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Abstract: Hexokinase (HK) is a key enzyme in chitin biosynthesis in insects and plays
an important role in development and energy regulation. It also performs a crucial role
in the synthesis of Glucose-6-phosphate and its putative functions are studied via injection of dsRNA
corresponding to the hexokinase gene from Cnaphalocrocis medinalis (CmHK). This study was designed
to analyze the characteristics and expression patterns of HK-related genes in various tissues
of C. medinalis at different developmental stages. The CmHK ORF is a 1359 bp in length, encoding
a protein of 452 amino acids, with homology and cluster analysis showing that CmHK shares an 85.11%
sequence similarity with hexokinase from Ostrinia furnacalis. CmHK was highly expressed in the ovary
and in the fifth instar larvae. Injection of dsCmHK significantly suppressed mRNA expression (73.6%)
120 h post-dsRNA injection as compared to a control group. The results demonstrated an increased
incidence of larval and pupal mortality of 80% and 78%, respectively, with significant variation
in the sex ratio between males (68.33%) and females (35%), overt larval deformities, and a reduction
in average weight gain observed 120 h post-dsRNA injection. In addition, dsCmHK-injected
C. medinalis showed a significant reduction in ovulation per female and larval hatching rate, along
with increased larval and pupal mortality and variation in male and female emergence over three
generations (G1, G2, and G3). Taken together, the outcomes of the study provide a foundation to
study gene function and a new dimension to control C. medinalis by transgenic RNAi technology.
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1. Introduction

The cuticle is an integral part of the exoskeleton that plays a vital role in the growth and
development of an organism. In insects, it plays a pivotal role in protecting them against adverse
environments, pathogens, parasites, hazardous chemicals, and also provides structural support
and movement [1]. Insects periodically shed their old cuticle or cuticular parts and replace them
with new ones, especially during molting from one stage to another in which chitin plays a crucial
role [1]. Chitin is the second most important and widespread amino polysaccharide in nature after
cellulose. It is a linear biopolymerβ-(1,4)-linked N-acetylglucosamine that is assembled into microfibrils
of different length and diameter and is mostly synthesized by nematodes, fungi, protozoan, mollusks,
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and arthropods [2,3]. In insects, chitin synthesis plays a crucial role in growth and metamorphosis,
and also serves as a central component of the embryonic cuticle, trachea and peritrophic membrane
(PM), and the extracellular linings of the body [4,5]. Several genes associated with chitin have been
reported in ovaries, eggs, and eggshells of various insect species [6]. Therefore, disruption of natural
processes of chitin synthesis and degradation can cause abnormalities, leading to death in severe
cases [7].

Hexokinase (HK) is the first enzyme in the glucose metabolic pathway [8,9]. HK produces
multi-functional proteins involved in apoptosis [10] and transcriptional regulations [9].
In the glycolysis pathway, HK serves as an important rate-limiting enzyme that converts glucose
to glucose-6-phosphate [11]. In the glycolysis pathway, glucose uses HK as a substrate to convert
glucose 6-phosphate to pyruvate in organisms [11]. HK acts as a neurotrophic factor in cytokine
neurotransmission [12–14]. HK is also the second most important enzyme in the chitin biosynthesis
pathway [15]. HK was first studied in Nematocida parisii [16] and has also been reported in Paranosema
locustaes [17–19]. HK was also present in the host’s indirect immune-fluorescence assay (IFA) [17,18].
The primary function of HK has been observed in Trachipleistophora hominis, where it serves as a regulator
to enhance ATP synthesis on the surface of parasites [20].

RNA interference (RNAi), has been reported as an effective gene silencing technique in eukaryotic
organisms [21]. It is an endogenous post-transcriptional gene silencing (PTGS) mechanism used
to regulate gene expression at the mRNA level with a highly conserved mode of action [22,23].
Double-stranded RNA (dsRNA) is turned into siRNA (small interfering RNA) which causes rapid
degradation of mRNA [24]. Specific degradation of mRNA occurs in the cytoplasm resulting
in the silencing of normal gene function. Firstly, RNAi was found in Caenorhabditis elegans [25]. It has
been reported in fungi, plants, and animals including insects [26–30]. In insects, it was studied
in Plutella xylostella, Spodoptera exigua, and Manduca sexta [31], Tribolium castaeum, Gryllus bimaculatusa
along with their progenies [32,33], and Henosepilachna vigintioctopunctata [34]. RNAi has two types
that are systemic RNAi and environmental RNAi in which siRNA is introduced by injection method,
and by oral administration in the entomological research. However, dsRNA application mostly affects
the efficiency of RNAi. Direct injection of dsRNA to insect hemocoel causes gene silencing and is
considered a successful method for controlling the desired gene function [27]. Higher larval mortality
was observed in S. exigua after microinjection of two highly preserved genes, hexamerin1 and protein1,
as compared to the controlled conditions [35]. At present, the microinjection method proves relatively
effective for the management of Spodoptera litura [36], M. sexta [37], and Bombyx mori [38]. In the case
of Helicoverpa armigera, delayed pupal developments were observed after the injection of HK inhibitor
Deoxy-2-glucose (DOG) [39]. It appears that HK dysfunction inhibits the chitin formation that may
lead to insect abnormality, stunted growth, and delayed pupation. Up to now, functions of HK
have not been investigated in Cnaphalocrocis medinalis. Additionally, C. medinalis de novo assembly
transcriptome data have also been published [40]. Therefore, RNAi strategy could be a useful tool to
control C. medinalis and its gene functions.

RNAi is mainly categorized into parental RNAi, embryonic RNAi, and larval RNAi. However,
parental RNAi (pRNAi) is mostly used to study gene expression [41–44]. pRNAi was first achieved
by injecting dsRNA into the insect body by the gene silencing of female offspring and also tested
against various genes of insect embryos including the distel-less gene for the formation of limbs
in Nilaparvata lugens and T. castaneum [25,32,45], the maxillopedia gene for maxillary and labial palps
formation in T. castaneum [32,46], the transformation genes for sex differentiation in G. bimaculatus
and T. castaneum [41,47,48], and the hunchback gene for the formation of axial patterning in Diabrotica
virgifera virgifera, Oncopeltus fasciatus, and Acyrthosiphon pisum [49–52]. However, the effects of pRNAi
on the HK gene have not been reported in C. medinalis.

The rice leaf folder (Cnaphalocrocis medinalis) (Lepidoptera: Pyralidae), is an adaptive and
economically important rice pest in most Asian countries including China [53]. C. medinalis possesses
complete metamorphosis and undergoes four developmental stages, that is, egg, larva, pupa, and adult.
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Eggs are oval in shape and creamy white, laid in batches along the midrib of the leaf blade with
0.90 mm length and 0.39 mm width. Larvae have five stadiums [54]. Newly emerged larvae are light-
or greenish-yellow with 1.5–2 mm length and 0.3 mm width, while the fifth instar larvae are 20–25 mm
long and greenish-yellow in color [54]. C. medinalis larvae attack all stages of the rice plants by feeding
on the rolled leaves. They scratch chlorophyll, inhibit photosynthesis, and reduce grain yield. During
an epidemic situation, C. medinalis larvae cause a 30 to 80% decline in rice yield [55,56]. At present,
the control of C. medinalis is achieved through extensive use of various chemical insecticides [57].
The cultivation of rice at a large scale, application of various insecticides, and fertilizers seem to
favor C. medinalis population outbreaks [58–60]. Zhang et al. revealed that C. medinalis has evolved
a high level of resistance to metaflumizone, tebufenozide, chlorantraniliprole, chlorpyrifos, indoxacarb,
tebufenozide, and monosultap [61]. Previously, it has been reported that behavioral and physiological
modifications can enhance detoxification and reduce target sensitivity in C. medinalis [62]. Therefore,
it is an urgent need to identify environmentally safe methods to control C. medinalis. Chitin synthetic
pathway is found in insects but is not present in vertebrates [63]. Therefore, we have considered chitin
synthesis genes as target sites to control C. medinalis.

In the present study, the hexokinase gene from C. medinalis (CmHK) (Accession Number: MN612078)
was identified from the transcriptome database, and its spatial and temporal expressions were analyzed.
Expression patterns of CmHK can be suppressed by injecting dsRNA in C. medinalis. Furthermore,
the effects of pRNAi have been observed in three generations (G1, G2, and G3) of the injected
C. medinalis. However, the results of the current study indicate that the effects of dsRNA injection
targeting the CmHK gene was induced a significant phenotypic disruption, larval and pupal mortality,
disproportionate in male to female sex ratio, and their effects also observed in three generations (G1,
G2 and G3) of C. medinalis.

2. Materials and Methods

2.1. Insect Rearing

C. medinalis adults were collected from paddy fields of Guizhou Province, China in 2019,
and maintained at the Institute of Entomology, Guizhou University. Newly emerged larvae were
derived from the progeny of one pair of mated insects, which were reared on rice seedlings in a chamber
at 26 ± 1 ◦C, 75 ± 5% (RH), and 14:10 h light: dark photoperiod. Four life stages, that is, egg, the first
to the fifth instar larvae, pupa, and adults were used in different experiments.

2.2. RNA Isolation, cDNA Synthesis and RT-PCR

The head, midgut, malpighian tubules, fat body, testes, muscle, cuticle, and ovary were dissected
from both male and female adults in cold 0.01 M phosphate-buffered saline solution. All samples were
stored at −80 ◦C until required. Total RNA from the whole insect body was isolated using the HP
Total RNA Kit (Omega Bio-Tek, Norcross, GA, USA) in accordance with the manufacturer’s protocol.
Total RNA was quantified, and purity was assessed using a NanoDrop 2000 spectrophotometer
(Thermo Fisher, Waltham, MA, USA). The first-stranded cDNA was synthesized using RevertAid
First Strand cDNA Synthesis Kit (Thermo Fisher, Waltam, MA, USA), following the manufacturer’s
instructions. The cDNA was then stored at −20 ◦C until required. The specific primers (Table 1)
for reverse transcription-PCR (RT-PCR) were designed based on the fragment from C. medinalis
transcriptome [40]. RT-PCR was conducted in a 20 µL reaction system including 1 µL of cDNA template,
1 µL of each primer, 10 µL of 2 ×Master Mix (Tsingke, Bejing, China), and 7 µL of ddH2O. The PCR
reaction conditions were as follows: initial denaturation at 94 ◦C for 1 min, followed by 30 cycles
at 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 90 s, and a final extension of 10 min at 72 ◦C. The expected
size of the PCR fragment was purified with a MiniBEST Agarose Gel DNA Extraction Kit (Takara Bio,
Beijing, China), and was sequenced by Sangon Biotech (Shanghai, China).
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Table 1. Primer information for cloning and expression analysis of CmHK
.

Primer
Name Primer Sequence Primer Usage

HK-F TCGCAGAAGAGGTATTGACTCA
RT-PCRHK-R GATATGACTCGACGTTGGTGTT

HK-iF AGGTCCTGCATATGACAGACAAAC

dsRNA Synthesis

HK-iR CACAATGTGTATGAGGAACGTCT
HK-dsF taatacgactcactatagggAGGTCCTGCATATGACAGACAAAC
HK-dsR taatacgactcactatagggAGACGTTCCTCATACACATTGTG
GFP-iF GCCAACACTTGTCACTACTT
GFP-iR GGAGTATTTTGTTGATAATGGTCTG

GFP-dsF taatacgactcactatagggGCCAACACTTGTCACTACTT
GFP-dsR taatacgactcactatagggGGAGTATTTTGTTGATAATGGTCTG

HK-qF ACTCACACGCTACATCTATCG

RT-qPCRHK-qR GACGCCAGTACCAGTCATAA
Actin-F ATGGTCGGCATGGGACAG
Actin-R GAGTTCATTGTAGAAGGTGT

Note: the lowercase letters in the primers represent the T7 promoter sequence.

2.3. Sequence Retrieval and Analysis

To obtain the CmHK cDNA, the sequence of HK from O. furnacalis (OfHK: LOC_114357200) was used
to search against the transcriptome database of C. medinalis with tblastn. We identified one C. medinalis
cDNA unigene (CL823) presenting significant similarity to OfHK (85.11%). The CmHK cDNA was
further verified by RT-PCR and by Blastx search against the NCBI (National Center for Biotechnology
Information) GenBank based on insect HKs. The sequence was analyzed using the ORF finder
at the NCBI (https://www.ncbi.nlm.nih.gov/orffinder). Molecular weight and isoelectric point (pI)
of CmHK were analyzed using ProtParam (http://web.expasy.org/protparam), and the single peptide
was predicted using SignalP 5.0 (https://services.healthtech.dtu.dk/services.php?/SignalP-5.0).

The transmembrane helices in CmHK were analyzed at TMHMM server v.2.0 (https://
services.healthtech.dtu.dk/services.php?/TMHMM-2.0), and phosphorylation sites were predicted
at KinasePhos (http://kinasephos.mbc.nctu.edu.tw). Multiple sequence alignment of CmHK with
other insect HKs was performed using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo).
Glycosylation sites were estimated by using NetOGlyc 4.0 (https://services.healthtech.dtu.dk/service.
php?NetOGlyc-4.0) and NetNGlyc 1.0 (https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0).
A three-dimensional (3D) structural homology modeling of CmHK was analyzed by using
SWISS-MODEL (https://swissmodel.expasy.org) and then visualized with PyMOL 2.3.4 (Schrodinger,
New York, NY, USA).

2.4. Phylogenetic Analysis of CmHK

The phylogenetic tree was constructed using MEGA X with the neighbor-joining method. Bootstrap
analysis was carried out (1000 replicates) to calculate the percentage of the replicate tree. The insects
that hexokinases were from included: C. medinalis (Cm), Delia antiqua (Da), Drosophila navojoa (Dna),
Drosophila novamexicana (Dno), Drosophila busckii (Db), Frankliniella occidentalis (Fo), Anopheles sinensis
(As), Anopheles darling (Ad), Aedes aegypti (Aa), Cryptotermes secundus (Cs), Zootermopsis nevadensis (Zn),
Culex quinquefasciatus (Cq), Antheraea pernyi (Ap), Galleria mellonella (Gm), Hyposmocoma kahamanoa
(Hk), Amyelois transitella (At), B. mori (Bm), Bombyx mandarina (Bma), M. sexta (Ms), Papilio machaon
(Pm), Papilio polytes (Pp), Papilio xuthus (Px), O. furnacalis (Of), Pieris rapae (Pr), Bicyclus anynana (Ba),
Vanessa tameamea (Vt), Trichoplusia ni (Tn), H. armigera (Ha), and S. litura (Sl).

https://www.ncbi.nlm.nih.gov/orffinder
http://web.expasy.org/protparam
https://services.healthtech.dtu.dk/services.php?/SignalP-5.0
https://services.healthtech.dtu.dk/services.php?/TMHMM-2.0
https://services.healthtech.dtu.dk/services.php?/TMHMM-2.0
http://kinasephos.mbc.nctu.edu.tw
https://www.ebi.ac.uk/Tools/msa/clustalo
https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0
https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://swissmodel.expasy.org
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2.5. Tissue and Developmental Expression Patterns of CmHK

The expression of CmHK was assessed in all dissected tissues of C. medinalis. The expression
of CmHK was quantified at different stages, that is, eggs, five larval instars, pupae, and male and
female adults, collected from insects reared in the laboratory. Total RNA was extracted from both
whole-body samples and tissues by using the Total RNA Kit (Omega Bio-Tek, Norcross, GA, USA,
following the instructions provided by the manufacturer. Using RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher, Waltam, MA, USA), the first-stranded cDNA was synthesized from tissues and
all developmental stages, respectively. CmHK gene-specific primers were designed using Primer
Premier 6.0 (Premier Biosoft, San Francisco, CA, USA). Real-time quantitative PCR (RT-qPCR) was
performed to measure the expression levels of CmHK in various tissues and different developmental
stages of C. medinalis. The reaction mixture included 10 µL of 2x iTaq Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA, USA), 1 µL of cDNA template, 1 µL each of the HK-qF and HK-qR primers
(Table 1), and 7 µL ddH2O in a 20-µL total volume. The amplifications were carried out with
the following cycling conditions: one cycle at 95 ◦C for 2 min, followed by 40 cycles of denaturation
at 95 ◦C for 20 s, 55 ◦C for 20 s, and 72 ◦C for 30 s. The β-actin gene was used as the internal control.
Three biological replicates were performed for both tissues and developmental stages of C. medinalis.
The relative expression level of CmHK at different stages and in different tissues was analyzed by using
2−∆∆Ct method [64]. The significance of differences was determined by the LSD test.

2.6. Synthesis and Effect of dsCmHK

The target sequence specific to CmHK mRNA was searched by using online RNAi design tools,
that is, siDirect (http://sidirect2.rnai.jp) and siRNA at Whitehead (http://sirna.wi.mit.edu). Then,
the designed target sequence was amplified using the HK-iF and HK-iR primers with CmHK cDNA
as the template. The purified PCR product was inserted into pMD20-T vector (Takara Bio, Beijing,
China) and then transferred into E. coli TOP10 competent cells for sequencing. The clone containing
the correct sequence was cultured to extract plasmids for amplifying the target fragments with both
the HK-dsF and HK-dsR primers. The PCR product was purified to produce highly concentrated
DNA that was used as the template to synthesize the CmHK dsRNA using a TranscriptAid T7 High Yield
Transcription Kit (Thermo Fisher, Waltham, MA, USA), in accordance with the manufacturer’s protocol.
Purification of dsRNA was done using GeneJET RNA Purification Kit (Thermo Fisher, Waltham,
MA, USA), according to the manufacturer’s protocol. The integrity of dsRNA was determined
on 1% (w/v) agarose gel by electrophoresis. The concentration was quantified using a NanoDrop
2000 spectrophotometer (Thermo Fisher, Waltham, MA, USA). The GFP dsRNA (dsGFP) was used
as a control.

The microinjection of dsRNA was used as a delivery method for the RNAi assay. To silence
the CmHK gene, a microinjection method was performed using the NT-88-V3 micromanipulator (Nikon,
Tokyo, Japan). For injection, the eighth abdominal segment of the fourth instar larvae along with
blood flow direction was selected. Then, 0.5 µL (2 µg/µL) dsCmHK and dsGFP were prepared and
injected into the fourth instar larvae. A total of 20 larvae were placed in each experiment with three
replicates to check mortality and abnormality, average weight loss, and to measure the mRNA level
of expression by RT-qPCR at 24-h intervals. All treated samples were placed on newly emerged rice
leaves in a growth chamber under controlled conditions described above. To measure the mortality,
larvae that were alive were counted on a daily basis for five days. Furthermore, adults emerging from
the treated group were used for parental RNAi experiments.

http://sidirect2.rnai.jp
http://sirna.wi.mit.edu
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2.7. Parental RNAi

To measure the effect of dsCmHK at the progeny level, one newly emerged adult male and
one female from treated groups were paired and placed in a transparent plastic box (5.1 cm long,
3.8 cm wide, and 2.9 cm high) with vented lids. A diluted honey solution, soaked in a cotton plug, was
placed in the plastic box for food. Plastic boxes were kept in a controlled chamber at 26 ± 1 ◦C, 75 ± 5%
(RH), and 14:10 h light: dark photoperiod. Each pair of insects was allowed to mate for four to five
days for oviposition. After egg laying, paired adults were removed from boxes and kept at −80 ◦C
post liquid nitrogen quick freezing to analyze the mRNA level of expression by RT-qPCR. Percentage
of eggs laying and eggs hatched per female was counted using ImageJ software [65], and surviving
larvae, number of pupae, and male and female emergence were calculated from groups treated with
dsCmHK and dsGFP. These experiments were carried out at three generations (G1, G2, and G3) to
verify the pRNAi effects.

2.8. Statistical Analyses

The 2−∆∆Ct method was used to analyze the mRA expression levels of dsCmHK and dsGFP
in different tissues and at different growth stages after injection in three progenies (G1, G2, and G3) [65].
The LSD test was used to measure the significance of differences in larval abnormality, larval mortality,
weight loss, eggs hatched, pupal mortality, and male and female emergence using SPSS 22.0 (SPSS Inc.,
Chicago, IL, USA).

3. Results

3.1. Sequence and Expression Pattern Analyes of CmHK

The length of the CmHK cDNA is 1581 bp, containing an ORF of 1359 nucleotides (nt) that encodes
452 amino acids (aas) (GenBank accession number: MN612078). It contains a 5′ untranslated region
(UTR) of 88 bp and a 3′ UTR of 134 bp. The nucleotide and predicted amino acid sequences of CmHK are
shown in Figure 1. The theoretical isoelectric point of CmHK protein is 5.99 with a molecular weight
of 50.06 kDa. CmHK possesses no glycosylation sites and signal peptides or transmembrane structures,
and has 5 phosphorylated sites (Figure 1). Additionally, upon the NCBI Blast, CmHK showed
the highest similarity with OfHK of O. furnacalis (XM_028310711, 88.37% identity), followed by MsHK
of M. sexta (XM_030167810, 84.75% identity) and PpHK of P. polytes (XM_013282688, 84.30% identity).
This research shows that the fifth instar larvae were defined to have the highest expression level
of CmHK, followed by the first and fourth instar larvae at different developmental stages (Figure 2a).
The expression of CmHK was observed in the all tissues tested, with the highest expression level
in the ovary (Figure 2b).
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Figure 1. Nucleotide and deduced amino acid sequences of CmHK. Start and stop codons are indicated 
by bold typeface and italic. One conserved domain of CmHK used for dsRNA synthesis (44–398 bp) 
is indicated as grey. Phosphorylated sites are underlined in bold and pink. Primers of dsCmHK 
synthesis are shaded in bold, while RT–qPCR primers are indicated by bold and yellow shading. 

Figure 1. Nucleotide and deduced amino acid sequences of CmHK. Start and stop codons are indicated
by bold typeface and italic. One conserved domain of CmHK used for dsRNA synthesis (44–398 bp) is
indicated as grey. Phosphorylated sites are underlined in bold and pink. Primers of dsCmHK synthesis
are shaded in bold, while RT–qPCR primers are indicated by bold and yellow shading.
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Figure 2. Expression pattern of CmHK in different tissues and at different developmental stages of C. 
medinalis adults. (a) Expression pattern of CmHK in eggs (0), the first to fifth instar larvae (1–5), pupae (6), 
and adults (7) of C. medinalis. (b) Expression pattern of CmHK in the head (He), midgut (Mg), fat body (Fb), 
malpighian tubules (Mt), testes (Te), muscle (Mu), cuticle (Cu), and ovary (Ov). Relative mRNA levels of 
CmHK were analyzed using RT-qPCR. β-actin is used as an internal control. Each bar indicates the mean ± 
SD, and different letters above each bar represent a significant difference (P < 0.05, LSD and ANOVA) from 
three independent experiments.   

Figure 2. Expression pattern of CmHK in different tissues and at different developmental stages
of C. medinalis adults. (a) Expression pattern of CmHK in eggs (0), the first to fifth instar larvae (1–5),
pupae (6), and adults (7) of C. medinalis. (b) Expression pattern of CmHK in the head (He), midgut
(Mg), fat body (Fb), malpighian tubules (Mt), testes (Te), muscle (Mu), cuticle (Cu), and ovary (Ov).
Relative mRNA levels of CmHK were analyzed using RT-qPCR. β-actin is used as an internal control.
Each bar indicates the mean ± SD, and different letters above each bar represent a significant difference
(p < 0.05, LSD and ANOVA) from three independent experiments.
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3.2. Phylogenetic Analysis and 3D Structure of CmHK

A phylogenetic tree was generated based on an aligned amino sequence of various insect
hexokinases using MEGA X (Figure 3). Hexokinases from different insect species in different orders
were placed in different clusters. CmHK was grouped with OfHK from O. furnacalis, suggesting that
C. medinalis is the closest relative to O. furnacalis. Homology modeling revealed that CmHK formed
18 α-helices, 12 β-pleated sheets, and 29 random coils (Figure 4).
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Figure 3. Phylogenetic tree shows the relationship of CmHK with other insect hexokinases. These
amino acid sequences were analyzed by Clustal Omega. The tree was constructed using MEGA X.
The bootstrap test with 1000 replicates shows the percentage of replicate trees in which sequences are
clustered. GenBank accession numbers of different insect HKs are as follows: CmHK (MN612078),
DaHK (XP_017870606), DnaHK (XP_030244412), DnoHK (XP_030568037), DbHK (XP_017853033), FoHK
(XP_026290299), AsHK (KFB44789), AdHK (ETN63660), AaHK (XP_011493158), CsHK (XP_023727905),
ZnHK (XP_021941686), CqHK (XP_001850122), ApHK (ATA67117), GmHK (XP_026748941), HkHK
(XP_026319325), AtHK (XP_013192105), BmHK (XP_004932650), BmaHK (XP_028033573), MsHK
(XP_030023668), PmHK (XP_014362584), PpHK (XP_013138142), PxHK (XP_013173406), OfHK
(XP_028166512), PrHK (XP_022115019), BaHK (XP_023938410), VtHK (XP_026496396), TnHK
(XP_026733584), HaHK (XP_021197237), and SlHK (XP_022834977).
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3.3. Effects of RNAi

3.3.1. Effects of RNAi on CmHK Gene Expression

To obtain the silencing of the CmHK gene achieved by injection of dsRNA in C. medinalis, 0.5 µL
(2 µg/µL) of dsCmHK was tested. Detection of CmHK silencing was observed according to different
time durations (24 h, 48 h, 72 h, 96 h, and 120 h). A significant silencing of CmHK was achieved at 48,
72, 96, and 120 h post-injection duration (p < 0.05) (Figure 5).
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3.3.2. Phenotypic Effects of RNAi on C. medinalis

Phenotypic deformities were observed in C. medinalis when the CmHK gene was silenced by RNAi
(Figure 6a). The results also indicated that some larvae did not undergo metamorphosis and hence did
not complete the molting process. No phenotypical deformities were observed in the dsGFP control.
In addition, weight decreased significantly at 72 h, 96 h, and 120 h post-injection duration (Figure 6b).
The significant mortality and abnormality rates were 80% and 75%, respectively, at 120 h post-injection
with dsCmHK (Figure 6c,d). Pupal mortality was 78% in the dsCmHK-injected group, and 22%
in the dsGFP-injected group (Figure 6e). Our results indicated that significant (p < 0.05) pupal reduction
occurred in the case of the dsCmHK-injected insects as compared to the dsGFP-injected group. We also
studied the variation in sex ratio in the dsCmHK- and dsGFP-treated groups (Figure 6e). Compared
with the control treatment, dsCmHK exhibited a significantly higher emergence of male adults than that
of female ones at p < 0.05.
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Figure 6. Phenotypic expressions, average weight loss, abnormality, larval and pupal mortality
rates, and male and female emergence rates in response to injection with dsCmHK as compared
to dsGFP in C. medinalis. Twenty larvae were selected in one group for injection as a replicate.
(a) Abnormal phenotypic expressions (larvae and pupae). (b) Average weight loss at 24-h interval
(24–120 h). (c) Abnormality rates. (d) Mortality rates 24–120 h after dsCmHK and dsGFP injection.
(e) Pupal mortality of injected larvae after pupation formation, and male and female emergence ratio.
Each bar indicates the mean ± SD and significant differences are indicated by ** (p < 0.05).
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3.3.3. Parental RNAi

G1-Generation

Previous research exploring the transmission of the effects of RNAi revealed that in some
cases gene knockout was transmitted from treated parents to their progeny [67]. To confirm
this phenomenon, five emerged male and female pairs were selected from the groups injected
with dsCmHK and dsGFP, and each pair was kept in a separate transparent plastic box to mate.
The total number of eggs was counted per female. Eggs laying and eggs hatched were significantly
declined in the G1 generational female as compared to the control. Larval and pupal mortality was
significantly higher in the G1 generation as compared to the control treatment. The results showed
that hatched larvae and larval mortality were 19% and 41% in G1 dsCmHK-treated insects, respectively.
While in the G1 control treatment, hatched larvae and larval mortality were calculated as 87% and
7%, respectively. Interestingly, the emergence of males was higher (51.6%) in G1 insects treated with
dsCmHK than the untreated ones (49.4%) (Figure 7).
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Figure 7. Percentage of eggs per female, eggs hatched, larval and pupal mortality, and male and female
emergence rate in G1-generation of C. medinalis. Five pairs of male and female adults were selected
for the G1-generation experiment. Each bar indicates the mean ± SD from the CmHK and GFP groups.
Significant differences are indicated by ** (p < 0.05).

G2-Generation

To investigate the transmission of the outcomes of RNAi to G2, we selected five pairs of insects
from G1 and raised them separately to produce G2-generation. The study included the following
parameters: eggs per female, eggs hatched, larval and pupal mortality, and sex ratio. Eggs laying and
eggs hatching were significantly lower in dsCmHK-treated insects than those under the control treatment.
The dsCmHK-treated insects laid 20% eggs, while the untreated insects laid 85%. Similarly, egg hatching
was 48.26% in the insects treated with dsCmHK and 88% in the untreated ones. A considerably higher
rate of larval mortality (18%) was observed under dsCmHK treatment in relation to the control (73%).
Additionally, the male population was higher (49.33%) under dsCmHK than the control treatment
(41%) (Figure 8).
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G3-Generation

To ensure how long RNAi is effective in the dsCmHK-treated insect progeny, the third generation
(G3) was generated by collecting five pairs of both sexes of newly emerged adults from G2 and raising
them as mentioned for G1. The results indicated that the average number of eggs per female differed
significantly among the treatments. However, the dsCmHK treatment had no effect on the eggs hatching
in G3, in relation to the control. Significantly higher larval and pupal mortality was observed in those
insects from the dsCmHK treatment as compared to the control. However, the male and female sex ratio
of newly emerged offsprings did not differ significantly among treatments (Figure 9). In comparison
among three generations, the heat map showed a significant reduction of eggs per female and eggs
hatching, significantly increased larval and pupal mortalities, less female emergence (Figure 10a),
and significantly decreased mRNA transcript levels in G1, G1, and G3 generations as compared to
the control (Figure 10b).
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Figure 9. Five pairs of male and female adults were selected for G3 emerged from G2-generation.
The percentage of the number of eggs per female, eggs hatched, larval mortality, pupal mortality,
and adult male and female emergence were observed. Each point indicates the mean ± SD from CmHK
and control groups. Significant differences are indicated by ** (p < 0.05).
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Figure 10. (a) Heat map results show the knockdown effects of the CmHK gene in G1, G1, and G3
generations. Lh, Larvae hatched; Lm, Larval mortality; Pm, Pupal mortality; Me, Male emergence; Fe,
Female emergence. (b) Changes in mRNA transcript levels of CmHK after RNAi in G1, G2, and G3
generations. Each bar indicates the mean ± SD, and significant differences are indicated by ** (p < 0.05).
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4. Discussion

The statistics obtained in this research inform discussion on dsRNA injection as it associates
with pRNAi responses that may be used to control the C. medinalis population. Importantly, this is
the first report of pRNAi effects in C. medinalis. This study began to investigate the characterization
and knockdown of the CmHK gene and ended up with pRNAi effects and their transmission in three
generations. The results clearly document the effects of RNAi in the dsCmHK-injected C. medinalis larvae
and pRNAi response in eggs or ovaries of females that emerged from the G1, G2, and G3 generations.
Sublethal effects were assessed based on the observations of significant reduction of eggs, larval and
pupal mortalities, and less female emergence. Therefore, the use of the HK gene as an RNAi target may
enable a better investigation of its silencing effects, and pRNAi response that changes mRNA transcript
levels and phenotypic expression can be quantified. Based on their observations, we suggest that
the HK gene could serve as a key model to better understand the pRNAi effects in different insects
in general.

C. medinalis is one of the notorious pests of rice worldwide [68]. To date, C. medinalis was mainly
controlled with extensive use of chemicals [57]. However, long-term use of insecticide not only leads
to resistance but also affects non-target species and farmers’ health, and pollutes the environment [69].
Hai et al. identified several genes putatively involved in insecticide detoxification in C. medinalis larvae
through transcriptome analysis [70]. Therefore, it is inevitable to find environmentally safe methods
for controlling the C. medinalis population on an urgent basis. Chitin synthesis in the insect exoskeleton
plays an important role in physical, biological, and chemical protection. In the present research,
we identified the hexokinase gene from C. medinalis transcriptome database. Hexokinase plays a crucial
role in glycolysis and energy metabolism through glucose singling and phosphorylation [71]. Structural
domain analysis revealed that CmHK contains five phosphorylation sites (Figure 1). Phosphorylation
plays a crucial role in protein synthesis, transportation, and enabling it to stay inbound within the cell [72].
The phylogenetic tree from CmHK and other insect hexokinases revealed that CmHK grouped with
lepidopteran hexokinases, showing a high similarity with that from O. furnacalis (Figure 3). Moreover,
three-dimensional structure predicted several C-domain and N-domain extracellular spaces and
possible oligomerization (Figure 4) [73]. These results suggest that CmHK plays a crucial role
in chitin formation.

To further understand the function of CmHK, we investigated the expression patterns in various
tissues and at different developmental stages. In insect HKs, type I was detected in almost all tissues
of B. mori: malphighian tube and testis contained type I and type II; type I, II, and IV HKs were
found in the midgut, while fat body tissues contained types I, III, and IV HKs [74]. HK-1 was
found in the head, chest, and abdominal region of Aedes togoi [74]. In contrast, the HK gene was
found in the chest in Anopheles stephensi [75]. Our results revealed that CmHK was highly expressed
in the cuticle, testes, as well as the ovary (Figure 2b). In relation to its expression pattern at different
developmental stages, HK-2 and HK-3 were expressed at all developmental stages of A. stephensi [76],
while HK-1 was not present in the adult stages. In addition, HK-1 was highly expressed during
the last larval stages in A. stephensi [76]. Our results suggested that CmHK expression was maintained
at a high level during the fourth and fifth instar larvae in C. medinalis (Figure 2a). In N. lugens,
HK was strongly expressed in the fourth and fifth nymph stages [75], which was relatively similar to
the expression pattern of A. stephensi [76]. Therefore, we speculate that CmHK also plays a role in larval
to pupal transformation.

RNAi is an important and effective approach to study different gene functions. It is also
used to suppress the expression of genes and to analyze gene-based biological processes [77].
For the knockdown of the target gene, it is crucial to transmit dsRNA into the insect body to silence
target gene expression [78]. Mechanistic researches have stated that double-stranded ribonucleases
(dsRNases), entrapment of endosome, dysfunction of core machinery, and lack of immune response
contribute to reducing RNAi efficiency [79]. In lepidopteran insects, the efficiency of RNAi appeared to
be lower than the coleoptera insects because dsRNA were easily degraded by RNase [80]. To investigate
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the RNAi efficiency, the fourth instar C. medinalis larvae were selected for RNAi experiments. Our results
showed that phenotypic expressions, larval weight, transformation of larvae–pupae–adult emergence,
oviposition, and mRNA level were disrupted after knockdown of CmHK (Figures 5 and 6). A previous
study reported that the efficiency of RNAi varied in different insect species and also maintained
the gene silencing for a long time, which induced high mortality and abnormality by stunting insect
growth and development [81]. Injection of dsRNA reduced oviposition in Euschistus heros [80].

Parental RNAi has been previously reported in insect pests, such as T. castaneum [32], Rhodnius
prolixus [82], and in the western corn rootworm, D. virgifera virgifera [52]. Effects of pRNAi were
also examined in both mother insects and their developing embryos by injecting dsRNA specific
to the developmental gene (leg, maxillopedia, labial, and maxillary palp developing genes) [29].
To investigate the effects of the transfer of pRNAi on dsCmHK-treated insect progeny, a significant
reduction in eggs/female, eggs hatched, female emergence, and mortality in larvae and pupae in G1, G2,
and G3 generations were observed (Figures 7–9 and 10a). A significant down-regulation of mRNA in G1,
G2, and G3 was studied (Figure 10b). Injection of dsRNA generated strong pRNAi effects in E. heros [80].
These findings demonstrated that with the pRNAi strategy, the down-regulation of CmHK by injection
proved to be a useful and promising prospect for controlling the C. medinalis population.

5. Conclusions

Taken together, CmHK was identified and characterized based on the transcriptome database
of C. medinalis. The RT-qPCR analysis suggested that CmHK was highly expressed in the cuticle, testes,
and ovary. The expression pattern of CmHK at developmental stages showed that it was predominantly
expressed in the fourth and fifth instar larvae. The silencing of CmHK significantly inhibited weight
gain and normal growth of the dsCmHK-injected larvae, pupation, and reduced population of females.
Furthermore, the pRNAi of CmHK experiments showed a significant reduction in egg laying, eggs
hatched, mortality of both larvae and pupae, and female emergence in three generations. However,
further studies are suggested to investigate the lethal effects of the HK gene on C. medinalis and
its generations by dsRNA feeding bioassays.

Author Contributions: Conceptualization, M.S. and S.-W.L.; methodology, M.S. and S.-W.L.; software, J.D. and
Y.-J.Z.; investigation, N.S. and S.A.H.B.; writing—original draft preparation, M.S.; writing—review and editing,
M.S., N.S. and S.A.H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China through grant
number 31360443.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin
synthases and chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [CrossRef] [PubMed]

2. Merzendorfer, H. Insect chitin synthases: A review. J. Comp. Physiol. 2006, 176, 1–5. [CrossRef] [PubMed]
3. Van Dellen, K.L.; Bulik, D.A.; Specht, C.A.; Robbins, P.W.; Samuelson, J.C. Heterologous expression

of an Entamoeba histolytica chitin synthase in Saccharomyces cerevisiae. Eukaryotic Cell 2006, 5, 203–206.
[CrossRef] [PubMed]

4. Kramer, K.J. Chitin metabolism in insects. Compr. Mol. Insect Sci. 2005, 4, 111–144.
5. Zhuo, W.; Fang, Y.; Kong, L.; Li, X.; Sima, Y.; Xu, S. Chitin synthase A: A novel epidermal development

regulation gene in the larvae of Bombyx mori. Mol. Biol. Rep. 2014, 41, 4177–4186. [CrossRef]
6. Moreira, M.F.; dos Santos, A.S.; Marotta, H.R.; Mansur, J.F.; Ramos, I.B.; Machado, E.A.; Souza, G.H.;

Eberlin, M.N.; Kaiser, C.R.; Kramer, K.J.; et al. A chitin-like component in Aedes aegypti eggshells, eggs and
ovaries. Insect Biochem. Mol. Biol. 2007, 37, 1249–1261. [CrossRef]

7. Bixby-Brosi, A.J.; Potter, D.A. Can a chitin-synthesis-inhibiting turfgrass fungicide enhance black cutworm
susceptibility to a baculovirus? Pest Manag. Sci. 2012, 68, 324–329. [CrossRef]

http://dx.doi.org/10.1242/jeb.00709
http://www.ncbi.nlm.nih.gov/pubmed/14610026
http://dx.doi.org/10.1007/s00360-005-0005-3
http://www.ncbi.nlm.nih.gov/pubmed/16075270
http://dx.doi.org/10.1128/EC.5.1.203-206.2006
http://www.ncbi.nlm.nih.gov/pubmed/16400183
http://dx.doi.org/10.1007/s11033-014-3288-1
http://dx.doi.org/10.1016/j.ibmb.2007.07.017
http://dx.doi.org/10.1002/ps.2252


Genes 2020, 11, 1258 18 of 21

8. Niederacher, D.; Entian, K.D. Characterization of Hex2 protein, a negative regulatory element necessary
for glucose repression in yeast. Eur. J. Biochem. 1991, 200, 311–319. [CrossRef]

9. Herrero, P.; Galindez, J.; Ruiz, N.; Martínez-Campa, C.; Moreno, F. Transcriptional regulation
of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 1995, 11, 137–144. [CrossRef]

10. Bryson, J.M.; Coy, P.E.; Gottlob, K.; Hay, N.; Robey, R.B. Increased hexokinase activity, of either ectopic or
endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death. J. Biol. Chem.
2002, 277, 11392–11400. [CrossRef]

11. Denlinger, D.L.; Yocum, G.D.; Rinehart, J.P. Chapter 10—Hormonal Control of Diapause. In Insect Endocrinology;
Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 430–463.

12. Gurney, M.E.; Heinrich, S.P.; Lee, M.R.; Yin, H.S. Molecular cloning and expression of neuroleukin,
a neurotrophic factor for spinal and sensory neurons. Science 1986, 234, 566–574. [CrossRef] [PubMed]

13. Chaput, M.; Claes, V.; Portetelle, D.; Cludts, I.; Cravador, A.; Burny, A.; Gras, H.; Tartar, A. The neurotrophic
factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 1988, 332, 454–455. [CrossRef]
[PubMed]

14. Faik, P.; Walker, J.I.; Redmill, A.A.; Morgan, M.J. Mouse glucose-6-phosphate isomerase and neuroleukin
have identical 3′ sequences. Nature 1988, 332, 455–456. [CrossRef]

15. Zhang, W.Q.; Chen, X.F.; Tang, B.; Tian, H.G.; Chen, J.; Yao, Q. Insect chitin biosynthesis and its regulation.
Chin. J. Appl. Entomol. 2011, 48, 475–479.

16. Cuomo, C.A.; Desjardins, C.A.; Bakowski, M.A.; Goldberg, J.; Ma, A.T.; Becnel, J.J.; Didier, E.S.; Fan, L.;
Heiman, D.I.; Levin, J.Z.; et al. Microsporidian genome analysis reveals evolutionary strategies for obligate
intracellular growth. Genome Res. 2012, 22, 2478–2488. [CrossRef] [PubMed]

17. Senderskiy, I.V.; Timofeev, S.A.; Seliverstova, E.V.; Pavlova, O.A.; Dolgikh, V.V. Secretion of Antonospora
(Paranosema) locustae proteins into infected cells suggests an active role of microsporidia in the control
of host programs and metabolic processes. PLoS ONE 2014, 9, e93585. [CrossRef] [PubMed]

18. Timofeev, S.A.; Senderskiy, I.V.; Tsarev, A.A.; Tokarev, Y.S.; Dolgikh, V.V. Heterologous expression
of Paranosema (Antonospora) locustae hexokinase in lepidopteran, Sf9, cells is followed by accumulation
of the microsporidian protein in insect cell nuclei. J. Invertebr. Pathol. 2017, 143, 104–107. [CrossRef]
[PubMed]

19. Reinke, A.W.; Balla, K.M.; Bennett, E.J.; Troemel, E.R. Identification of microsporidia host-exposed proteins
reveals a repertoire of large paralogous gene families and rapidly evolving proteins. BioRxiv 2016, 056788.
[CrossRef]

20. Ferguson, S.; Lucocq, J.M. The invasive cell coat at the microsporidian Trachipleistophora hominis–host cell
interface contains secreted hexokinases. Microbiology 2018, 8, e00696. [CrossRef]

21. Iwasaki, S.; Sasaki, H.M.; Sakaguchi, Y.; Suzuki, T.; Tadakuma, H.; Tomari, Y. Defining fundamental steps
in the assembly of the Drosophila RNAi enzyme complex. Nat. Cell Biol. 2015, 521, 533–536. [CrossRef]

22. Hammond, S.M. Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Lett. 2005,
579, 5822–5829. [CrossRef]

23. Vodovar, N.; Saleh, M.-C. Of Insects and Viruses: The Role of Small RNAs in Insect Defence. In Advances
in Insect Physiology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–36.

24. Yang, G.; You, M.-S.; Vasseur, L.; Zhao, Y.; Liu, C. Development of RNAi in insects-based pest control.
In Pesticides in the Modern World—Pests Control and Pesticides Exposure and Toxicity Assessment; InTech Publisher:
Rijeka, Croatia, 2011; Volume 3, pp. 27–38. [CrossRef]

25. Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic
interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [CrossRef]

26. Fire, A.Z. Gene silencing by double-stranded RNA (Nobel lecture). Angew. Chem. 2007, 46, 6966–6984.
[CrossRef]

27. Hussain, M.; Abraham, A.M.; Asgari, S. An Ascovirus-encoded RNase iii autoregulates its expression and
suppresses RNA interference-mediated gene silencing. J. Virol. 2010, 84, 3624–3630. [CrossRef] [PubMed]

28. Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:
A review. J. Insect Physiol. 2010, 56, 227–235. [CrossRef]

29. Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E.
Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1432-1033.1991.tb16187.x
http://dx.doi.org/10.1002/yea.320110205
http://dx.doi.org/10.1074/jbc.M110927200
http://dx.doi.org/10.1126/science.3764429
http://www.ncbi.nlm.nih.gov/pubmed/3764429
http://dx.doi.org/10.1038/332454a0
http://www.ncbi.nlm.nih.gov/pubmed/3352744
http://dx.doi.org/10.1038/332455a0
http://dx.doi.org/10.1101/gr.142802.112
http://www.ncbi.nlm.nih.gov/pubmed/22813931
http://dx.doi.org/10.1371/journal.pone.0093585
http://www.ncbi.nlm.nih.gov/pubmed/24705470
http://dx.doi.org/10.1016/j.jip.2016.12.002
http://www.ncbi.nlm.nih.gov/pubmed/27989634
http://dx.doi.org/10.1038/ncomms14023
http://dx.doi.org/10.1002/mbo3.696
http://dx.doi.org/10.1038/nature14254
http://dx.doi.org/10.1016/j.febslet.2005.08.079
http://dx.doi.org/10.5772/17260
http://dx.doi.org/10.1038/35888
http://dx.doi.org/10.1002/anie.200701979
http://dx.doi.org/10.1128/JVI.02362-09
http://www.ncbi.nlm.nih.gov/pubmed/20071573
http://dx.doi.org/10.1016/j.jinsphys.2009.10.004
http://dx.doi.org/10.1016/j.jinsphys.2013.08.014
http://www.ncbi.nlm.nih.gov/pubmed/24041495


Genes 2020, 11, 1258 19 of 21

30. Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.;
An, C.; Aymeric, J.-L.; Barthel, A.; et al. RNA interference in Lepidoptera: An overview of successful and
unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245. [CrossRef]
[PubMed]

31. Shu, Y.H.; Wang, J.W.; Lu, K.; Zhou, J.L.; Zhou, Q.; Zhang, G.R. The first vitellogenin receptor from
a Lepidopteran insect: Molecular characterization, expression patterns and RNA interference analysis.
Insect Mol. Biol. 2010, 20, 61–73. [CrossRef]

32. Bucher, G.; Scholten, J.; Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 2002, 12, R85–R86.
[CrossRef]

33. Tomoyasu, Y.; Denell, R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development.
Dev. Genes Evol. 2004, 214, 575–578. [CrossRef]

34. Ohde, T.; Masumoto, M.; Morita-Miwa, M.; Matsuura, H.; Yoshioka, H.; Yaginuma, T.; Niimi, T. Vestigial and
scalloped in the ladybird beetle: A conserved function in wing development and a novel function in pupal
ecdysis. Insect Mol. Biol. 2009, 18, 571–581. [CrossRef] [PubMed]

35. Tang, B.; Wang, S.; Zhang, F. Two storage hexamerins from the beet armyworm Spodoptera exigua: Cloning,
characterization and the effect of gene silencing on survival. BMC Mol. Biol. 2010, 11, 65. [CrossRef]
[PubMed]

36. Rajagopal, R.; Sivakumar, S.; Agrawal, N.; Malhotra, P.; Bhatnagar, R.K. Silencing of Midgut Aminopeptidase
N ofSpodoptera lituraby Double-stranded RNA Establishes Its Role asBacillus thuringiensisToxin Receptor.
J. Biol. Chem. 2002, 277, 46849–46851. [CrossRef]

37. Levin, D.M.; Breuer, L.N.; Zhuang, S.; Anderson, S.A.; Nardi, J.B.; Kanost, M.R. A hemocyte-specific integrin
required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol.
2005, 35, 369–380. [CrossRef]

38. Ohnishi, A.; Hull, J.J.; Matsumoto, S. Targeted disruption of genes in the Bombyx mori sex pheromone
biosynthetic pathway. Proc. Natl. Acad. Sci. USA 2006, 103, 4398–4403. [CrossRef]

39. Xu, W.-H.; Lu, Y.-X.; Denlinger, D.L. Cross-talk between the fat body and brain regulates insect developmental
arrest. Proc. Natl. Acad. Sci. USA 2012, 109, 14687–14692. [CrossRef]

40. Li, S.-W.; Yang, H.; Liu, Y.-F.; Liao, Q.-R.; Du, J.; Jin, D.-C. Transcriptome and gene expression analysis
of the rice leaf folder, Cnaphalocrosis medinalis. PLoS ONE 2012, 7, e47401. [CrossRef]

41. Ronco, M.; Uda, T.; Mito, T.; Minelli, A.; Noji, S.; Klingler, M. Antenna and all gnathal appendages are
similarly transformed by homothorax knock-down in the cricket Gryllus bimaculatus. Dev. Biol. 2008, 313,
80–92. [CrossRef] [PubMed]

42. Grossmann, D.; Scholten, J.; Prpic, N.-M. Separable functions of wingless in distal and ventral patterning
of the Tribolium leg. Dev. Genes Evol. 2009, 219, 469–479. [CrossRef] [PubMed]

43. Lavore, A.; Pagola, L.; Esponda-Behrens, N.; Rivera-Pomar, R. The gap gene giant of Rhodnius prolixus is
maternally expressed and required for proper head and abdomen formation. Dev. Biol. 2012, 361, 147–155.
[CrossRef]

44. Sato, A.; Sokabe, T.; Kashio, M.; Yasukochi, Y.; Tominaga, M.; Shiomi, K. Embryonic thermosensitive TRPA1
determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA
2014, 111, E1249–E1255. [CrossRef]

45. Xu, H.-J.; Chen, T.; Ma, X.-F.; Xue, J.; Pan, P.-L.; Zhang, X.-C.; Cheng, J.-A.; Zhang, C.-X. Genome-wide
screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown
planthopper, Nilaparvata lugens(Hemiptera: Delphacidae). Insect Mol. Biol. 2013, 22, 635–647. [CrossRef]

46. Beeman, R.W.; Stuart, J.J.; Haas, M.; Denell, R.E. Genetic analysis of the homeotic gene complex (HOM-C)
in the beetle Tribolium castaneum. Dev. Biol. 1989, 133, 196–209. [CrossRef]

47. Boggs, R.T.; Gregor, P.; Idriss, S.; Belote, J.M.; McKeown, M. Regulation of sexual differentiation
in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 1987, 50, 739–747.
[CrossRef]

48. Shukla, J.N.; Palli, S.R. Sex determination in beetles: Production of all male progeny by Parental
RNAi knockdown of transformer. Sci. Rep. 2012, 2, 602. [CrossRef]

49. Lehmann, R.; Nüsslein-Volhard, C. hunchback, a gene required for segmentation of an anterior and posterior
region of the Drosophila embryo. Dev. Biol. 1987, 119, 402–417. [CrossRef]

http://dx.doi.org/10.1016/j.jinsphys.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21078327
http://dx.doi.org/10.1111/j.1365-2583.2010.01054.x
http://dx.doi.org/10.1016/S0960-9822(02)00666-8
http://dx.doi.org/10.1007/s00427-004-0434-0
http://dx.doi.org/10.1111/j.1365-2583.2009.00898.x
http://www.ncbi.nlm.nih.gov/pubmed/19686539
http://dx.doi.org/10.1186/1471-2199-11-65
http://www.ncbi.nlm.nih.gov/pubmed/20807423
http://dx.doi.org/10.1074/jbc.C200523200
http://dx.doi.org/10.1016/j.ibmb.2005.01.003
http://dx.doi.org/10.1073/pnas.0511270103
http://dx.doi.org/10.1073/pnas.1212879109
http://dx.doi.org/10.1371/journal.pone.0047401
http://dx.doi.org/10.1016/j.ydbio.2007.09.059
http://www.ncbi.nlm.nih.gov/pubmed/18061158
http://dx.doi.org/10.1007/s00427-009-0310-z
http://www.ncbi.nlm.nih.gov/pubmed/20024581
http://dx.doi.org/10.1016/j.ydbio.2011.06.038
http://dx.doi.org/10.1073/pnas.1322134111
http://dx.doi.org/10.1111/imb.12051
http://dx.doi.org/10.1016/0012-1606(89)90311-4
http://dx.doi.org/10.1016/0092-8674(87)90332-1
http://dx.doi.org/10.1038/srep00602
http://dx.doi.org/10.1016/0012-1606(87)90045-5


Genes 2020, 11, 1258 20 of 21

50. Liu, P.Z. hunchback is required for suppression of abdominal identity, and for proper germband growth and
segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 2004, 131, 1515–1527.
[CrossRef]

51. Mao, J.; Liu, C.; Zeng, F. Hunchbackis required for abdominal identity suppression and germband growth
in the parthenogenetic embryogenesis of the pea aphid, Acyrthosiphonpisum. Arch. Insect Biochem. Physiol.
2013, 84, 209–221. [CrossRef]

52. Khajuria, C.; Vélez, A.M.; Rangasamy, M.; Wang, H.; Fishilevich, E.; Frey, M.L.; Carneiro, N.P.; Gandra, P.;
Narva, K.E.; Siegfried, B.D. Parental RNA interference of genes involved in embryonic development
of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem. Mol. Biol. 2015, 63,
54–62. [CrossRef]

53. Zheng, X.; Ren, X.; Jianya, S. Insecticide Susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)
in China. J. Econ. Èntomol. 2011, 104, 653–658. [CrossRef] [PubMed]

54. Heinrichs, E.A.; Camanag, E.; Romena, A. Evaluation of Rice Cultivars for Resistance to Cnaphalocrocis
medinalis Guenee (Lepidoptera: Pyralidae). J. Econ. Èntomol. 1985, 78, 274–278. [CrossRef]

55. Nanda, U.K.; Bisoi, R.C. Bionomics of rice leaffolder, Cnaphalocrocis medinalis Guenee (Pyralidae, Lepidoptera).
Orissa J. Agric. Res. 1990, 3, 130–135.

56. Shah, S.M.; Rehman, A.; Abassi, F.M.; Khalil, I.H.; Ali, A. Characterization of wild rice species in response to
leaffolder Cnaphalocrocis medinalis. Sarhad J. Agric. 2008, 24, 69–74.

57. Huang, J.; Hu, R.; Pray, C.; Qiao, F.; Rozelle, S. Biotechnology as an alternative to chemical pesticides: A case
study of Bt cotton in China. Agric. Econ. 2003, 29, 55–67. [CrossRef]

58. Khan, Z.R.; Barrion, A.T.; Litsinger, J.A.; Castilla, N.P.; Joshi, R.C. A Bibliography of Rice Leaffolders
(Lepidoptera: Pyralidae). Int. J. Trop. Insect Sci. 1988, 9, 129–174. [CrossRef]

59. Shanmugam, T.R.; Sendhil, R.; Thirumalvalavan, V. Quantification and prioritization of constraints causing
yield loss in rice (Oryza sativa) in India. Agric. Trop. Subtropica 2006, 39, 194–201.

60. Kaushik, C. Extent of damage by leaf folder, Cnaphalocrocis medinalis (Guenee) in paddy cultivars at Raiganj,
Uttar Dinajpur, West Bengal. Curr. Biot. 2010, 4, 365–367.

61. Zhang, S.K.; Ren, X.B.; Wang, Y.C.; Su, J. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to
new chemistry insecticides. J. Econ. Entomol. 2014, 107, 815–820. [CrossRef]

62. Kang, C.Y.; Zhao, C.Q.; Wu, G. Progress in molecular mechanisms of insect resistance to insecticides.
Entomol. J. East China 2007, 2, 11.

63. Guan, S.P.; Mok, Y.K.; Koo, K.N.; Chu, K.L.; Wong, W.S. Chitinases: Biomarkers for human diseases.
Protein Pept. Lett. 2009, 16, 490–498. [CrossRef]

64. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2−∆∆Ct method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

65. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Chem. Biol.
2012, 9, 671–675. [CrossRef] [PubMed]

66. Marks, D.S.; Colwell, L.J.; Sheridan, R.; Hopf, T.A.; Pagnani, A.; Zecchina, R.; Sander, C. Protein 3D structure
computed from evolutionary sequence variation. PLoS ONE 2011, 6, e28766. [CrossRef] [PubMed]

67. Vastenhouw, N.L.; Brunschwig, K.; Okihara, K.L.; Müller, F.; Tijsterman, M.; Plasterk, R.H.A. Long-term
gene silencing by RNAi. Nat. Cell Biol. 2006, 442, 882. [CrossRef]

68. Chen, M.; Shelton, A.; Ye, G.-Y. Insect-resistant genetically modified rice in China: From research to
commercialization. Annu. Rev. Entomol. 2011, 56, 81–101. [CrossRef]

69. Abudulai, M.; Shepard, B.M.; Mitchell, P.L. Parasitism and predation on eggs of Leptoglossus phyllopus
(Hemiptera: Coreidae) in cowpea: Impact of endosulfan sprays. J. Agric. Urban Entomol. 2001, 18, 105–115.

70. Yu, H.-Z.; Wen, D.-F.; Wang, W.-L.; Geng, L.; Zhang, Y.; Xu, J.-P. Identification of genes putatively involved
in chitin metabolism and insecticide detoxification in the rice leaf folder (Cnaphalocrocis medinalis) larvae
through transcriptomic analysis. Int. J. Mol. Sci. 2015, 16, 21873–21896. [CrossRef]

71. Ge, L.-Q.; Gu, H.-T.; Li, X.; Zheng, S.; Zhou, Z.; Miao, H.; Wu, J.-C. Silencing of triazophos-induced
Hexokinase-1-like reduces fecundity in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Pestic. Biochem.
Physiol. 2019, 153, 176–184. [CrossRef]

72. Vandenborre, G.; Smagghe, G.; Ghesquière, B.; Menschaert, G.; Rao, R.N.; Gevaert, K.; Van Damme, E.J.M.
Diversity in protein glycosylation among insect species. PLoS ONE 2011, 6, e16682. [CrossRef]

http://dx.doi.org/10.1242/dev.01046
http://dx.doi.org/10.1002/arch.21137
http://dx.doi.org/10.1016/j.ibmb.2015.05.011
http://dx.doi.org/10.1603/EC10419
http://www.ncbi.nlm.nih.gov/pubmed/21510218
http://dx.doi.org/10.1093/jee/78.1.274
http://dx.doi.org/10.1111/j.1574-0862.2003.tb00147.x
http://dx.doi.org/10.1017/S1742758400005919
http://dx.doi.org/10.1603/EC13506
http://dx.doi.org/10.2174/092986609788167842
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1371/journal.pone.0028766
http://www.ncbi.nlm.nih.gov/pubmed/22163331
http://dx.doi.org/10.1038/442882a
http://dx.doi.org/10.1146/annurev-ento-120709-144810
http://dx.doi.org/10.3390/ijms160921873
http://dx.doi.org/10.1016/j.pestbp.2018.11.016
http://dx.doi.org/10.1371/journal.pone.0016682


Genes 2020, 11, 1258 21 of 21

73. Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol.
2001, 11, 82–88. [CrossRef]

74. Yanagawa, H.-A. Tissue distribution, purifications, and properties of multiple forms of hexokinase
in the silkworm, Bombyx mori. Insect Biochem. 1978, 8, 293–305. [CrossRef]

75. Tadano, T. Genetic studies on hexokinase in the mosquito Aedes togoi. Biochem. Genet. 1987, 25, 375–384.
[CrossRef] [PubMed]

76. Gakhar, S.K.; Nagpal, V. Developmental expression and properties of hexokinase in the malarial vector
Anopheles stephensi (Culicidae: Diptera). Cytobios 1996, 87, 7–18.

77. Tao, X.Y.; Xue, X.Y.; Huang, Y.P.; Chen, X.Y.; Mao, Y.B. Gossypol-enhanced P450 gene pool contributes to
cotton bollworm tolerance to a pyrethroid insecticide. Mol. Ecol. 2012, 21, 4371–4385. [CrossRef]

78. Yilmazel, B.; Hu, Y.; Sigoillot, F.; Smith, J.A.; Shamu, C.E.; Perrimon, N.; Mohr, S.E. Online GESS: Prediction
of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinform.
2014, 15, 192. [CrossRef]

79. Liu, S.; Ding, Z.; Zhang, C.; Yang, B.; Liu, Z. Gene knockdown by intro-thoracic injection of double-stranded
RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 2010, 40, 666–671. [CrossRef]

80. Guan, R.B.; Li, H.C.; Miao, X.X. Prediction of effective RNA interference targets and pathway-related genes
in lepidopteran insects by RNA sequencing analysis. Insect Sci. 2018, 25, 356–367. [CrossRef]

81. Cooper, A.M.; Silver, K.; Zhang, J.; Park, Y.; Zhu, K.Y. Molecular mechanisms influencing efficiency
of RNA interference in insects. Pest Manag. Sci. 2018, 75, 18–28. [CrossRef]

82. Paim, R.M.; Araujo, R.N.; Lehane, M.J.; Gontijo, N.F.; Pereira, M.H. Long-term effects and parental
RNAi in the blood feeder Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochem. Mol. Biol. 2013, 43,
1015–1020. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0962-8924(00)01898-5
http://dx.doi.org/10.1016/0020-1790(78)90040-9
http://dx.doi.org/10.1007/BF00554546
http://www.ncbi.nlm.nih.gov/pubmed/3619882
http://dx.doi.org/10.1111/j.1365-294X.2012.05548.x
http://dx.doi.org/10.1186/1471-2105-15-192
http://dx.doi.org/10.1016/j.ibmb.2010.06.007
http://dx.doi.org/10.1111/1744-7917.12437
http://dx.doi.org/10.1002/ps.5126
http://dx.doi.org/10.1016/j.ibmb.2013.08.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Insect Rearing 
	RNA Isolation, cDNA Synthesis and RT-PCR 
	Sequence Retrieval and Analysis 
	Phylogenetic Analysis of CmHK 
	Tissue and Developmental Expression Patterns of CmHK 
	Synthesis and Effect of dsCmHK 
	Parental RNAi 
	Statistical Analyses 

	Results 
	Sequence and Expression Pattern Analyes of CmHK 
	Phylogenetic Analysis and 3D Structure of CmHK 
	Effects of RNAi 
	Effects of RNAi on CmHK Gene Expression 
	Phenotypic Effects of RNAi on C. medinalis 
	Parental RNAi 


	Discussion 
	Conclusions 
	References

