of the objective
function.

3.3.8. Crow Search Algorithm for Reviewing the End Criteria.
Each metaheuristic algorithm ends with a definite number of
iterations itermax. Otherwise, steps 4 to 7 are repeated in the
algorithm to itermax.

3.4. Turning Solutions Using the Sigmoid Function. All the
solutions obtained from the crow search algorithm are con-
tinuous and cannot be directly used to solve binary or

Origin
Crow j

New position of
Crow i

Crow i
x (i, iter)

m (i, iter)

(a) fl < 1

Origin

Crow j

New position of
Crow i

Crow ix (i, iter)

m (i, iter)

(b) fl > 1

Figure 3: Search mechanism by the crow in two modes (fl < 1 and fl > 1) (this figure is adapted from [54]).

A continuous solution in crow search algorithm

1 2 3 4 5 6 7 8

3.147 4.057 0.127 –3.730 4.133 1.323 –4.024 –2.215

Operation of sigmoid transfer function on desired solution

Solution in proposed process in the space of transfer function

Random threshold in solution in proposed process

1 2 3 4 5 6 7 8

0.958 0.983 0.023 0.984 0.789 0.017 0.098 0.615

1 2 3 4 5 6 7 8

1 1 0 1 1 0 0 1

Figure 5: The process of continuous mode to binary using the
sigmoid transfer algorithm in the proposed method.

1
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0
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T

T 
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)
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Figure 4: Schematic overview of the sigmoid transfer function.
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feature selection issues. Using mathematical transfer func-
tions to convert continuous space to discrete space is one
solution. In this research, the sigmoid or S-shaped function
has been used for this purpose, which is defined in

Sigmoid CSAd
i tð Þ

� �
=

1
1 + e−CSAk

i tð Þ : ð8Þ

In Equation (8), CSAd
i , the constant value of the ith solu-

tion, is implied in the memory of the crow search algorithm
for the dth dimension in iteration t. The sigmoid function
transmits all the solutions in the crow memory to the space
between 0 and 1, as shown in Figure 4. The outcome of the sig-
moid transfer function is in the continuous mode between 0
and 1 and could not be directly used to answer the feature
selection problem, as shown in Figure 4. As a result, thresholds
must be considered for turning continuous solutions into
binary. This research uses a random threshold to turn the
crow search algorithm solutions into the binary mode in

CSAd
i t + 1ð Þ =

0 if rand < sigmoid CSAd
i tð Þ

� �
1 if rand ≥ sigmoid CSAd

i tð Þ
� � :

8><
>: ð9Þ

In Equation (9), CSAd
i represents the location of the ith

solution in the agricultural land fertility algorithm population
for the dth dimension in iteration t. The rand also represents
several types of uniform distribution between 0 and 1. Based
on Figure 5, a solution is initially generated in the continuous
space of the crow search algorithm. Then, it is located in the
space between 0 and 1 using a sigmoid transfer function and
finally turned to binary mode with a random threshold for
the desired solution.

3.5. Objective Function. In this research, the objective func-
tion of feature selection for the proposed algorithm is
defined in Equation (10). To explain the objective function

of the feature selection issue, a classifier algorithm is needed.
In this research, the decision tree algorithm is adopted as the
classifier.

Fitness = αγR Dð Þ + β
Rj j
Nj j , ð10Þ

where αγRðDÞ, jRj, and jNj display the decision tree error
rate, the selected subset’s linearity by the crow search algo-
rithm, and the total number of features in the dataset,
respectively. The parameters α and β, respectively, denote
the significance of the classification quality and the length
of the subset.

The proposed combined method, CSADT, was appraised
in terms of accuracy, precision, recall, and combination
measure F1. Concerning four criteria, the proposed algo-
rithm is equaled with KNNs, SVM, NBs, MLP, and DT in
Python software. The four criteria are mathematically
defined below:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 −Measure =
2 ∗ Precision ∗ Recall
Precision + Recall

:

ð11Þ

In the above equations, all four criteria of accuracy, pre-
cision, recall, and combination measure F1 are formulated,
with samples of true positive (TP), true negative (TN), false
positive (FP), and false-negative (FN). In Figure 5, the results
obtained from the implementation of each proposed method
and other algorithms are shown on the meander, spiral,
voice, and speech-Sakar datasets in terms of accuracy.
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Figure 6: Results obtained from the comparison of the proposed algorithm with other comparative algorithms in terms of accuracy.
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4. Results and Discussion

This section discusses the results obtained from imple-
menting the proposed method on the selected data. Accord-
ing to Figure 6, the proposed method outperformed other
algorithms with 93% accuracy in the speech-Sakar and
100% accuracy in the spiral, meander, and voice datasets.
Accordingly, the proposed combined method gives more
accurate results with values of 0.93, 1, 1, and 1 for speech-
Sakar, spiral, meander, and voice.

Based on the results in Figure 7, the proposed method out-
performs other selected algorithms with 92% precision in the
speech-Sakar and 100% in the spiral, meander, and voice data-

sets. The second rank belongs to the decision tree regarding
spiral and meander, with 98% and 97% values, respectively.
On the other hand, k-nearest neighbors outperform the deci-
sion tree in terms of speech-Sakar and voice with an accuracy
of 83% and 89%, respectively. Overall, SVM performs poorly
compared to the others in every aspect.

Concerning the results shown in Figure 7, the proposed
method performs better than the other algorithms, with
88% recall in the speech-Sakar and 100% precision in the
spiral, meander, and voice datasets.

Finally, the time of the proposed combined algorithm for
early diagnosis of PD was studied and compared with other
algorithms, as shown in Figure 8. Based on the obtained
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Figure 7: Results obtained from the comparison of the proposed algorithm with other comparative algorithms in terms of precision.
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Figure 8: Comparison of the proposed algorithm with other comparative algorithms in terms of time ().
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results, the proposed algorithm was able to detect PD early
and in near-zero time in most datasets and even four times
faster than the decision tree algorithm in the speech-Sakar
dataset. The combined algorithm in this paper was com-
pared with that in [11], which proposed a method based
on the cuttlefish algorithm called OCFA.

The comparison of the proposed CSADT algorithm with
the OCFA method is demonstrated in Table 3. Accordingly,
the proposed algorithm has achieved 100% accuracy, preci-
sion, recall, and combination measure F1. In terms of time,
it performed faster than other algorithms, which is proven
as an early Parkinson’s disease diagnosis system.

For further assessment, the combined algorithm (CSADT)
proposed in this research was compared with other essential
algorithms proposed in references [14, 15, 22] on the voice
dataset (Table 4). The proposed combined algorithm
(CSADT) was compared with the RF, KNNs, DT, MLP,
PSO, and QPSO algorithms on the voice dataset. The pro-
posed combined algorithm, CSADT, achieved 100% on all

four criteria and performed better than all other algorithms.
This is indicative of an early and accurate diagnosis of PD dis-
ease. For further experimentation and evaluation, the com-
bined algorithm (CSADT) implemented on the speech-Sakar
dataset was compared with that employed in [53] for accuracy
and combination measure F1. As shown in Table 1, CSADT

Table 3: Comparison of the proposed algorithm with OCFA [11].

Dataset Algorithm
Evaluation criteria

Accuracy F1-score Recall Precision Time (second)

Voice

TCFA [11] 0.92 — — — 2.6

OCFA [11] 0.94 — — — 2.1

KNN [11] 0.87 — — — —

DT [11] 0.84 — — — —

CSADT 1.00 1.00 1.00 1.00 0.02

Meander

TCFA [11] 0.88 — — — 1.3

OCFA [11] 0.89 — — — 0.9

KNN [11] 0.78 — — — —

DT [11] 0.79 — — — —

CSADT 1.00 1.00 1.00 1.00 0.04

Spiral

TCFA [11] 0.88 — — — 1.3

OCFA [11] 0.89 — — — 1.1

KNN [11] 0.82 — — — —

DT [11] 0.79 — — — —

CSADT 1.00 1.00 1.00 1.00 0.05

Table 4: Comparison of the proposed combined algorithm CSADT with [14, 15, 22] on the voice dataset.

Algorithm Accuracy F1-score Recall Precision Ref.

RF 0.95 — — — [56]

KNN 0.90 — — —

DT 0.89 — — —

CSADT 1.00 1.00 1.00 1.00

MLP 0.91 — — — [53]

NB 0.89 — — —

DT 0.91 — — —

CSADT 1.00 1.00 1.00 1.00

QPSO 0.93 — — — [22]

PSO 0.81 — — —

CSADT 1.00 1.00 1.00 1.00

Table 5: Segmentation of the speech-Sakar dataset based on the
different features of [53].

Entry Feature Number

1 Baseline 26

2 Bandwidth + formant 8

3 Mel-frequency cepstral coefficients (MFCC) 84

4 Wavelet transform applied to F0 182

5 Vocal fold 22

6 Tunable Q-factor wavelet transform (TQWT) 432
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outperforms the other algorithms by the greatest distance.
Using this method, the medical problems in PD diagnosis
can be significantly solved. The voice dataset used here can
be extended to evaluate more findings and reach more accu-
rate results. Practical experiences will validate the obtained
results, and the proposed method should be used after it has
been clinically validated.

In [53], the dataset was divided into several classes based
on features wholly designated in Table 5.

In addition, a comparison was made among different
machine learning algorithms, such as NBs, logistic regres-
sion (LR), KNNs, MLP, RF, Linear SVM, SVM of radial base
functions (RBFs), and combined classifiers (ensemble). The
proposed combined algorithm (CSADT) was also compared
with [53] on the speech-Sakar dataset for numerous subfea-
tures, as shown in Table 6. As can be seen, the performance
of the proposed combined algorithm (CSADT) was higher
than that of NBs, LR, KNNs, MLP, RF, Linear SVM, SVM
of RBFs, and the combined classifier in all the subsets of
the speech-Sakar dataset. Therefore, 90% and 84% accuracy
were achieved in the respective subsets of the baseline and
MFCC features.

Another experiment was carried out on the speech-Sakar
dataset with all other features except MFCC and TQWT in
[53], as shown in Table 7. As can be observed, the perfor-
mance of the proposed combined algorithm (CSADT) is
more productive than the other algorithms in all features
of the speech-Sakar dataset. The proposed combined algo-
rithm (CSADT) resulted in an accuracy of 88% for all fea-
tures except TQWT, 84% accuracy for all features except
MFCC, and 93% for all the features.

Due to the results obtained so far, the superiority of the
proposed method over its counterparts presented in the lit-
erature has been proven. Many optimization methods, like
cross-validation, could be used in this research instead of
the presented method. CSA is a novel swarm intelligence
algorithm recently extended to simulating the crow’s behav-
ior in storing additional food and retrieving it when neces-
sary [55]. The main drawback of the cross-validation
method is that its training algorithm needs to be run from
scratch k times, and it takes k times as much calculation to
make an assessment. In comparison, CSA does not have this

limitation and performs better than cross-validation
methods in terms of accuracy.

It should be noted that the priority here is not a real-time
prediction and accuracy matters. Hence, in order to have a
reliable and accurate prediction, it is necessary to rerun the
proposed method on the new dataset. The significant bene-
fits are the high accuracy, precision, recall, and combination
measure F1 obtained for the proposed model. The impor-
tance of a correct diagnosis of Parkinson’s disease outweighs
the importance of real-time prediction in the medical field.
Hence, the proposed model can be considered a practical
solution and prediction tool for the experts aiming to diag-
nose Parkinson’s disease properly and prevent its progres-
sion. The innovation of the proposed method is attributed

Table 7: Comparison of the proposed combined algorithm CSADT with [53] speech-Sakar dataset with other features except for MFCC and
TQWT.

Algorithm
All features except TQWT All features except MFCC All features
Accuracy F1 Accuracy F1 Accuracy F1

NB 0.65 0.67 0.81 0.81 0.83 0.83

LR 0.81 0.79 0.83 0.82 0.85 0.84

KNN 0.82 0.79 0.84 0.82 0.85 0.82

MLP 0.83 0.81 0.81 0.80 0.84 0.83

RF 0.79 0.78 0.83 0.82 0.85 0.84

SVM (linear) 0.81 0.80 0.84 0.83 0.83 0.82

SVM (RBF) 0.83 0.81 0.83 0.81 0.86 0.84

Ensemble 0.81 0.80 0.85 0.84 0.85 0.84

CSADT 0.88 0.85 0.89 0.85 0.93 0.90

Start

Initialize parameters

Initialize position of crows

Initialize fitness for each crow

Generate new position for each crow

Check the feasibility of new position

Evaluate fitness function

Update memory of crows

If t < Tmax

Return best position

End

Figure 9: The required steps for solving the problem (this figure is
reprinted from [57]).
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to its striking accuracy, authenticity, and reliability. Clearly,
the datasets employed in this research are limited, and more
comprehensive data can be considered to observe different
results. As a result, the main reason CSADT has 100% accu-
racy is that the data considered is limited. The results
obtained for other datasets are expected to have an accuracy
of 90-100%. Notably, the proposed method outperforms the
other examined models, which also compete with the other
state-of-the-art ones presented in the literature. The accu-
racy of the obtained results lies at the heart of the minor dif-
ference between the prediction and empirical results. The
obtained accuracy may be reduced for the other dataset, cat-
egorized in more detail, and includes a range of varieties.

5. Conclusions

In summary, a model, namely, CSADT, was provided for the
early diagnosis of Parkinson’s disease (PD). The proposed
method was tested on four key PD datasets: meander, spiral,
voice, and speech-Sakar. In the beginning, the normalization
process was performed for speech, voice, meander, and spi-
ral before implementing the proposed technique. Then, the
procedure of the CSA was considered to evaluate the suitable
solutions. The novel locations were generated and examined
for conversion to binary mode. After this process, the sig-
moid function specifies the subfeatures for the test and train-
ing datasets. The decision tree updated the assessed novel
crows to reach the final results. Additionally, the presented
algorithm was compared with other machine learning algo-
rithms such as KNNs, SVM, NBs, MLP, DT, random tree,
LR, SVM of RBFs, and combined classifiers in terms of accu-
racy, precision, recall, and combination measure F1. Besides,
numerous trials have confirmed the proposed combined
algorithm’s high accuracy and early detection. The model
was accurate with nearly 100% accuracy and fast due to
the short diagnostic time for the diagnosis of PD. Finally,
the proposed combined algorithm can be better imple-
mented for PD detection in the case of seconds and millisec-
onds. The innovation of the proposed method (CSADT) is
attributed to its striking accuracy, authenticity, speed, and
reliability compared to other state-of-the-art ones presented
in the literature. The drawback of the proposed method is
attributed to the need for more comparisons with the
obtained results and empirical ones. Also, more algorithms
can be employed to specify the best ones, and a lack of sta-
tistical analysis is essential. Future investigations are neces-
sary to validate the kinds of conclusions that can be drawn
from this study. Future studies can examine the novel archi-
tectures of convolutional neural networks (CNN) and other
algorithms. Further attempts could prove beneficial to the
literature. As mentioned before, the 100% accuracy of the
proposed model is attributed to the dataset considered for
the proposed method, which has no inconsistencies or noise.
The model is expected to perform correctly even in the case
of a dataset with noise, although the accuracy will no longer
be 100%. In future studies, it is recommended to consider
the dataset with some inconsistency and noise and select
the current prediction model. Accordingly, a more efficient
method with other optimizers can be proposed as another

model, and the current one and the novel one can be com-
pared as a significant contribution to the future. The pro-
posed model can combine the MLP or RF with the crow
search algorithm. Besides, the principle component analysis
(PCA) technique is a good idea for eliminating noise from
the dataset.

Appendix

The Stages of Implementation

More information needed to understand the implementa-
tion process of the proposed method is outlined in
Figure 9 reprinted from [57].

In the beginning, the problem and its parameters are
tuned. Then, the problem, decision variables, and limitations
are presented. Evaluating the customizable CSA parameters
flock size, the highest number of iterations, flight period,
and AP are considered. After that, the crows’ location and
memory need to be reset. The viable problem solution is
indicated by each crow as the number of selection factors
is denoted by d. Since the crows do not have any experience
in the initial iteration, it can be concluded that they have
hidden their meals at their first position. The objective func-
tion is evaluated by calculating the quality of the crow’s loca-
tion and considering the selection variable values in the
objective function. A novel position is created for crows,
and the viability of a new viewpoint is investigated in the fol-
lowing. The fitness and objective function considered for the
novel places are specified. According to the value of the
objective function, the crows’ memories are upgraded. Steps
4 until 7 are conducted unless the highest number of itera-
tions is obtained.
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