BMJ Open

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative crosssectional surveys from 2003 to 2010

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005480
Article Type:	Research
Date Submitted by the Author:	14-Apr-2014
Complete List of Authors:	Aitken, Grant; University of Southampton, Geography and Environment Roderick, Paul; University of Southampton, Academic Unit of Primary Care and Population Sciences Fraser, Simon; University of Southampton, Academic Unit of Primary Care and Population Sciences Mindell, Jenny; UCL (University College London), Epidemiology and Public Health O'Donoghue, Donal ; Salford Royal NHS Foundation Trust, Renal Medicine Day, Julie; Royal Victoria Infirmary, Department of Clinical Biochemistry Moon, Graham; University of Southampton, Geography and Environment
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Renal medicine, Health policy, Epidemiology
Keywords:	EPIDEMIOLOGY, Chronic renal failure < NEPHROLOGY, End stage renal failure < NEPHROLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts 3/2

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1/	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31 20	
20 20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010

Grant Aitken, Paul Roderick, Simon Fraser, Jennifer Mindell, Donal O'Donoghue, Julie Day, Graham Moon

Department of Geography, Faculty of Social and Human Sciences, University of Southampton, Southampton, UK, SO171BJ Grant Aitken PhD researcher, Graham Moon Professor of spatial analysis

Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, SO16 6YD Paul Roderick Professor of Public Health Simon Fraser Speciality Registrar in Public Health

Research Department of Epidemiology and Public Health, UCL (University College London), London, UK, WC1E 6BT Jennifer Mindell Clinical Senior Lecturer

Renal Unit, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD Donal O'Donoghue Professor of Nephrology

Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne UK Dr Julie Day Consultant Clinical Scientist

Correspondence to: P Roderick pjr@soton.ac.uk

Abstract

Objectives

To determine whether the prevalence of CKD in England has changed over time.

Design

Cross-sectional analysis of nationally representative Health Survey for England (HSE) random samples.

Setting

England 2003 and 2009/2010.

Survey participants

13,896 Adults aged 16+ participating in HSE, adjusted for sampling and non-response, 2009/10 surveys combined.

Main outcome measure

Change in prevalence of eGFR <60ml/min/1.73m² (as proxy for stage 3-5 chronic kidney disease [CKD]), from 2003 to 2009/10 based on a single serum creatinine measure using IDMS traceable enzymatic assay in a single laboratory; eGFR derived using MDRD and CKDEPI eGFR formulae.

Analysis

Multivariate logistic regression modelling to adjust time changes for socio-demographic and clinical factors (body mass index, hypertension, diabetes, lipids).

Results

National prevalence of low eGFR (<60) decreased from 9.6% to 6.0% using MDRD (P<0.001) and from 7.6% in 2003 to 5.2% in 2009/10 using CKDEPI (p<0.001). Prevalence decreased within each age and gender group for both formulae. Prevalence of both obesity and diabetes increased in this period, there was a decrease in hypertension. The fully adjusted odds ratio for eGFR<60ml/min/1.73m² was 0.49 (0.42-0.57) comparing 2009/10 with 2003 using the MDRD equation, and was similar using the CKDEPI equation. **Conclusion**

Conclusion The prevalence of a low eGFR indicative of CKD in England has decreased over this seven year period, despite rising prevalence of obesity and diabetes, two key causes of CKD. Hypertension prevalence declined and blood pressure control improved but this did not appear to explain the fall. Periodic assessment of eGFR and albuminuria in future HSEs is

needed to evaluate trends in CKD.

Article Summary

Strengths & Limitations of this study

- This study uses of nationally representative samples, with later HSEs pooled over two years to increase numbers and precision of estimates. The surveys used standardised protocols for measurement by trained interviewers and nurses, with all samples were tested in the same laboratory with standardised assays.
- Another strength of the study is that the analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data.
- The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. The study was also limited by a single sample was tested for serum creatinine in each survey, therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown.
- Another weakness is that prevalence of stage 4/5 CKD is likely to be underestimated as the HSE may not fully account for some in whom more severe CKD (stage 4/5) will be more common.

The absence of albuminuria data in the 2003 HSE is another major limitation, given • its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).

Total word count n=3225

Introduction

Chronic kidney disease (CKD) is recognised as a global public health problem.¹ CKD is defined and staged using the estimated glomerular filtration rate (eGFR) and markers of kidney damage, mainly albuminuria.² Both eGFR and albuminuria are strong independent risk factors for all-cause and cardiovascular disease (CVD) mortality, and progression to end-stage renal disease (ESRD), which may require renal replacement therapy (RRT) by dialysis or transplantation.³ In England in 2010 the prevalence of RRT was 832 per million population, a 3% increase from 2009; NHS costs of RRT were estimated at £780 million for 2009/10, and the total cost at £1.45 billion, a nearly threefold increase on estimated costs for 2002.^{4,5}

The population prevalence of CKD in England was reported for the first time using data on eGFR and albuminuria in the nationally-representative Health Surveys for England (HSE) 2009 and 2010, though there had previously been estimates based on routine testing using primary care data.^{6,7} In the combined 2009/2010 HSE, 6% of men and 7% of women had eGFR <60ml/min/1.73m² (equivalent to CKD stage 3-5 if chronic) with a strong age gradient.⁸ The prevalence of low eGFR increased in the US, based on National Health and Nutrition Examination (NHANES) surveys between 1988-2004, even after adjusting for adverse trends in risk factors (obesity, diabetes, hypertension), but little is known about CKD prevalence trends in England.^{9,10,11}

Information on prevalence change is needed to assess the impact of trends in underlying determinants, and of strategies to prevent and manage CKD. Several policy initiatives have been introduced in England that have had an impact on prevention, detection and management of CKD. The National Service Framework for Renal Services 2004/05 led to national reporting of eGFR by clinical biochemistry laboratories from 2006,¹² the General Practice pay for performance Quality Outcomes Framework (QOF) included targets for CKD management from 2006/07,¹³ and the NHS Vascular Checks Programme, introduced in 2009, includes screening for CKD (stage 3-5) in people aged 35-74 with newly identified type 2 diabetes or hypertension.¹⁴ This study therefore aimed to compare the prevalence of CKD in the HSE 2003 with the combined HSE 2009-10 and to relate this to any changes in prevalence of risk factors for CKD, particularly obesity, diabetes and hypertension, over this period.

Methods

Full details of the conduct of the HSE, measurement of non-CKD variables and response rates are shown in the 2003, 2009 and 2010 Health Survey for England reports.^{15,16} Survey participants within private households were selected using a multistage stratified random probability sample. Household response rates were 73% in HSE2003 and 68%/66% in HSE 2009/2010. In co-operating households, 90% and 89%/86% of adults completed an interview questionnaire while 70% and 62%/57% respectively consented to a nurse visit, of whom 74%-76% provided a blood test. The HSE 2003 contained 18,533 individuals and data from HSE 2009 and HSE 2010 were combined to provide a larger sample size of 13,065 individuals. This totalled 31,598 individuals for the combined 2003, 2009 and 2010 HSEs. Eligible participants were individuals aged 16 years and older who had a valid serum creatinine value. This left 7,850 individuals from the 2003 HSE and 6,046 individuals from the combined 2009/10 HSEs, leaving a total of 13,896 individuals for analysis.

Age was grouped into five categories: 16-34, 35-54, 55-64, 65-74 and 75+. There were four separate ethnic groupings: White, South Asian, Black and Other. Socio-economic factors included: i) occupation National Statistics Socio-Economic Classification (NS-SEC, divided into three categories: managerial and professional occupations; intermediate occupations and routine and manual occupations); ii) qualifications grouped as: degree or equivalent; below degree (other qualification) and none (no qualification); iii) household tenure (own vs renting); iv) access to motor vehicle (none vs. any).

Smoking status was defined as current, ex-smoker or never smoked. Hypertension was defined as doctor-diagnosed (pre-existing diagnosis), survey-defined (identified as having high blood pressure (BP, systolic \geq 140mmHg and/or diastolic \geq 90mmHg and/or taking medication for hypertension) at the survey examination), and 'total' (doctor + survey diagnosed). Survey-defined diabetes was glycated haemoglobin (HBA1c) \geq 6.5% at nurse visit. Glycated haemoglobin data are presented for those with and without diagnosed diabetes. Body mass index (BMI) was defined as normal (<25kg/m²), overweight (\geq 25, <30kg/m²), and obese (\geq 30kg/m²). Waist circumference was classified as: <94cm, 94–102cm (high), and >102cm (very high) for men, and <80cm, 80–88cm (high) and >88cm (very high) for women. For South Asian men, the waist circumference was classified as: <90cm, 90–102cm (high), and >102cm (very high). High density lipoprotein (HDL) cholesterol and total cholesterol were treated as continuous variables.

To investigate medication use, we examined the use of diuretics, ß-blockers, reninangiotensin system (RAS) inhibitors (angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)), calcium channel blockers, and other antihypertensives in those with doctor diagnosed hypertension, doctor diagnosed diabetes and eGFR <60ml/min/1.73m², and use of lipid lowering agents in the whole population. In 2003, 47% of respondents answered yes to whether they were taking any medication, and 50% in 2009/10.

Serum creatinine was assayed using an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay in a single laboratory (Clinical Biochemistry Department at the Royal Victoria Infirmary (RVI), Newcastle-upon-Tyne). Both the Modified Diet in Renal Disease (MDRD) equation (in routine use in the UK) and the newer Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation (which provides better risk prediction and is recommended for use in international guidelines) were used to define CKD.^{2,17} eGFR values were derived using the standard equations.^{18,19}

Details of laboratory analysis, internal quality control, and external quality assurance are provided in the HSE 2009/10 documentation, with these methods replicated in the 2003 HSE.⁸ The HSE 2003 samples had been stored, frozen at -40°C, then thawed for

measurement in 2012. Such freezing does not affect creatinine levels.²⁰ eGFR was classified as below 60ml/min/1.73m² or equal to or greater than 60ml/min/1.73m².

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri-level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1),175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L. We compared the change in mean serum creatinine in people aged 20-39 without any diabetes or any hypertension as per Coresh at al.⁹

Statistics

Patient characteristics were compared between the 2003 and 2009/10 HSEs using chisquared tests for categorical variables and Mann Whitney U tests for non-normally distributed continuous variables. eGFR<60ml/min/1.73m² prevalence in 2003 and 2009/10 was compared across age and sex groupings. BP levels were compared in all, in those with diagnosed hypertension and in those with eGFR<60ml/min/1.73m²; glycated haemoglobin (HBA1c) was compared in all participants and in those with doctor-diagnosed diabetes. Binary logistic regression models were used to examine the relationships between eGFR<60ml/min/1.73m² and age, sex and socioeconomic and clinical factors to determine if there were significant differences between the two survey time periods. The dependent variable were CKDEPI and MDRD equation eGFR <60ml/min/1.73m² (indicative of stage 3-5 CKD). Four models were produced for each: 1) Age-sex adjusted; 2) model 1 plus socioeconomic status and ethnicity; 3) model 2 plus behavioural, lipid levels (HDL and total cholesterol) and clinical variables except hypertension, 4) Model 3 plus doctor-diagnosed hypertension. Interactions between period and both diabetes and hypertension were tested.

Sensitivity analyses were performed by replacing doctor-diagnosed diabetes with HBA1c and replacing doctor-diagnosed hypertension with diastolic and systolic blood pressure. Non-response and blood sample weights were used in all analyses to address issues with missing data. All analyses were performed using IBM SPSS Statistics version 20.

Results

The final sample for the study comprised of 13,896 individuals aged 16+ who had a valid serum creatinine value. Comparing the characteristics of these participants between the 2003 and 2009/10 surveys, the age structure, gender, NS-SEC and car ownership were similar while educational level improved and there was an increase in rented tenure (Table 1). Prevalence of diabetes however classified increased, as did obesity. In contrast, smoking and hypertension prevalence decreased.

There were significant increases in BMI, waist circumference and HBA1c in the population though no change in HBA1c in those with diagnosed diabetes (Table 2). Median BP levels (both systolic and diastolic) fell in all groups including those with diagnosed hypertension, doctor-diagnosed diabetes and with eGFR<60ml/min/1.73m². Median total and HDL cholesterol fell in both men and women.

The distribution of serum creatinine was shifted to the left in 2009/10; 1.7% values were greater than 130µmol/L in 2003, but only 0.1% in 2009/10 (Figure 1). Mean serum creatinine decreased, leading to an increase in mean eGFR using both MDRD and CKDEPI formulae (Table 2). Mean serum creatinine for those aged 20-39 without doctor diagnosed hypertension or diabetes fell significantly from 74.8µmol/L (SD 14.8) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p<0.001).

The proportion of individuals with MDRD eGFR<60ml/min/ $1.73m^2$ decreased from 9.6% in 2003 to 6.0% in 2009/10 (p<0.001) and with eGFR <45ml/min/ $1.73m^2$ from 2.4% to 1.4% (p<0.001). Corresponding figures for CKDEPI were 7.6% and 5.2% (p<0.001) and 2.2% and 1.4% (p=0.001). Prevalence of low eGFR fell in all age and gender groups and with either CKDEPI or MDRD equations (Figure 2).

There was an increase in the mean number of anti-hypertensive agents taken in individuals with: doctor-diagnosed hypertension (1.19 in 2003 to 2.01 in 2009-10), doctor-diagnosed hypertension and doctor-diagnosed diabetes (1.47 to 2.57); MDRD eGFR <60ml/min/1.73m² (1.26 to 1.77); and CKDEPI eGFR < 60ml/min/1.73m² (1.29 to 1.93). The proportion taking RAS inhibitors in individuals with doctor-diagnosed diabetes, doctor-diagnosed hypertension, MDRD eGFR <60ml/min/1.73m² or CKDEPI eGFR < 60ml/min/1.73m² also increased, as did overall lipid lowering agent use (Appendix 1).

The age-sex adjusted odds ratio (OR) of having low eGFR (MDRD eGFR<60ml/min/1.73m²) in 2009/10 compared with 2003 was 0.52 (95% confidence interval (CI) 0.45-0.60) (Table 3). This pattern was maintained on further adjustment for potential confounding factors (Table 3) and when using CKDEPI eGFR (Table 4).

Sensitivity analyses replacing doctor-diagnosed diabetes with HBA1c and doctor-diagnosed hypertension with diastolic and systolic BP made little difference to the adjusted ORs. No interactions between period and diabetes or hypertension were identified.

Discussion

These analyses show that CKD prevalence in England estimated by serum creatinine based equations in England decreased from 2003 to 2009/10. This decrease was seen across all age groupings, for CKD defined by both MDRD and CKDEPI eGFR equations (though more pronounced for the MDRD equation), and despite increased prevalence of both diabetes and obesity.²¹ Using the CKDEPI equation in place of MDRD to define CKD resulted in a lower prevalence of CKD. Whilst it reduces overall prevalence, the CKDEPI equation identifies more individuals aged 75+ with CKD compared with the MDRD equation.^{22,23}

The HSE 2003, 2009 and 2010 were nationally representative samples, with the 2009/10 data pooled over two years to increase numbers and precision of estimates. The age-sex characteristics of the different study periods sampled were similar. The surveys used standardised protocols for measurement by trained interviewers and nurses. All samples were tested in the same laboratory with standardised assays. The analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data.

The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. However the use of new, cross-sectional samples enables measurement of general population CKD prevalence at different time points. A single sample was tested for serum creatinine in each survey, and therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown. Given the individual variation in kidney function, more extreme values will be averaged out on repeated testing (regression to the mean), reducing the prevalence of low eGFR.²⁴ The results may therefore slightly overestimate the prevalence of CKD. Despite high numbers of participants, there were too few cases from the key minority ethnic groups to give robust data on ethnic differences in prevalence of CKD; over 90% of the participants for both survey periods were white (data not shown). South Asians and Black groups have higher rates of renal replacement but have been found to have lower prevalence of CKD than Caucasians.^{25,26}

Prevalence of stage 4/5 CKD is likely to be underestimated as, whilst the HSE is able to adjust for non-response among the general population in private households, it may not fully account for some in whom more severe CKD (stage 4/5) will be more common. This includes people who were not able to give a blood or urine sample because of poor health and those who did not participate due to concurrent illness or hospitalisation, as well as those in residential care.

The absence of albuminuria data in the 2003 HSE is a major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).³ We have therefore been unable to estimate changes in prevalence of albuminuria per se, in all CKD (stages1-5), and fully assess prevention and management.

The fall in eGFR could be due i) chance ii) artefact of differences in the serum creatinine measurement, iii) changes in serum creatinine production rather than excretion by the kidney, iv) residual confounding by differences in sample characteristics not adjusted for by sample weighting, v) true fall in eGFR. The period effects were highly statistically significant making chance unlikely. The 2003 assay results data were from stored sera, however this should be stable for creatinine even after long storage.²⁰ Moreover, if the 2003 serum creatinine had been underestimated this would have reduced any fall over the period. The two sets of samples were analysed in multiple analytical runs over a 19 month time period, which could lead to differences in results, however during this time period the internal quality control data indicates that the assay was accurate compared with assigned target values

BMJ Open

and stable, with no indication of assay drift with time. Artefact due to serum creatinine measurement changes does not seem to be the explanation. A fall in serum creatinine over time independent of kidney function could be due to less muscle mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level. A fall in dietary protein consumption from cooked meat could also lead to fall in serum creatinine. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁷ but this was not done in HSE. We used the HSE study design and non-response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

Key risk groups for developing CKD are those with hypertension and or diabetes especially if they have albuminuria. In this study there was evidence of modest reductions in the prevalence of hypertension, better control of hypertension in key groups, and greater use of RAS inhibitors which have anti-proteinuric as well as BP lowering effects, though the period changes in eGFR remained after correction for changes in hypertension prevalence. There is evidence from some studies using HSE, primary care databases and QOF data.²⁸⁻³⁰ though not all,³¹ of improved hypertension control in the last decade. However there are ethnic disparities with poorer control of BP in Black and South Asians who have higher risk of progression to need RRT.³² Population salt consumption also fell during the last decade which is likely to have influenced population BP.^{33,34} CKD prevalence could fall too if those identified with moderate CKD were treated more aggressively, especially those with hypertension and or albuminuria, leading to increased eGFR in some people to above 60ml/min/1.73m². The limited HSE data suggest better BP control and greater use of RAS inhibitors in those with eGFR <60ml/min/1.73m². Karunetatne et al examined BP control in those with and without CKD in a primary care population in Kent and showed that BP control had improved in CKD patients over time pre- and post the introduction of QOF and that it was greater than in non-CKD hypertensive patients. They also showed increased use of RAS inhibitors and other anti-hypertensive agents in CKD patients.³⁵ Whilst there was a small fall in population lipid levels and some evidence of increased statin use, this would not be expected to lead to a reduced incidence of CKD, and our period changes were not altered by adjusting for lipid levels.³⁶

There are limited data from other countries with which to compare these findings. Coresh et al analysed the US NHANES surveys of 1988-1994 and 1999-2004, which both collected albuminuria and eGFR data. Both prevalence of albuminuria and MDRD eGFR <60ml/min/1.73m² increased, the latter from 5.6% to 8.1%.⁸ The albuminuria increase was explained by changes in levels of obesity, diabetes and hypertension, whereas this adjustment only partly explained eGFR falls. Changes in population serum creatinine explained most of the remainder of the eGFR changes; this was analysed by comparing the mean serum creatinine in young people aged 20-39 without diabetes or hypertension and this had increased across the surveys.⁹ The authors suggested that this rise in serum creatinine could be due to residual laboratory assay differences or to changes in dietary protein or muscle mass. Grams et al showed that prevalence of eGFR<60ml/min/1.73m² had also increased using the same survey data when eGFR was estimated using Cystatin C, a marker of kidney function that is independent of muscle mass, and this was not explained by changes in demography, hypertension, diabetes or obesity, suggesting a true increase in low eGFR.³⁷

If this change in prevalence in England is true, then based on the HSE 2003 age-sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 3.77 million based on the MDRD equation, falling by 1.18 million for 2009/10. Equivalent figures for CKDEPI eGFR <60ml/min/1.73m² are 2.98 million and 0.75 million respectively. The impact of such changes would be twofold: a reduced pool of patients at risk of progressing to need RRT; and a contribution to falling cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

Conclusions

The prevalence of a low eGFR appears to have decreased in England from 2003 to 2009/10, despite increases in obesity and diabetes. It is unclear why this has occurred and it is difficult to infer directly that this is due to current policies to improve prevention of CKD and the identification and management of people with CKD. There is a need for repeated national prevalence estimates to further assess CKD patterns over time, including measures of albuminuria and of Cystatin C, both of which were available in HSE 2009 and 2010.

What is already known on this topic

- eGFR and albuminuria are strong independent risk factors for progression to endstage renal disease (ESRD), which may require costly renal replacement therapy (RRT)
- Prevalence of low eGFR has increased over time in countries such as the US, even after adjustment for adverse trends in CKD risk factors
- Little is known about CKD prevalence trends in England

What this study adds

- Prevalence of a low eGFR indicative of CKD in England has decreased from 2003 to 2009/10, despite increasing prevalence of diabetes and obesity
- This pattern of prevalence of low eGFR was maintained even after adjustment for potential mediating and confounding factors
- A future need for repeated national prevalence estimates, that includes measures of albuminuria and Cystatin C, is required to further assess CKD patterns over time.

Contributors: GA was involved in the analysis and interpretation of the data. PR drafted the paper. GA, PR, SF and GM made substantial contributions to the study conception and design. JM co-ordinated the Health Surveys for England. DO provided background information on CKD policy. JD conducted the laboratory analyses. All authors critically reviewed the paper and were involved in the drafting and approval of the manuscript. GA is the guarantor.

Funding: Kidney function testing in the Health Surveys for England was funded by NHS Kidney Care. GA is funded by a University of Southampton PhD scholarship.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Approval was obtained from the London Multi-Centre Research Ethnics Committee for the 2003 survey (HSE 2003 ref MREC/02/2/72) and approval was obtained from the Oxford B Research Ethics Committee for both 2009 and 2010 surveys (HSE 2009 ref 08/H0605/103, HSE 2010 ref 09/H0605/73).

Transparency: The lead author (the manuscript's guarantor) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing: The HSE 2003, 2009 and 2010 are archived with the UK Data Service. Creatinine measurements for the HSE 2003 undertaken for this study will be archived in due course.

References

1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 2011;80:1258-70. doi: 10.1038/ki.2011.368

2. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the evaluation and management of Chronic Kidney Disease. *Kidney Int Suppl* 2013;3:1-150. doi: 10.1038/kisup.2012.77

Available at:

http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf Last accessed March 16th 2014.

3. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet* 2010;375(9731):2073-81.

4. Castledine C, Casula A, Fogarty D. UK Renal Registry 14th Annual Report: Chapter 2 UK RRT Prevalence in 2010: national and centre-specific analyses. UK Renal Registry 2011. Available at:

http://www.renalreg.com/Report-Area/Report%202011/Chap02_Renal11_web.pdf Last accessed March 16th 2014.

5. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant* 2012;27 Suppl 3:iii73-iii80. doi: 10.1093/ndt/gfs269.

6. De Lusignan S, Chan T, Stevens P, O'Donoghue DJ, Hague N, Dzregah B et al. Identifying patients with chronic kidney disease from general practice computer records. *Fam Pract* 2005;22:234–241.

7. Mindell J, Biddulph JP, Hirani V, Stamatakis E, Craig R, Nunn S et al. Cohort profile: the health survey for England. *Int J Epidemiol* 2012;41:1585-93. doi: 10.1093/ije/dyr199.

8. Roth M, Roderick P, Mindell J. Kidney disease and renal function. Chapter 8 in Craig R, Mindell J (eds). Health Survey for England 2010. NHS Information Centre: Leeds, 2011.

9.Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al. Prevalence of chronic kidney disease in the United States. *JAMA* 2007;298:2038-47.

10. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new onset kidney disease in a community-based population. *JAMA* 2004;291:7844-50.

11. Ejerblad E, Fored MC, Linblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. *J Am Soc Nephrol* 2006;17:1695-702.

12. The National Service Framework for Renal Services. Part Two: Chronic Kidney Disease, Acute Renal Failure and End of Life Care. Department of Health; London, 2005 Available at:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/199002/Nation al_Service_Framework_for_Renal_Services_Part_Two_-

Chronic Kidney Disease Acute Renal Failure and End of Life Care.pdf Last accessed March 16th 2014.

13. Quality and Outcomes Framework guidance for GMS contract 2011/12. Delivering investment in general practice. NHS Employers and British Medical Association; London, 2011

Available at:

http://www.nhsemployers.org/Aboutus/Publications/Documents/QOF guidance GMS contr act_2011_12.pdf

Last accessed March 16th 2014.

14. NHS Health Check Programme Best Practice Guidance. Department of Health; London, 2013.

Available at:

http://www.healthcheck.nhs.uk/commissioners_and_healthcare_professionals/national_guid_ance/

Last accessed March 16th 2014.

15. Sproston K, Primatesta P. Health Survey for England 2003. Volume 3: Methodology and documentation. The Stationery Office, London, 2004 Available at:

http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_cons um_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_4098912.pdf Last accessed March 16th 2014.

16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at:

http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014.

17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. *JAMA* 2012;307:1941-51.

18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med* 2009;150:604-12.

19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* 2006;145:247-54.

20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. *Scand J Clin Lab Invest* 2008;68:402–9.

21. Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes hypertension and hypertension diabetes comorbidity in England. *Public Health Nutr* 2008;11:521-7.

22. O'Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. *BMJ Open* 2011;1(2):e000308.

23. Carter JL, Stevens PE, Irving JE, Lamb EJ. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effects of age. *QJM* 2011;104:839-47.

BMJ Open

24. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year population based study of the effects of gender and age. *Kidney Int* 2006;69:375–82.

25. Roderick PJ, Raleigh VS, Hallam L, Mallick NP. The need and demand for Renal Replacement Therapy in ethnic minorities in England. *J Epidemiol Community Health* 1996;50:334-9.

26. Dreyer G, Hull S, Aitken Z, Chesser A, Yacoub MM. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJ Med 2009;102:261-69.

27. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for Chronic Conditions. Royal College of Physicians, London, 2008.

28. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. *Hypertension* 2009;53:480-6.

29. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. *BMJ* 2008;337:a2030 doi:10.1136/bmj.a2030

30. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. *J Hum Hypertens* 2009;23:764-7.

31. Serumaga B, Ross-Degnan D, Avery AJ, Elliott RA, Majumdar SR, Zhang F et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. *BMJ* 2011;342;d108 doi:10.1136/bmj.a2030.

32. Millett C, Gray J, Bottle A, Majeed A. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. *Ann Fam Med* 2008;76:490-6.

33. Millett C, Laverty AA, Stylianou N, Bibbins-Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. *Plos One* 2012:7;e29836 doi: 10.1371/journal.pone.0029836.

34.Sadler K, Nicholson S, Steer T, Gill V, Bates B, Tipping S et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012. Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu m-Survey-England-2011_Text_to-DH_FINAL1.pdf Last accessed March 16th 2014.

35. Karunatatne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. *Nephrol Dial Transplant* 2013;28:2107-16. doi 10.1093/ndt/gft093

36. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. *Lancet* 2011;377:2181–92. doi: 10.1016/S0140-6736(11)60739-3.

37. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH et al. Trends in the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin c based estimates. *Am J Kidney Dis* 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013

Variable	Category	2003		2009-	Chi- squared test	
		Number	%	Number	%	p-value
All	Aged 16+	7850 ²	100.0	6046 ²	100.0	-
	16-34	2425	31.0	1847	30.6	
	34-54	2790	35.7	2129	35.3	
A	55-64	1126	14.4	886	14.7	n - 0 111
Age	65-74	813	10.4	639	10.6	p = 0.441
	75+	662	8.5	539	8.9	
	Missing	0	_	0	-	
	White	7226	92.5	5244	90.7	p < 0.001
	South Asian	332	4.3	243	4.2	-
Ethnicity	Black	144	1.8	154	2.7	
_	Other	108	1.4	139	2.4	
	Missing	0	_	0	-	
	Male	3795	48.6	2961	49.0	
Sex	Female	4020	51.4	3080	51.0	p = 0.803
	Missing	0	-	0	-	-
	Degree	1375	17.6	1295	22.5	p < 0.001
Qualification	Below degree	4551	58.3	3296	57.0	-
Qualification	None	1874	24.0	1191	20.6	
	Missing	11	-	3	-	
	Highest	2514	33.7	1894	34.8	p = 0.434
NSSEC	Middle	1674	22.4	1203	22.1	
	Lowest	3273	43.9	2343	43.1	
	Missing	350	-	345	-	
	Yes	6460	82.7	4728	81.7	p = 0.168
Car Ownership	No	1348	17.3	1056	18.3	
_	Missing	2		1	-	
	Own	5878	75.4	3955	68.5	p < 0.001
Tenure	Rent	1914	24.6	1817	31.5	
	Missing	11		13	-	
	Current	1960	25.2	1210	21.0	p < 0.001
Smoking	Ex	1877	24.1	1429	24.8	
Shloking	Never	3951	50.7	3126	54.2	
	Missing	22		20	-	·
	Normal	2867	39.2	1956	36.8	p < 0.001
	/underweight					
	(<25kg/m ²)					
Body mass	Overweight	2868	39.2	2047	38.5	
index	(25-30 kg/m ²)					
	Obese	1587	21.7	1314	24.7	
	(>30kg/m ²)					
	Missing	489	-	469	-	
	Low (<94cm	3060	39.8	2120	37.1	p < 0.001
	male, <80cm					
Waist		1000	05.4	40.4-		
Circumference	High (94-102cm	1929	25.1	1347	23.6	
	male, 80-88cm					
	iemaie)					

Table 1. Comparison of prevalence of categorical measures in 2003 and 2009/10¹

Page	18	of	28
------	----	----	----

	Very High (>102cm	2703	35.1	2242	39.3	
	male, >88cm female)					
	Missing	118	_	77	-	
Doctor	Yes	305	3.9	322	5.3	p < 0.001
diagnosed	No	7504	96.1	5715	94.7	-
Diabetes	Missing	6	-	2	-	
Survey	Yes (HBA1c ≥6.5%)	296	3.8	316	5.5	p < 0.001
diagnosed	No (HBA1c	7401	96.2	5417	94.5	
Diabetes	<6.5%)					
	Missing	113	-	52	-	
	Yes	406	5.2	446	7.4	p < 0.001
Total Diabetes	No	7405	94.8	5585	92.6	
	Missing	0	-	0	-	
Doctor	Yes	2118	27.2	1501	25.0	p = 0.003
diagnosed	No	5662	72.8	4527	75.0	
Hypertension	Missing	36	-	10	-	
Survey	Yes	2065	31.5	1545	29.2	p = 0.019
diagnosed	No	4499	68.5	3744	70.8	
Hypertension	Missing	1246	-	496	-	
Total	Yes	2866	36.7	2062	34.2	p = 0.004
Hypertension	No	4933	63.3	3968	65.8	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Missing	12	-	0	-	
	<45 (ml/min/1.73m ²)	176	2.2	81	1.4	p = 0.001
eGFR CKDEPI	<60	594	7.6	303	5.2	p < 0.001
	(ml/min/1.73m ²)	0		0		
	<15 <45	186	24	80	14	n < 0.001
0.55 1/5 55	(ml/min/1.73m ²)	754	2.7	00	1.7	p < 0.001
egfr mdrd	<60 (ml/min/1.73m ²)	/51	9.6	349	6.0	p < 0.001
	Missing	0	-	0	-	
¹ Weighted for no ² Not weighted	on-response (unless	s stated othe	erwise)			

Table 2. Weighed Comparison of continuous measures in 2003 and 2009-10

Variable	Category	2003	2009-10	Mann Whitney U test
		Median value (IQR)	Median value (IQR)	p value
Serum Creatinine (µmol/L)	Median value	76.0 (66.0 to 87.0)	72.0 (62.0 to 83.0)	p<0.001
$\alpha \text{CEP} (m)/(min/1.72m^2)$	MDRD	84.7 (72.2 to 98.7)	90.3(77.1 to 104.7)	p<0.001
	CKDEPI	94.3 (78.6 to 109.7)	98.6 (84.0. to 112.5)	p<0.001
	All	26.2 (23.3 to 29.4)	26.6 (23.5 to 30.0)	p<0.001
BMI (kg/m²)	Male	26.6 (24.0 to 29.4)	27.0 (24.2 to 29.9)	p=0.001
	Female	25.7 (22.7 to 29.5)	26.1 (23.1 to 30.0)	p<0.001
	All	90.6 (81.1 to 100.0)	92.0 (81.6 to 101.7)	p<0.001
Waist circumference (cm)	Male	95.8 (88.0 to 104.0)	96.7 (88.2 to 105.0)	p=0.052
	Female	84.6 (76.4 to 94.0)	86.3 (77.3 to 96.7)	p<0.001
	All	125.5 (115.5 to 138.0)	124.5 (114.0 to 136.0)	p<0.001
	Dr-diagnosed HT	135.5 (124.0 to 149.5)	134.0 (122.2 to 145.5)	p<0.001
Systolic BP (mmHg)	Dr-diagnosed DM	134.5 (122.5 to 148.0)	131.8 (120.0 to 143.5)	p<0.001
	CKD (CKDEPI)	139.5 (126.0 to 154.5)	131.8 (119.0 to 143.5)	p<0.001
	CKD (MDRD)	137.0 (123.0 to 151.0)	129.2 (118.0 to 142.5)	p<0.001
	All	73.0 (65.5 to 80.5)	72.5 (65.5 to 80.)	p<0.001
	Dr-diagnosed HT	77.5 (70.0 to 85.5)	76.0 (68.0 to 83.5)	p<0.001
Diastolic BP (mmHg)	Dr-diagnosed DM	72.0 (64.5 to 80.5)	71.50 (64.5 to 78.5)	p<0.001
	eGFR<60 (CKDEPI)	72.0 (64.5 to 80.5)	68.5 (60.5 to 76.0)	p<0.001
	eGFR<60 (MDRD)	73.0 (65.5 to 81.5)	69.0 (61.5 to 76.8)	p<0.001
Glycated Hb (%)	All	5.20 (5.00 to 5.50)	5.30 (5.10 to 5.70)	p<0.001
Glycated Hb (78)	Dr-diagnosed DM	6.90 (5.90 to 8.20)	6.90 (5.90 to 8.30)	p=0.846
	All	1.50 (1.20 to 1.70)	1.40 (1.20 to 1.70)	p<0.001
HDL Cholesterol (mmol/L)	Male	1.30 (1.20 to 1.60)	1.30 (1.10 to 1.50)	p<0.001
	Female	1.60 (1.40 to 1.90)	1.60 (1.30 to 1.90)	p=0.046
	All	5.40 (4.70 to 6.20)	5.20 (4.40 to 5.90)	p<0.001
Total Cholesterol (mmol/L)	Male	5.40 (4.70 to 6.20)	5.10 (4.30 to 5.90)	p<0.001
	Female	5.40 (4.70 to 6.20)	5.20 (4.50 to 6.00)	p=0.001

Figure 1. Distribution of serum creatinine (µmol/L) for 2003 and 2009/10 survey data. Serum creatinine categories are grouped in bands of 5 µmol/L from 40µmol/L to 130µmol/L. Serum creatinine values <40 µmol/L and those >130µmol/L are grouped together.

Variable		MDRD					
		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
	2003	9.6	1	1	1	1	
ISE Teal	2009-10	6.0	0.52 (0.45 – 0.60)**	0.53 (0.44 – 0.62)**	0.48 (0.41 – 0.57)**	0.49 (0.42 – 0.57)**	
	16-34	0.6	1	1	1	1	
	35-54	3.0	5.8 (3.7-9.0)**	5.7 (3.5-9.1)**	5.2 (3.3 – 8.2)**	5.0 (3.2 – 7.9)**	
Age	55-64 🤍	9.2	19 (12 – 30)**	17 (11 – 28)**	14 (9 – 23)**	13 (8 – 20)**	
	65-74	19.0	44 (28 – 68)**	39 (24 – 63)**	31 (20 – 50)**	28 (17 – 44)**	
	75+	40.3	127 (83 – 196)**	109 (69 – 175)**	88 (55 – 140)**	76 (48 – 122)**	
Sov	Male	6.3	1	1	1	1	
Sex	Female	9.8	<u>1.45 (1.26 – 1.68)**</u>	1.39 (1.19 – 1.62)**	1.45 (1.23 – 1.70)**	1.43 (1.22 – 1.67)**	
	White	8.6	-	1	1	1	
Ethnic	South Asian	2.3	-	0.63 (0.32 – 1.26)	0.74 (0.41 – 1.34)	0.72 (0.40 – 1.32)	
Ethnic	Black	2.7		0.73 (0.32 – 1.69)	0.41 (0.17 – 1.02)	0.40 (0.16 – 1.01)	
	Other	2.4		1.19 (0.46 – 3.08)	0.92 (0.36 – 2.30)	0.93 (0.37 – 2.34)	
Tonuro	Own	8.3		1	1	1	
Tenure	Rent	7.6	-	1.13 (0.93 – 1.36)	1.11 (0.92 – 1.34)	1.10 (0.91 – 1.33)	
	Degree Level	3.1	-	1	1	1	
Education	Below degree	5.9	- ' (1.29 (0.98 – 1.70)	1.34 (1.03 – 1.74)*	1.33 (1.02 – 1.74)*	
	None	18.2	-	1.43 (1.06 – 1.93)*	1.50 (1.14 – 1.99)**	1.50 (1.13 – 1.98)**	
	Never	7.7	-	-	1	1	
Smoking	Ex-Smoker	12.8	-	-	1.23 (0.97 – 1.55)	1.20 (0.94 – 1.53)	
	Current Smoker	4.3	-	-	1.22 (0.96 – 1.57)	1.19 (0.94 – 1.51)	
	Normal (<25)	4.3	-	-	1	1	
BMI (kg/m²)	Overweight (25-30)	8.8	-	-	1.57 (1.30 – 1.90)**	1.51 (1.25 – 1.83)**	
	Obese (>30)	10.6	-	-	1.80 (1.47 – 2.21)**	1.65 (1.33 – 2.03)**	
HDL Cholesterol	Continuous	-	-	-	0.53 (0.41 – 0.68)**	0.54 (0.43 – 0.69)**	
Total Cholesterol	Continuous	-	-	-	0.95 (0.88 – 1.11)	0.96 (0.90 – 1.12)	
Doctor diagnosed	No	7.5	-	-	1	1	
Diabetes	Yes	19.9	-	-	1.42 (0.95 – 2.12)	1.31 (0.88 – 1.97)	
Doctor diagnosed	No	5.1	-	-	-	1	
Hypertension	Yes	16.5	-	-	-	1.47 (1.23 – 1.75)**	

Table 3. Prevalence and associations of low eGFR (<60ml/min/1.73m ²) by MDRD equation with adjustment for socio-demographic ar
clinical factors

¹Prevalence for combined 2003 and 2009-10 HSE ²Adjusted for age and sex

1	
2	
3	
4	
5	³ Adjusted for age, sex, ethnicity, tenure and education
6	⁴ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes
7	⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed
8	hypertension
9	* p<0.05 **p<0.01
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
34 25	
30 26	
30 27	
37	
30	
39	
40 /1	
+1 12	
<u>⊤∠</u> 43	
44	
45	
46	For near review only - http://hmionen.hmi.com/site/shout/suidelines.yhtml
-U	FOI peel review only - nitp.//binjopen.binj.com/site/about/guidennes.xittini

Table 4. Prevalence and associations of low eGFR (<60) by CKDEPI	equation with adjustment for socio-demographic and clinical
factors	

Variable		CKDEPI					
		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
	2003	7.6	1	1	1	1	
HSE fear	2009-10	5.2	0.57 (0.48-0.67)**	0.59 (0.49 – 0.71)**	0.52 (0.43 – 0.63)**	0.52 (0.43 – 0.62)**	
	16-34	0.1	1	1	1	1	
	35-54	1.3	8.4 (3.7 – 19.2)**	7.5 (3.3 – 17.1)**	9.1 (3.7 – 22.1)**	8.7 (3.6 – 21.2)**	
Age	55-64 🤍	5.6	38 (17.4 – 86.0)**	31 (14 – 69)**	38 (16 – 91)**	33 (14 – 81)**	
	65-74	16.3	128 (58 – 292)**	104 (47 – 231)**	119 (50 – 269)**	103 (43 – 247)**	
	75+	41.0	465 (212 – 1019)**	356 (160 – 790)**	420 (175 – 1003)**	357 (149 – 857)**	
60X	Male	5.6	1	1	1	1	
Sex	Female	7.6	1.17 (1.01 – 1.37)*	1.11 (0.93 – 1.32)	1.37 (1.09 – 1.70)**	1.36 (1.09 – 1.67)**	
	White	7.0	-	1	1	1	
Ethnic	South Asian	1.7	-	0.80 (0.36 – 1.79)	0.66 (0.30 – 1.99)	0.63 (0.29 – 1.97)	
Eunic	Black	2.3		0.90 (0.35 – 2.34)	0.47 (0.16 – 1.87)	0.44 (0.14 – 1.56)	
	Other	1.6		1.13 (0.33 – 3.88)	1.42 (0.22 – 2.89)	1.44 (0.24 – 3.03)	
Tonuro	Own	6.5		1	1	1	
Tenure	Rent	6.8	-	1.31 (1.07 – 1.62)*	1.30 (1.04 – 1.59)*	1.29 (1.05 – 1.59)*	
	Degree Level	2.1	-	1	1	1	
Education	Below degree	4.4	- 1	1.32 (0.94 – 1.84)	1.23 (0.87 – 1.79)	1.24 (0.86 – 1.81)	
	None	16.2	-	1.42 (0.99 – 2.02)	1.32 (0.95 – 1.85)	1.33 (0.97 – 1.86)	
	Never	6.2	-	-	1	1	
Smoking	Ex-Smoker	10.7	-	-	1.20 (0.90 – 1.59)	1.17 (0.81 – 1.44)	
	Current Smoker	3.1	-	-	0.99 (0.70 – 1.41)	0.96 (0.68 – 1.45)	
•	Normal (<25)	3.4	-	-	1	1	
BMI (kg/m²)	Overweight (25-30)	6.8	-	-	1.43 (1.15 – 1.78)**	1.36 (1.09 – 1.70)**	
	Obese (>30)	8.6	-	-	1.78 (1.40 – 2.25)**	1.72 (1.27 – 2.04)**	
HDL Cholesterol	Continuous	-	-	-	0.49 (0.37 - 0.66)**	0.49 (0.37 – 0.65)**	
Total Cholesterol	Continuous	-	-	-	0.95 (0.89 – 1.03)	0.97 (0.90 – 1.04)	
Doctor diagnosed	No	6.0	-	-	1	1	
Diabetes	Yes	18.4	-	-	1.59 (1.02 – 2.48)*	1.49 (0.96 – 2.33)	
Doctor diagnosed	No	3.8	-	-	-	1	
Hypertension	Yes	14.5	-	-	-	1.40 (1.14 – 1.72)**	

¹Prevalence for combined 2003 and 2009-10 HSE ²Adjusted for age and sex

1	
2	
3	
4	
5	³ Adjusted for age, sex, ethnicity, tenure and education
6	⁴ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes
7	⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed
8	hypertension
9	* p<0.05 **p<0.01
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			2003	-	•	2009-10	
		<u> </u>					
Group	Drug type	Number	Yes (%)	No (%)	Number	Yes (%)	No (%)
Any Doctor-	Diuretics	2118	523 (24.7%)	1595 (75.3%)	1501	378 (25.2%)	1123 (74.8%)
diagnosed	ß-		419 (19.8%)	1699 (80.2%)		249 (16.6%)	1252 (83.4%)
hypertension	Blockers						
	Calcium		324 (15.3%)	1794 (84.7%)		357 (23.8%)	1144 (76.2%)
	channel						
	blockers						
	RAS		1027 (48.5%)	1091 (52.5%)		932 (62.1%)	569 (37.9%)
	inhibitors						
Any Doctor-	RAS	305	172 (56.4%)	133 (43.6%)	322	199 (61.8%)	123 (38.2%)
diagnosed diabetes	inhibitors						
eGFR	RAS	751	386 (51.4%)	365 (48.6%)	349	205 (58.7%)	144 (41.3%)
<60ml/min/1.7 3m ² MDRD	inhibitors						
eGFR	RAS	594	351(59.1%)	243 (40.9%)	303	199 (65.7%)	104 (34.3%)
<60ml/min/1.7 3m ² CKDEPI	inhibitors						
All	Lipid	7810	484 (6.2%)	7326 (93.8%)	5786	770 (13.3%)	5016 (86.7%)
	lowering			. ,			
					7	4	

Appendix 1: Medication use in key subgroups who reported yes to taking doctor prescribed medication

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4,5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 4,5	
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	4,5
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4,5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(d) If applicable, describe analytical methods taking account of sampling strategy	5
		(e) Describe any sensitivity analyses	5
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	6
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	6, 16
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	16
Outcome data	15*	Report numbers of outcome events or summary measures	16
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	21,22,23
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	16,17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	n/a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	6
Discussion			
Key results	18	Summarise key results with reference to study objectives	7
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and	7
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	7,8
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	11
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative crosssectional surveys from 2003 to 2010

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005480.R1
Article Type:	Research
Date Submitted by the Author:	21-Aug-2014
Complete List of Authors:	Aitken, Grant; University of Southampton, Geography and Environment Roderick, Paul; University of Southampton, Academic Unit of Primary Care and Population Sciences Fraser, Simon; University of Southampton, Academic Unit of Primary Care and Population Sciences Mindell, Jenny; UCL (University College London), Epidemiology and Public Health O'Donoghue, Donal ; Salford Royal NHS Foundation Trust, Renal Medicine Day, Julie; Royal Victoria Infirmary, Department of Clinical Biochemistry Moon, Graham; University of Southampton, Geography and Environment
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Renal medicine, Health policy, Epidemiology
Keywords:	EPIDEMIOLOGY, Chronic renal failure < NEPHROLOGY, End stage renal failure < NEPHROLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts 3/2

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010

Grant R Aitken, Paul J Roderick, Simon Fraser, Jennifer S Mindell, Donal O'Donoghue, Julie Day, Graham Moon

Department of Geography, Faculty of Social and Human Sciences, University of Southampton, Southampton, UK, SO171BJ Grant R Aitken PhD researcher, Graham Moon Professor of spatial analysis

Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, SO16 6YD Paul J Roderick Professor of Public Health Simon Fraser Clinical Lecturer in Public Health

Research Department of Epidemiology and Public Health, UCL (University College London), London, UK, WC1E 6BT Jennifer S Mindell Clinical Senior Lecturer

Renal Unit, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD Donal O'Donoghue Professor of Nephrology

Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne UK Dr Julie Day Consultant Clinical Scientist

Correspondence to: P Roderick pir@soton.ac.uk

Abstract

Objectives

To determine whether the prevalence of CKD in England has changed over time.

Design

Cross-sectional analysis of nationally representative Health Survey for England (HSE) random samples.

Setting

England 2003 and 2009/2010.

Survey participants

13,896 Adults aged 16+ participating in HSE, adjusted for sampling and non-response, 2009/10 surveys combined.

Main outcome measure

Change in prevalence of eGFR <60ml/min/1.73m² (as proxy for stage 3-5 chronic kidney disease [CKD]), from 2003 to 2009/10 based on a single serum creatinine measure using IDMS traceable enzymatic assay in a single laboratory; eGFR derived using MDRD and CKDEPI eGFR formulae.

Analysis

Multivariate logistic regression modelling to adjust time changes for socio-demographic and clinical factors (body mass index, hypertension, diabetes, lipids). A correction factor was applied to the 2003 HSE serum creatinine to account for a storage effect.

Results

National prevalence of low eGFR (<60) decreased within each age and gender group for both formulae except males aged 65-74. Prevalence of both obesity and diabetes increased in this period, there was a decrease in hypertension. Adjustment for demographic and clinical factors led to a significant decrease in CKD between the surveyed periods. The fully adjusted odds ratio for eGFR<60ml/min/1.73m² was 0.75 (0.61-0.92) comparing 2009/10 with 2003 using the MDRD equation, and was similar using the CKDEPI equation 0.73 (0.57-0.93).

Conclusion

The prevalence of a low eGFR indicative of CKD in England appeared to decrease over this seven year period, despite rising prevalence of obesity and diabetes, two key causes of CKD. Hypertension prevalence declined and blood pressure control improved but this did not appear to explain the fall. Periodic assessment of eGFR and albuminuria in future HSEs is needed to evaluate trends in CKD.

Article Summary

Strengths & Limitations of this study

- This study used nationally representative samples, with later HSEs pooled over two years to increase numbers and precision of estimates. The surveys used standardised protocols for measurement by trained interviewers and nurses, with all samples tested in the same laboratory with standardised assays.
- Another strength of the study is that the analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. A correction factor was applied to 2003 HSE data to adjust for the shift in measured creatinine due to sample storage.
- The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. The study was also limited by a single sample was tested for serum creatinine in each survey, therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown.
- The prevalence of stage 4/5 CKD is likely to be underestimated as the HSE may not fully account for some people in whom more severe CKD (stage 4/5) will be more common.
- The absence of albuminuria data in the 2003 HSE is another major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of renin-angiotensin system (RAS) inhibition).

Total word count n=3,844

Introduction

Chronic kidney disease (CKD) is recognised as a global public health problem.¹ CKD is defined and staged using the estimated glomerular filtration rate (eGFR) and markers of kidney damage, mainly albuminuria.² Both eGFR and albuminuria are strong independent risk factors for all-cause and cardiovascular disease (CVD) mortality, and progression to end-stage renal disease (ESRD), which may require renal replacement therapy (RRT) by dialysis or transplantation.³ In England in 2010 the prevalence of RRT was 832 per million population, a 3% increase from 2009; NHS costs of RRT were estimated at £780 million for 2009/10, and the total cost at £1.45 billion, a nearly threefold increase on estimated costs for 2002.^{4,5}

The population prevalence of CKD in England was reported for the first time using data on eGFR and albuminuria in the nationally-representative Health Surveys for England (HSE) 2009 and 2010, though there had previously been estimates based on routine testing using primary care data.^{6,7} In the combined 2009/2010 HSE, 6% of men and 7% of women had eGFR <60ml/min/1.73m² (equivalent to CKD stage 3-5 if chronic) with a strong age gradient.⁸ The prevalence of low eGFR increased in the US, based on National Health and Nutrition Examination (NHANES) surveys between 1988-2004, even after adjusting for adverse trends in risk factors (obesity, diabetes, hypertension), but little is known about CKD prevalence trends in England.^{9,10,11}

Information on prevalence change is needed to assess the impact of trends in underlying determinants, and of strategies to prevent and manage CKD. Several policy initiatives have been introduced in England that have had an impact on prevention, detection and management of CKD. The National Service Framework for Renal Services 2004/05 led to national reporting of eGFR by clinical biochemistry laboratories from 2006,¹² the General Practice pay for performance Quality Outcomes Framework (QOF) included targets for CKD management from 2006/07,¹³ and the NHS Vascular Checks Programme, introduced in 2009, includes screening for CKD (stage 3-5) in people aged 35-74 with newly identified type 2 diabetes or hypertension.¹⁴ This study therefore aimed to compare the prevalence of CKD in the HSE 2003 with the combined HSE 2009/10 and to relate this to any changes in prevalence of risk factors for CKD, particularly obesity, diabetes and hypertension, over this period.

Methods

Full details of the conduct of the HSE, measurement of non-CKD variables and response rates are shown in the 2003 and 2009 Health Survey for England reports.^{15,16} Survey participants within private households were selected using a multistage stratified random probability sample. Household response rates were 73% in HSE 2003 and 68%/66% in HSE 2009/2010. In co-operating households, 90% and 89%/86% of adults completed an interview questionnaire while 70% and 62%/57% respectively consented to a nurse visit, of whom 74%-76% provided a blood test. The HSE 2003 contained 18,533 individuals and data from HSE 2009 and HSE 2010 were combined to provide a sample size of 13,065 individuals. This totalled 31,598 individuals for the combined 2003, 2009 and 2010 HSEs. Eligible participants were individuals aged 16 years and older who had a valid serum creatinine value. This left 7,850 individuals from the 2003 HSE and 6,046 individuals from the combined 2009/10 HSEs, a total of 13,896 individuals for analysis.

Age was grouped into five categories: 16-34, 35-54, 55-64, 65-74 and 75+. There were four separate ethnic groupings: White, South Asian, Black and Other. Socio-economic factors included: i) occupation National Statistics Socio-Economic Classification (NS-SEC, divided into three categories: managerial and professional occupations; intermediate occupations and routine and manual occupations); ii) qualifications grouped as: degree or equivalent; below degree (other qualification) and none (no qualification); iii) household tenure (own vs renting); iv) access to motor vehicle (none vs. any).

Smoking status was defined as current, ex-smoker or never smoked. Hypertension was defined as doctor-diagnosed (pre-existing diagnosis), survey-defined (identified as having high blood pressure (BP, systolic \geq 140mmHg and/or diastolic \geq 90mmHg and/or taking medication for hypertension) at the survey examination), and 'total' (doctor + survey diagnosed). Survey-defined diabetes was glycated haemoglobin (HBA1c) \geq 6.5% at nurse visit. Glycated haemoglobin data are presented for those with and without diagnosed diabetes. Body mass index (BMI) was defined as normal (<25kg/m²), overweight (\geq 25, <30kg/m²), and obese (\geq 30kg/m²). Waist circumference was classified as: <94cm, 94–102cm (high), and >102cm (very high) for men, and <80cm, 80–88cm (high) and >88cm (very high) for women. For South Asian men, the waist circumference was classified as: <90cm, 90–102cm (high), and >102cm (very high). High density lipoprotein (HDL) cholesterol and total cholesterol were treated as continuous variables.

To investigate medication use, we examined the use of diuretics, ß-blockers, reninangiotensin system (RAS) inhibitors (angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)), calcium channel blockers, and other antihypertensives in those with doctor diagnosed hypertension, doctor diagnosed diabetes and eGFR <60ml/min/1.73m², and use of lipid lowering drugs (the majority of which are statins) in the whole population. In 2003, 47% of respondents answered yes to whether they were taking any prescribed medication, and 50% in 2009/10.

Serum creatinine was assayed using an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay in a single laboratory (Clinical Biochemistry Department at the Royal Victoria Infirmary (RVI), Newcastle-upon-Tyne). Both the Modified Diet in Renal Disease (MDRD) equation (in routine use in the UK) and the newer Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation (which provides better risk prediction and is recommended for use in international guidelines) were used to define CKD.^{2,17} eGFR values were derived using the standard equations.^{18,19}

Details of laboratory analysis, internal quality control, and external quality assurance are provided in the HSE 2009/10 documentation, with these methods replicated in analysis of the 2003 HSE samples.⁸

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri-level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1), 175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L.

The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2010. Although such freezing is not thought to affect creatinine levels²⁰ we undertook a reanalysis in 2014 of a random sample of 500 serum creatinine samples taken from the 2009 HSE and subsequently frozen and stored under the same conditions as the HSE 2003 samples, stratified by quintile, to determine if there was a shift in measured creatinine on storage. We found mean serum creatinine increased on storage and was best predicted by a regression equation where the original 2009 serum creatinine value without storage equaled 0.303 plus 0.94 multiplied by the stored serum creatinine value. We assumed the same effect applied to the 2003 serum creatinine data which were analysed in 2009-10 and we applied the same adjustment. This decreased the 2003 serum creatinine values. eGFR was classified as below $60ml/min/1.73m^2$ or equal to or greater than $60ml/min/1.73m^2$. We compared the change in mean serum creatinine in people aged 20-39 without any diabetes or any hypertension as per Coresh at al.⁹

Statistics

Patient characteristics were compared between the 2003 and 2009/10 HSEs using chisquared tests for categorical variables and Mann Whitney U tests for non-normally distributed continuous variables. eGFR<60ml/min/1.73m² prevalence in 2003 and 2009/10 was compared across age and sex groupings. BP levels were compared in all, in those with diagnosed hypertension and in those with eGFR<60ml/min/1.73m²; glycated haemoglobin (HBA1c) was compared in all participants and in those with doctor-diagnosed diabetes. Binary logistic regression models were used to examine the relationships between eGFR<60ml/min/1.73m² and age, sex and socioeconomic and clinical factors to determine if there were significant differences between the two survey time periods. The dependent variable were CKDEPI and MDRD equation eGFR <60ml/min/1.73m² (indicative of stage 3-5 CKD). Four models were produced for each: 1) Age-sex adjusted; 2) model 1 plus socioeconomic status and ethnicity; 3) model 2 plus behavioural, lipid levels (HDL and total cholesterol) and clinical variables except hypertension, 4) Model 3 plus doctor-diagnosed hypertension. Interactions between period and both diabetes and hypertension were tested.

Sensitivity analyses were performed by replacing doctor-diagnosed diabetes with HBA1c, replacing doctor-diagnosed hypertension with diastolic and systolic blood pressure and adjusting for lipid lowering agents in the full model. Non-response and blood sample weights were used in all analyses to address issues with missing individuals who did not have a blood sample taken and sent to laboratory for analysis to determine serum creatinine value. Full details on how the weights were obtained are provided in the final volume of the HSE report each year. The age, education and smoking status of those interviewed, having a nurse visit and having a blood test is similar once non-response is taken into account (data not shown). All analyses were performed using IBM SPSS Statistics version 20.
Results

The final sample for the study comprised of 13,896 individuals aged 16+ who had a valid serum creatinine value. Comparing the characteristics of these participants between the 2003 and 2009/10 surveys, the age structure, gender, NS-SEC and car ownership were similar while educational level improved and there was an increase in rented tenure (Table 1). Prevalence of diabetes however classified increased, as did obesity. In contrast, smoking and hypertension prevalence decreased.

There were significant increases in BMI, waist circumference and HBA1c in the population though no change in HBA1c in those with diagnosed diabetes (Table 2). Median BP levels (both systolic and diastolic) fell in all groups including those with diagnosed hypertension, doctor-diagnosed diabetes and with eGFR<60ml/min/1.73m². Median total and HDL cholesterol fell in both men and women.

The distribution of serum creatinine is similar for 2003 and 2009/10 (Figure 1). Median serum creatinine increased slightly, leading to a very small non-significant decrease in median eGFR using both MDRD and CKDEPI formulae (Table 2). Mean serum creatinine for those aged 20-39 without doctor diagnosed hypertension or diabetes increased slightly from 70.6µmol/L (SD 13.6) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p=0.09).

The proportion of individuals with MDRD eGFR<60ml/min/ $1.73m^2$ decreased from 6.7% in 2003 to 6.0% in 2009/10 (p=0.13) and with eGFR <45ml/min/ $1.73m^2$ from 1.9% to 1.4% (p=0.03). Corresponding figures for CKDEPI were 5.7% and 5.2% (p=0.26) and 1.8% and 1.4% (p=0.07). Prevalence of low eGFR fell in all age and gender groups and with either CKDEPI or MDRD equations, except for males aged 65-74 where there was a slight increase (Figure 2).

There was an increase in the mean number of anti-hypertensive agents taken in individuals with: doctor-diagnosed hypertension (1.19 in 2003 to 2.01 in 2009/10), doctor-diagnosed hypertension and doctor-diagnosed diabetes (1.47 to 2.57); MDRD eGFR <60ml/min/1.73m² (1.30 to 1.77); and CKDEPI eGFR < 60ml/min/1.73m² (1.35 to 1.93). The proportion taking RAS inhibitors in individuals with doctor-diagnosed diabetes, doctor-diagnosed hypertension, MDRD eGFR <60ml/min/1.73m² or CKDEPI eGFR < 60ml/min/1.73m² also increased, as did overall lipid lowering agent use (Appendix 1).

The age-sex adjusted odds ratio (OR) of having low eGFR (MDRD eGFR<60ml/min/1.73m²) in 2009/10 compared with 2003 was 0.84 (95% confidence interval (CI) 0.72-0.98) and fully adjusted was 0.75 (0.61-0.92) (Table 3). The corresponding ORs for CKDEPI were 0.85 (0.72-1.00) and 0.73 (0.57-0.93) (Table 4).

Sensitivity analyses replacing doctor-diagnosed diabetes with HBA1c and doctor-diagnosed hypertension with diastolic and systolic BP made little difference to the adjusted ORs, as did the inclusion of lipid lowering agents. No interactions between period and diabetes or hypertension were identified.

Discussion

These analyses show that CKD prevalence in England estimated by serum creatinine based equations in England appeared to decrease from 2003 to 2009/10. This decrease was seen across all age groupings (except makes aged 65-74), for CKD defined by both MDRD and CKDEPI eGFR equations, was more pronounced for the MDRD equation and occurred despite increased prevalence of both diabetes and obesity.²¹ Using the CKDEPI equation in place of MDRD to define CKD resulted in a lower prevalence of CKD. Whilst it reduced overall prevalence, the CKDEPI equation identified more individuals aged 75+ with CKD compared with the MDRD equation.^{22,23}

The HSE 2003, 2009 and 2010 were nationally representative samples, with the 2009/10 data pooled over two years to increase numbers and precision of estimates. The age-sex characteristics of the different study periods sampled were similar. The surveys used standardised protocols for measurement by trained interviewers and nurses. All samples were tested in the same laboratory with standardised assays. The analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. We accounted for the shift in measured creatinine on storage in the 2003 HSE serum creatinine data by introduction of a correction factor derived from analysis of the effect of storage using 2009 data. Nonresponse weighting was undertaken in the HSE for both surveyed periods to reduce response bias and account for missing data for individuals who did not have blood sample taken and hence no serum creatinine value. We used both the HSE study design and the non-response weights to provide national prevalence estimates at each period and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences. The ethnic composition of the surveys changed over time with a small fall in the White population, but we adjusted for this change in the analysis.

The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. However the use of new, cross-sectional samples enables measurement of general population CKD prevalence at different time points. A single sample was tested for serum creatinine in each survey, and therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown. This is standard practice in national surveys such as NHANES, whereas studies based on routine testing can assess chronicity, such as the QICKD study. ²⁴ Given the individual variation in kidney function, more extreme values will be averaged out on repeated testing (regression to the mean), reducing the prevalence of low eGFR.²⁵ The results may therefore slightly overestimate the prevalence of CKD. There were too few cases from the key minority ethnic groups to give robust data on ethnic differences in prevalence of CKD. South Asians and Black groups have higher rates of renal replacement but have been found to have lower prevalence of CKD than Caucasians.^{26,27}

Prevalence of stage 4/5 CKD is likely to be underestimated as, whilst the HSE is able to adjust for non-response among the general population in private households, it may not fully account for some in whom more severe CKD (stage 4/5) will be more common. This includes people who were not able to give a blood or urine sample because of poor health and those who did not participate due to concurrent illness or hospitalisation, as well as those in residential care.

The absence of albuminuria data in the 2003 HSE is a major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).³ We have therefore been unable to estimate

changes in prevalence of albuminuria per se, in all CKD (stages 1-5), and fully assess prevention and management.

The fall in low prevalence of eGFR could be due i) chance ii) artefact of differences in the serum creatinine measurement, iii) changes in serum creatinine production rather than excretion by the kidney, iv) residual confounding by differences in sample characteristics not adjusted for by sample weighting, v) true fall in eGFR. The two sets of samples were analysed in multiple analytical runs over a 19 month time period, which could lead to differences in results, however during this time period the internal quality control data indicates that the assay was accurate compared with assigned target values and stable. We found a storage artefact on serum creatinine measurement and accounted for this by introduction of a correction factor. A change in serum creatinine over time independent of kidney function could be due to less muscle mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level.

A decline in dietary protein consumption from cooked meat could also lead to change in serum creatinine. Statistics from the National Diet and Nutrition Survey show that meat consumption increased from 2001-02 to 2008-10 while protein intake remained virtually stable over the same period. ²⁸ Mean consumption of meat and meat products increased from 154g per day in 2001-02 to 194g per day in 2008-10; protein intake contributing to food energy for adults aged 19+ increased slightly from 16-17% in 2001-02 to 17-18% in 2008-10; meat and meat products contributed to 37-38% of all protein intake for adults aged 19-64, with little change compared to 2008-10. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁹ but this was not done in HSE.

We used the HSE study design and non-response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

Key risk groups for developing CKD are people with hypertension and or diabetes especially if they have albuminuria. In this study there was evidence of modest reductions in the prevalence of hypertension, better control of hypertension in key groups, and greater use of RAS inhibitors which have anti-proteinuric as well as BP lowering effects, though the period changes in eGFR remained after correction for changes in hypertension prevalence. There is evidence from some studies using HSE, primary care databases and QOF data,³⁰⁻³² though not all,³³ of improved hypertension control in the last decade. However there are ethnic disparities with poorer control of BP in Black and South Asians who have higher risk of progression to need RRT.³⁴ Population salt consumption also fell during the last decade which is likely to have influenced population BP.^{35,36} CKD prevalence could fall too if those identified with moderate CKD were treated more aggressively, especially those with hypertension and or albuminuria, leading to increased eGFR in some people to above 60ml/min/1.73m². The limited HSE data suggest better BP control and greater use of RAS inhibitors in those with eGFR <60ml/min/1.73m². Karunetatne et al examined BP control in those with and without CKD in a primary care population in Kent and showed that BP control had improved in CKD patients over time pre- and post the introduction of QOF and that it was greater than in non-CKD hypertensive patients. They also showed increased use of RAS inhibitors and other anti-hypertensive agents in CKD patients.³⁷

There was evidence of increased lipid lowering agent use (indicative of increased statin use) and a small fall in population lipid levels. There is some evidence of reno-protective effects of statins in CKD patients; A lower rate of decline in GFR was found in patients with renal

disease who took antilipemic agents.³⁸ In the Heart Protection Study, the use of the hypolipidemic drug simvastatin reduced the rise in slightly elevated creatinine over time in both diabetic and non-diabetic CKD participants.³⁹ In the SHARP trial allocation of the lipid lowering ezetimibe plus simvastatin in participants not already on dialysis at randomisation reduced the outcome of end stage renal disease or a doubling of creatinine with an odds ratio of 0.93, though this was not statistically significant.⁴⁰ In the GREACE trial statin treatment prevented decline in renal function in people with high blood lipids and coronary heart disease; patients not treated with statins showed a 5.2% decrease in creatinine clearance. ⁴¹ However our period changes were not altered by adjusting for statins (lipid lowering drugs) or lipid levels (HDL, total cholesterol).³⁷

There are limited data from other countries with which to compare these findings. Coresh et al analysed the US NHANES surveys of 1988-1994 and 1999-2004, which both collected albuminuria and eGFR data. Both prevalence of albuminuria and MDRD eGFR <60ml/min/1.73m² increased, the latter from 5.6% to 8.1%.⁸ The albuminuria increase was explained by changes in levels of obesity, diabetes and hypertension, whereas such adjustment only partly explained the fall in eGFR. Changes in population serum creatinine explained most of the remainder of the eGFR changes; this was analysed by comparing the mean serum creatinine in young people aged 20-39 without diabetes or hypertension and this had increased across the surveys.⁹ The authors suggested that this rise in serum creatinine could be due to residual laboratory assay differences or to changes in dietary protein or muscle mass. Grams et al showed that prevalence of eGFR<60ml/min/1.73m² had also increased using the same survey data when eGFR was estimated using Cystatin C, a marker of kidney function that is independent of muscle mass, and this was not explained by changes in demography, hypertension, diabetes or obesity, suggesting a true increase in low eGFR.⁴¹

We can compare the estimated national CKD prevalence for HSE with QOF returns which record diagnosed CKD in primary care.⁴² Prevalence has been increasing with improvements in detection and recording and in 2010 was 4.2%. The figures are not directly comparable as comparing a single screened value versus routine testing with presumed allowance for chronicity, but this may suggest some under-diagnosis of CKD.

If this change in prevalence in England is true, then based on the HSE 2003 age-sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 2.62 million based on the MDRD equation, falling by 0.03 million for 2009/10. Equivalent figures for CKDEPI eGFR <60ml/min/1.73m² are 2.23 million and 0.02 million increase respectively. The impact of such changes would be twofold: a consistent pool of patients at risk of progressing to need RRT; and a contribution to consistent cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

Conclusions

The prevalence of a low eGFR appears to have decreased in England from 2003 to 2009/10, despite increases in obesity and diabetes. It is unclear why this has occurred and it is difficult to infer directly that this is due to current policies to improve prevention of CKD and the identification and management of people with CKD. There is a need for repeated national prevalence estimates to further assess CKD patterns over time, including measures of albuminuria and of Cystatin C, both of which were available in HSE 2009 and 2010.

2
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
22
32
33
34
35
36
30
37
38
39
40
40
41
42
43
44
1-
40
46
47
48
10
49
50
51
52
52
55
54
55
56
57
57
58
59
60

What	is already known on this topic
•	eGFR and albuminuria are strong independent risk factors for progression to end- stage renal disease (ESRD), which may require costly renal replacement therapy (RRT)
•	Prevalence of low eGFR has increased over time in countries such as the US, ever after adjustment for adverse trends in CKD risk factors
•	Little is known about CKD prevalence trends in England
What	this study adds
•	Prevalence of a low eGFR derived from serum creatinine and indicative of CKD in

- Prevalence of a low eGFR derived from serum creatinine and indicative of CKD in England has decreased from 2003 to 2009/10, despite increasing prevalence of diabetes and obesity
- This pattern of prevalence of low eGFR was maintained even after adjustment for potential mediating and confounding factors
- A future need for repeated national prevalence estimates, that includes measures of albuminuria and Cystatin C, is required to further assess CKD patterns over time.

Contributors: GA was involved in the analysis and interpretation of the data. PR drafted the paper. GA, PR, SF and GM made substantial contributions to the study conception and design. JM co-ordinated the Health Surveys for England. DO provided background information on CKD policy. JD conducted the laboratory analyses. All authors critically reviewed the paper and were involved in the drafting and approval of the manuscript. GA is the guarantor.

Acknowledgements: Scott Harris contributed to the production of the regression equation that was applied to the 2003 serum creatinine samples as a correction factor.

Funding: Kidney function testing in the Health Surveys for England was funded by NHS Kidney Care. GA is funded by a University of Southampton PhD scholarship.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Approval was obtained from the London Multi-Centre Research Ethnics Committee for the 2003 survey (HSE 2003 ref MREC/02/2/72) and approval was obtained from the Oxford B Research Ethics Committee for both 2009 and 2010 surveys (HSE 2009 ref 08/H0605/103, HSE 2010 ref 09/H0605/73).

Transparency: The lead author (the manuscript's guarantor) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing: The HSE 2003, 2009 and 2010 are archived with the UK Data Service. Technical Appendix, statistical code and dataset available from corresponding author Grant Aitken at G.Aitken@soton.ac.uk. Creatinine measurements for the HSE 2003 undertaken for this study will be archived in due course.

Figure Legends

Figure 1. Distribution of serum creatinine (μ mol/L) for 2003 and 2009/10 survey data. Serum creatinine categories are grouped in bands of 5 μ mol/L from 40 μ mol/L to 130 μ mol/L. Serum creatinine values <40 μ mol/L and those >130 μ mol/L are grouped together.

Figure 2. Comparison of low eGFR (<60ml/min/1.73m²) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender

References

1. Couser WG, Remuzzi G, Mendis S, et al. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 2011;80:1258-70. doi: 10.1038/ki.2011.368

2. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the evaluation and management of Chronic Kidney Disease. *Kidney Int Suppl* 2013;3:1-150. doi: 10.1038/kisup.2012.77

Available at:

http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf Last accessed March 16th 2014.

3. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet* 2010;375(9731):2073-81.

4. Castledine C, Casula A, Fogarty D. UK Renal Registry 14th Annual Report: Chapter 2 UK RRT Prevalence in 2010: national and centre-specific analyses. UK Renal Registry 2011. Available at:

http://www.renalreg.com/Report-Area/Report%202011/Chap02_Renal11_web.pdf Last accessed March 16th 2014.

5. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant* 2012;27 Suppl 3:iii73-iii80. doi: 10.1093/ndt/gfs269.

6. De Lusignan S, Chan T, Stevens P, et al. Identifying patients with chronic kidney disease from general practice computer records. *Fam Pract* 2005;22:234–241.

7. Mindell J, Biddulph JP, Hirani V, Stamatakis E, Craig R, Nunn S et al. Cohort profile: the health survey for England. *Int J Epidemiol* 2012;41:1585-93. doi: 10.1093/ije/dyr199.

8. Roth M, Roderick P, Mindell J. Kidney disease and renal function. Chapter 8 in Craig R, Mindell J (eds). Health Survey for England 2010. NHS Information Centre: Leeds, 2011.

9.Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. *JAMA* 2007;298:2038-47.

10. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new onset kidney disease in a community-based population. *JAMA* 2004;291:7844-50.

11. Ejerblad E, Fored MC, Linblad P, et al. Obesity and risk for chronic renal failure. *J Am Soc Nephrol* 2006;17:1695-702.

12. The National Service Framework for Renal Services. Part Two: Chronic Kidney Disease, Acute Renal Failure and End of Life Care. Department of Health; London, 2005 Available at:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/199002/Nation
<u>Chronic Kidney Disease</u> Acute Renal Failure and End of Life Care.pdf Last accessed March 16th 2014.
13. Quality and Outcomes Framework guidance for GMS contract 2011/12. Delivering investment in general practice. NHS Employers and British Medical Association; London, 2011
<u>http://www.nhsemployers.org/Aboutus/Publications/Documents/QOF_guidance_GMS_contract_2011_12.pdf</u> Last accessed March 16th 2014.
14. NHS Health Check Programme Best Practice Guidance. Department of Health; London, 2013.
Available at: <u>http://www.healthcheck.nhs.uk/commissioners_and_healthcare_professionals/national_guid</u> ance/
Last accessed March 16th 2014.
15. Sproston K, Primatesta P. Health Survey for England 2003. Volume 3: Methodology and documentation. The Stationery Office, London, 2004
http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_cons um_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_4098912.pdf Last accessed March 16th 2014
16 Craig R. Hirani V Health Survey for England 2009 Health and lifestyles. Health and
Social Care Information Centre, Leeds, 2010. Available at:
http://www.hscic.gov.uk/pubs/hse09report
17. Matsushita K, Mahmoodi BK, Woodward M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51.
18. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12.
19. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54.
20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9.
21. Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes hypertension and hypertension diabetes comorbidity in England. <i>Public Health Nutr</i> 2008;11:521-7.

22. O'Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. *BMJ Open* 2011;1(2):e000308.

23. Carter JL, Stevens PE, Irving JE, et al. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effects of age. *QJM* 2011;104:839-47.

24. de Lusignan S, Gallagher H, Chan T, et al. The QICKD study protocol: a cluster randomised trial to compare quality improvement interventions to lower systolic BP in chronic kidney disease (CKD) in primary care. *Implementation Science* 2009;4:39

25. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year population based study of the effects of gender and age. *Kidney Int* 2006;69:375–82.

26. Roderick PJ, Raleigh VS, Hallam L, et al. The need and demand for Renal Replacement Therapy in ethnic minorities in England. *J Epidemiol Community Health* 1996;50:334-9.

27. Dreyer G, Hull S, Aitken Z, et al. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJ Med 2009;102:261-69.

28. Bates B, Lennox A, Bates C, et al. National Diet and Nutrition Survey: Headline results from Years 1 and 2 (combined) of the Rolling Programme (2008/09 – 2009/10) Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/db_12

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/dh_12 8550.pdf

Last accessed June 22nd 2014.

 29. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for Chronic Conditions. Royal College of Physicians, London, 2008.

30. Falaschetti E, Chaudhury M, Mindell J, et al. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. *Hypertension* 2009;53:480-6.

31. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. *BMJ* 2008;337:a2030 doi:10.1136/bmj.a2030

32. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. *J Hum Hypertens* 2009;23:764-7.

33. Serumaga B, Ross-Degnan D, Avery AJ, et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. *BMJ* 2011;342;d108 doi:10.1136/bmj.a2030.

34. Millett C, Gray J, Bottle A, et al. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. *Ann Fam Med* 2008;76:490-6.

35. Millett C, Laverty AA, Stylianou N, et al. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. *Plos One* 2012:7;e29836 doi: 10.1371/journal.pone.0029836.

BMJ Open

36.Sadler K, Nicholson S, Steer T, et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012. Available at:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu m-Survey-England-2011 Text to-DH FINAL1.pdf Last accessed March 16th 2014.

37. Karunatatne K, Stevens P, Irving J, et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. *Nephrol Dial Transplant* 2013;28:2107-16. doi 10.1093/ndt/gft093

38. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. *Kidney Int* 2001;59:1:260-9.

39. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. *Lancet.* 2002;360:9326:7-22.

40. Lewis D. Effect of LDL-Cholestrol lowering on renal disease progression among patients with chronic kidney disease: Results of the Study of Heart And Renal Protection (SHARP). *Clinical Kidney Journal.* 2011;4:Issue suppl 2.

41. Mikhailidis DP, Wierzbicki AS. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. *Curr Med Res Opin.* 2002;18:4:215-9.

42. Grams ME, Juraschek SP, Selvin E et al. Trends in the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin c based estimates. *Am J Kidney Dis* 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013

42. Health & Social Care Information Centre: Quality and Outcomes Framework – 2009-10 England level. Available at: <u>http://www.hscic.gov.uk/catalogue/PUB04431</u> Last accessed June 22nd 2014.

Table 1. Comparison of prevalence of categorical measures in 2003 and 2009/10¹

Variable	Category	2003		2009-10		Chi- squared test	
		Number	%	Number	%	p-value	
All	Aged 16+	7850 ²	100.0	6046 ²	100.0	-	
	16-34	2425	31.0	1847	30.6		
	34-54	2790	35.7	2129	35.3		
A	55-64	1126	14.4	886	14.7	n = 0.44	
Age	65-74	813	10.4	639	10.6	p = 0.44	
	75+	662	8.5	539	8.9		
	Missing	0	-	0	-		
	White	7226	92.5	5244	90.7		
	South Asian	332	4.3	243	4.2		
Ethnicity	Black	144	1.8	154	2.7	p < 0.001	
-	Other	108	1.4	139	2.4	-	
	Missing	0	-	0	-		
	Male	3795	48.6	2961	49.0		
Sex	Female	4020	51.4	3080	51.0	p = 0.80	
	Missing	0	-	0	-		
_	Degree	1375	17.6	1295	22.5		
	Below degree	4551	58.3	3296	57.0		
Qualification	None	1874	24.0	1191	20.6	p < 0.001	
	Missing	11	-	3	-		
	Highest	2514	33.7	1894	34.8		
	Middle	1674	22.4	1203	22.1		
NSSEC	Lowest	3273	43.9	2343	43.1	p = 0.43	
	Missing	350	-	345	_		
	Yes	6460	82.7	4728	81.7		
Car Ownership	No	1348	17.3	1056	18.3	p = 0.17	
	Missing	2	-	1	-		
	Own	5878	75.4	3955	68.5		
Tenure	Rent	1914	24.6	1817	31.5	p < 0.001	
	Missing	11	_	13	-		
	Current	1960	25.2	1210	21.0		
	Ex	1877	24.1	1429	24.8		
Smoking	Never	3951	50.7	3126	54.2	p < 0.001	
	Missing	22	-	20	<u> </u>		
	Normal						
	/underweight	2867	39.2	1956	36.8		
	(<25kg/m ²)						
Bodv mass	Overweight	0000	00.0	00.47	00.5		
index	(25-30 kg/m ²)	2868	39.2	2047	38.5	p < 0.001	
	Obese	4507	04.7	4044	047		
	(>30kg/m ²)	1587	21.7	1314	24.7		
	Missing	489	-	469	-	1	
	Low (<94cm						
	male, <80cm	3060	39.8	2120	37.1		
Maint	female)						
vvalst	High (94-102cm					p < 0.001	
Gircumference	male, 80-88cm	1929	25.1	1347	23.6		
	female)						
	Very High	2703	35.1	2242	39.3		

BMJ Open

1	
2	
3	
4	
5	
0	
0	
1	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	י 8
1	0 0
ו ר	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
2	ñ
2	1
ວ ວ	ר ר
ა ი	2
ა ი	ۍ ا
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
1	6
4	70
4	1
4	8
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5	6
5	7
5	י א
5	0
ິ	3

60

	(>102cm						
	(~102011 male >88cm						
	female)						
	Missing	118	_	77	_		
Doctor	Yes	305	3.9	322	5.3		
diagnosed	No	7504	96.1	5715	94.7	p < 0.001	
Diabetes	Missing	6	-	2	- P ' •		
Survey	Yes (HBA1c ≥6.5%)	296	3.8	316	5.5		
diagnosed Diabetes	No (HBA1c <6.5%)	7401	96.2	5417	94.5	p < 0.001	
	Missing	113	-	52	-		
	Yes	406	5.2	446	7.4		
Total Diabetes	No	7405	94.8	5585	92.6	p < 0.001	
	Missing	0	-	0	-		
Doctor	Yes	2118	27.2	1501	25.0		
diagnosed	No	5662	72.8	4527	75.0	p = 0.003	
Hypertension	Missing	36	-	10	-		
Survey	Yes	2065	31.5	1545	29.2		
diagnosed	No	4499	68.5	3744	70.8	p = 0.02	
Hypertension	Missing	1246	-	496	-		
Total	Yes	2866	36.7	2062	34.2		
Hypertension	No	4933	63.3	3968	65.8	p = 0.004	
Typerteneiten	Missing	12	-	0	-		
	<pre><45 (ml/min/1.73m²) 142 1.8 81</pre>		81	1.4	p = 0.07		
eGFR CKDEPI	<60 (ml/min/1.73m ²)	444	5.7	303	5.2	p = 0.26	
	Missing	0		0	-		
	<45 (ml/min/1.73m ²)	146	1.9	80	1.4	p = 0.03	
eGFR MDRD	<60 (ml/min/1.73m ²)	521	6.7	349	6.0	p = 0.13	
[Missing	0	-	0	-		

¹ Weighted for non-response (unless stated otherwise) ² Not weighted

|--|

Variable	Category	2003	2009-10	Mann Whitney U test	
		Median value (IQR)	Median value (IQR)	p value	
Serum Creatinine (µmol/L)	Median value	71.7 (62.3 to 82.1)	72.0 (62.0 to 83.0)	p=0.66	
$CED (m)(min/4, 72m^2)$	MDRD	90.5 (77.2 to 105.4)	90.3 (77.1 to 104.7)	p=0.62	
eGFR (mi/min/1.73m ⁻)	CKDEPI	99.3 (84.1 to 113.9)	98.6 (84.0. to 112.5)	p=0.11	
	All	26.2 (23.3 to 29.4)	26.6 (23.5 to 30.0)	p<0.001	
BMI (kg/m²)	Male	26.6 (24.0 to 29.4)	27.0 (24.2 to 29.9)	p=0.001	
	Female	25.7 (22.7 to 29.5)	26.1 (23.1 to 30.0)	p<0.001	
	All	90.6 (81.1 to 100.0)	92.0 (81.6 to 101.7)	p<0.001	
Naist circumference (cm)	Male	95.8 (88.0 to 104.0)	96.7 (88.2 to 105.0)	p=0.05	
	Female	84.6 (76.4 to 94.0)	86.3 (77.3 to 96.7)	p<0.001	
	All	125.5 (115.5 to 138.0)	124.5 (114.0 to 136.0)	p<0.001	
	Dr-diagnosed HT	135.5 (124.0 to 149.5)	134.0 (122.2 to 145.5)	p<0.001	
Systolic BP (mmHg)	Dr-diagnosed DM	134.5 (122.5 to 148.0)	131.8 (120.0 to 143.5)	p<0.001	
	eGFR<60 (CKDEPI)	140.2 (126.0 to 156.0)	131.8 (119.0 to 143.5)	p<0.001	
	eGFR<60 (MDRD)	137.5 (124.0 to 153.7)	129.2 (118.0 to 142.5)	p<0.001	
	All	73.0 (65.5 to 80.5)	72.5 (65.5 to 80.)	p<0.001	
	Dr-diagnosed HT	77.5 (70.0 to 85.5)	76.0 (68.0 to 83.5)	p<0.001	
Diastolic BP (mmHg)	Dr-diagnosed DM	72.0 (64.5 to 80.5)	71.50 (64.5 to 78.5)	p<0.001	
	eGFR<60 (CKDEPI)	71.5 (62.9 to 80.5)	68.5 (60.5 to 76.0)	p<0.001	
	eGFR<60 (MDRD)	72.5 (64.0 to 81.5)	69.0 (61.5 to 76.8)	p<0.001	
	All	5.20 (5.00 to 5.50)	5.30 (5.10 to 5.70)	p<0.001	
Glycated HD (%)	Dr-diagnosed DM	6.90 (5.90 to 8.20)	6.90 (5.90 to 8.30)	p=0.85	
	All	1.50 (1.20 to 1.70)	1.40 (1.20 to 1.70)	p<0.001	
HDL Cholesterol (mmol/L)	Male	1.30 (1.20 to 1.60)	1.30 (1.10 to 1.50)	p<0.001	
	Female	1.60 (1.40 to 1.90)	1.60 (1.30 to 1.90)	p=0.046	
	All	5.40 (4.70 to 6.20)	5.20 (4.40 to 5.90)	p<0.001	
Total Cholesterol (mmol/L)	Male	5.40 (4.70 to 6.20)	5.10 (4.30 to 5.90)	p<0.001	
	Female	5.40 (4.70 to 6.20)	5.20 (4.50 to 6.00)	p=0.001	

			MDRD				
Variable		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
HSE Voar	2003	6.7	1	1	1	1	
H3L Teal	2009-10	6.0	0.84 (0.72 – 0.98)*	0.84 (0.73 – 0.99)*	0.75 (0.61 – 0.92)**	0.75 (0.61 – 0.92)*	
	16-34	0.2	1	1	1	1	
	35-54	2.1	10.8 (5.3 – 22.0)**	11.1 (5.5 –22.8)**	10.8 (5.0 – 23.4)**	10.7 (4.9 – 23.2)**	
Age	55-64	6.8	37 (18 – 75)**	36 (18 – 73)**	33 (15 – 72)**	32 (14 – 69)**	
	65-74	14.5	87 (43 – 175)**	82 (40 – 167)**	65 (30 – 143)**	62 (28 – 135)**	
	75+	35.6	276 (138 – 555)**	247 (122 – 501)**	216 (99 – 470)**	202 (93 – 440)**	
Cov	Male	5.0	1	1	1	1	
Sex	Female	7.7	1.42 (1.22 – 1.65)**	1.37 (1.17 – 1.60)**	1.69 (1.36 - 2.10)**	1.66 (1.34 - 2.06)*	
	White	6.8	-	1	1	1	
Etheria	South Asian	1.7	-	0.83 (0.43 – 1.59)	0.73 (0.33 – 1.60)	0.71 (0.32 - 1.56)	
Ethnic	Black	1.7	-	0.38 (0.15 – 1.00)	0.33 (0.09 – 1.19)	0.32 (0.09 - 1.16)	
	Other	1.6		0.81 (0.29 - 2.30)	0.64 (0.17 – 2.46)	0.64 (0.17 – 2.44)	
T	Own	6.3		1	1	1	
Tenure	Rent	6.6	-	1.34 (1.11 – 1.60)**	1.23 (0.97 – 1.57)	1.23 (0.96 - 1.56)	
	Degree Level	2.4	-	1	1	1	
Education	Below degree	4.4	-	1.31 (0.99 – 1.74)	1.15 (0.83 – 1.60)	1.20 (0.84 - 1.70)	
	None	14.9	-	1.52 (1.13 - 2.04)**	1.20 (0.84 – 1.70)	1.23 (0.96 – 1.57)	
	Never	6.1	-	-	1	1	
Smoking	Ex-Smoker	10.1	-	-	1.17 (0.91 – 1.49)	1.15 (0.85 – 1.54)	
· ·	Current Smoker	3.2	-	-	1.02 (0.75 – 1.38)	1.04 (0.80 - 1.40)	
	Normal (<25)	3.4	-	-	1	1	
BMI (ka/m²)	Overweight (25-30)	6.6	-	-	1.16 (0.91 – 1.49)	1.15 (0.90 – 1.47)	
	Obese (>30)	8.4	-	-	1.31 (0.99 – 1.71)	1.26 (0.96 – 1.65)	
HDL Cholesterol	Continuous	-	-	-	0.51 (0.38 - 0.67)**	0.51 (0.38 – 0.68)*	
Total Cholesterol	Continuous	-	-	-	0.91 (0.84 - 1.00)	0.92 (0.84 - 1.00)	
Doctor diagnosed	No	5.9	-	-	1	1	
Diabetes	Yes	17.3	-	-	1.42 (0.92 – 2.22)	1.36 (0.87 – 2.11)	
Doctor diagnosed	No	4.0	-	-	-	<u> </u>	
Hypertension	Yes	13.3	-	-	-	1.27 (1.03 - 1.55)*	

Table 3. Prevalence and associations of low eGFR (<60ml/min/1.73m²) by MDRD equation with adjustment for socio-demographic and clinical factors

¹Prevalence for combined 2003 and 2009-10 HSE

²Adjusted for age and sex

BMJ Open

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension

* p<0.05 **p<0.01 For Deer Teview only

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Mand	- 1- 1 -	CKDEPI					
Varia	able	Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
	2003	5.7	1	1	1	1	
ISE fear	2009-10	5.2	0.85 (0.72 – 1.00)	0.86 (0.72 – 1.01)	0.73 (0.57 - 0.93)*	0.73 (0.57 - 0.93)*	
	16-34	0.1	1	1	1	1	
	35-54	1.0	15.1 (4.5 – 51.4)**	16.1 (4.7 – 55.0)**	13.8 (4.0 – 47.2)**	13.5 (3.9 - 46.5)**	
Age	55-64	4.2	67 (20 – 225)**	67 (20 – 227)**	55 (16 – 190)**	52 (15 – 177)**	
-	65-74	12.5	219 (66 – 725)**	219 (65 – 731)**	162 (47 – 553)**	151 (44 – 517)**	
	75+	36.8	890 (269 – 2938)**	844 (253 – 2808)**	754 (222 – 2559)**	693 (203 - 2355)**	
0	Male	4.6	1	1	1	1	
Sex	Female	6.3	1.15 (0.97 – 1.36)	1.11 (0.93 – 1.31)	1.31 (1.01 – 1.68)*	1.28 (1.00 - 1.65)*	
	White	5.8	-	1	1	1	
F thuis	South Asian	1.4	-	0.93 (0.43 - 2.00)	0.89 (0.35 - 2.42)	0.85 (0.34 - 2.16)	
Ethnic	Black	2.0	-	0.56 (0.23 – 1.39)	0.55 (0.16 – 1.82)	0.53 (0.16 – 1.77)	
	Other	1.6		1.19 (0.40 – 3.56)	1.13 (0.29 – 4.41)	1.13 (0.29 – 4.41)	
Tamura	Own	5.3		1	1	1	
Tenure	Rent	6.0	-	1.44 (1.19 – 1.75)**	1.29 (0.98 – 1.69)	1.28 (0.97 - 1.69)	
	Degree Level	1.8	-	1	1	1	
Education	Below degree	3.6	-	1.36 (0.97 – 1.90)	1.05 (0.69 – 1.58)	1.04 (0.69 - 1.58)	
	None	13.6	-	1.51 (1.08 - 2.13)*	1.12 (0.76 – 1.66)	1.11 (0.75 – 1.65)	
	Never	5.2	-		1	1	
Smoking	Ex-Smoker	9.0	-	-	1.09 (0.77 – 1.55)	1.07 (0.75 – 1.52)	
0	Current Smoker	2.6	-		0.80 (0.70 – 1.41)	0.79 (0.54 – 1.14)	
	Normal (<25)	2.7	-	-	1	1	
BMI (kg/m²)	Overweight (25-30)	5.5	-	-	1.14 (0.86 – 1.51)	1.12 (0.85 - 1.49)	
	Obese (>30)	7.2	-	-	1.31 (0.96 – 1.80)	1.25 (0.91 – 1.72)	
HDL Cholesterol	Continuous	-	-	-	0.40 (0.29 - 0.56)**	0.40 (0.29 - 0.57)*	
Total Cholesterol	Continuous	-	-	-	0.93 (0.84 - 1.04)	0.94 (0.86 - 1.04)	
Doctor diagnosed	No	5.0	-	-	1	1	
Diabetes	Yes	16.3	-	-	1.55 (0.96 – 2.48)	1.46 (0.91 – 2.35)	
Doctor diagnosed	No	3.1	-	-	-	1	
Hypertension	Yes	12.3	_	_	-	1.33 (1.05 - 1.67)*	

Table 4. Prevalence and associations of low eGFR (<60) by CKDEPI equation with adjustment for socio-demographic and clinical

"Prevalence for combined 2003 and 2009-10 HSE

²Adjusted for age and sex

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension i peer teview only

* p<0.05 **p<0.01

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010

Grant Aitken, Paul Roderick, Simon Fraser, Jennifer Mindell, Donal O'Donoghue, Julie Day, Graham Moon

Department of Geography, Faculty of Social and Human Sciences, University of Southampton, Southampton, UK, SO171BJ Grant Aitken PhD researcher, Graham Moon Professor of spatial analysis

Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, SO16 6YD Paul Roderick Professor of Public Health Simon Fraser Speciality Registrar in Public Health

Research Department of Epidemiology and Public Health, UCL (University College London), London, UK, WC1E 6BT Jennifer Mindell Clinical Senior Lecturer

Renal Unit, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD Donal O'Donoghue Professor of Nephrology

Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne UK Dr Julie Day Consultant Clinical Scientist

Correspondence to: P Roderick pjr@soton.ac.uk

Abstract

Objectives

To determine whether the prevalence of CKD in England has changed over time.

Design

Cross-sectional analysis of nationally representative Health Survey for England (HSE) random samples.

Setting

England 2003 and 2009/2010.

Survey participants

13,896 Adults aged 16+ participating in HSE, adjusted for sampling and non-response, 2009/10 surveys combined.

Main outcome measure

Change in prevalence of eGFR <60ml/min/1.73m² (as proxy for stage 3-5 chronic kidney disease [CKD]), from 2003 to 2009/10 based on a single serum creatinine measure using IDMS traceable enzymatic assay in a single laboratory; eGFR derived using MDRD and CKDEPI eGFR formulae.

Analysis

Multivariate logistic regression modelling to adjust time changes for socio-demographic and clinical factors (body mass index, hypertension, diabetes, lipids). <u>A correction factor was applied to the 2003 HSE serum creatinine to account for a storage effect.</u>

Results

National prevalence of low eGFR (<60) decreased from 9.6% to 6.0% using MDRD (P<0.001) and from 7.6% in 2003 to 5.2% in 2009/10 using CKDEPI (p<0.001). National pPrevalence of low eGFR (<60) decreased within each age and gender group for both formulae except males aged 65-74. Prevalence of both obesity and diabetes increased in this period, there was a decrease in hypertension. Adjustment for demographic and clinical factors led to a significant decrease in CKD between the surveyed periods. The fully adjusted odds ratio for eGFR<60ml/min/1.73m² was 0.49 (0.42 0.57)-0.75 (0.61-0.92) comparing 2009/10 with 2003 using the MDRD equation, and was similar using the CKDEPI equation 0.73 (0.57-0.93).

Conclusion

The prevalence of a low eGFR indicative of CKD in England has decreased over this seven year period, despite rising prevalence of obesity and diabetes, two key causes of CKD. Hypertension prevalence declined and blood pressure control improved but this did not appear to explain the fall. Periodic assessment of eGFR and albuminuria in future HSEs is needed to evaluate trends in CKD.

Article Summary

Strengths & Limitations of this study

- This study uses of nationally representative samples, with later HSEs pooled over two years to increase numbers and precision of estimates. The surveys used standardised protocols for measurement by trained interviewers and nurses, with all samples were tested in the same laboratory with standardised assays.
- Another strength of the study is that the analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. <u>A correction</u> factor was applied to 2003 HSE data to adjust for the shift in measured creatinine <u>due to sample storage.</u>
- The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. The study was also limited by a single sample was tested for serum creatinine in each survey,

therefore the persistence of reduced eGFR levels to confirm chronicity cannot be	е
shown.	

- Another weakness is that The prevalence of stage 4/5 CKD is likely to be underestimated as the HSE may not fully account for some in whom more severe CKD (stage 4/5) will be more common.
- <text> The absence of albuminuria data in the 2003 HSE is another major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition). (e.g. use of reninangiotensin system (RAS) inhibition).

Total word count n=3225 3,844

Introduction

Chronic kidney disease (CKD) is recognised as a global public health problem.¹ CKD is defined and staged using the estimated glomerular filtration rate (eGFR) and markers of kidney damage, mainly albuminuria.² Both eGFR and albuminuria are strong independent risk factors for all-cause and cardiovascular disease (CVD) mortality, and progression to end-stage renal disease (ESRD), which may require renal replacement therapy (RRT) by dialysis or transplantation.³ In England in 2010 the prevalence of RRT was 832 per million population, a 3% increase from 2009; NHS costs of RRT were estimated at £780 million for 2009/10, and the total cost at £1.45 billion, a nearly threefold increase on estimated costs for 2002.^{4,5}

The population prevalence of CKD in England was reported for the first time using data on eGFR and albuminuria in the nationally-representative Health Surveys for England (HSE) 2009 and 2010, though there had previously been estimates based on routine testing using primary care data.^{6.7} In the combined 2009/2010 HSE, 6% of men and 7% of women had eGFR <60ml/min/1.73m² (equivalent to CKD stage 3-5 if chronic) with a strong age gradient.⁸ The prevalence of low eGFR increased in the US, based on National Health and Nutrition Examination (NHANES) surveys between 1988-2004, even after adjusting for adverse trends in risk factors (obesity, diabetes, hypertension), but little is known about CKD prevalence trends in England.^{9,10,11}

Information on prevalence change is needed to assess the impact of trends in underlying determinants, and of strategies to prevent and manage CKD. Several policy initiatives have been introduced in England that have had an impact on prevention, detection and management of CKD. The National Service Framework for Renal Services 2004/05 led to national reporting of eGFR by clinical biochemistry laboratories from 2006,¹² the General Practice pay for performance Quality Outcomes Framework (QOF) included targets for CKD management from 2006/07,¹³ and the NHS Vascular Checks Programme, introduced in 2009, includes screening for CKD (stage 3-5) in people aged 35-74 with newly identified type 2 diabetes or hypertension.¹⁴ This study therefore aimed to compare the prevalence of CKD in the HSE 2003 with the combined HSE 2009-10 and to relate this to any changes in prevalence of risk factors for CKD, particularly obesity, diabetes and hypertension, over this period.

Methods

Full details of the conduct of the HSE, measurement of non-CKD variables and response rates are shown in the 2003, 2009 and 2010 Health Survey for England reports.^{15,16} Survey participants within private households were selected using a multistage stratified random probability sample. Household response rates were 73% in HSE2003 and 68%/66% in HSE 2009/2010. In co-operating households, 90% and 89%/86% of adults completed an interview questionnaire while 70% and 62%/57% respectively consented to a nurse visit, of whom 74%-76% provided a blood test. The HSE 2003 contained 18,533 individuals and data from HSE 2009 and HSE 2010 were combined to provide a larger sample size of 13,065 individuals. This totalled 31,598 individuals for the combined 2003, 2009 and 2010 HSEs. Eligible participants were individuals aged 16 years and older who had a valid serum creatinine value. This left 7,850 individuals from the 2003 HSE and 6,046 individuals from the combined 2009/10 HSEs, leaving a total of 13,896 individuals for analysis.

Age was grouped into five categories: 16-34, 35-54, 55-64, 65-74 and 75+. There were four separate ethnic groupings: White, South Asian, Black and Other. Socio-economic factors included: i) occupation National Statistics Socio-Economic Classification (NS-SEC, divided into three categories: managerial and professional occupations; intermediate occupations and routine and manual occupations); ii) qualifications grouped as: degree or equivalent; below degree (other qualification) and none (no qualification); iii) household tenure (own vs renting); iv) access to motor vehicle (none vs. any).

Smoking status was defined as current, ex-smoker or never smoked. Hypertension was defined as doctor-diagnosed (pre-existing diagnosis), survey-defined (identified as having high blood pressure (BP, systolic ≥140mmHg and/or diastolic ≥90mmHg and/or taking medication for hypertension) at the survey examination), and 'total' (doctor + survey diagnosed). Survey-defined diabetes was glycated haemoglobin (HBA1c) ≥6.5% at nurse visit. Glycated haemoglobin data are presented for those with and without diagnosed diabetes. Body mass index (BMI) was defined as normal (<25kg/m²), overweight (≥25, <30kg/m²), and obese (≥30kg/m²). Waist circumference was classified as: <94cm, 94–102cm (high), and >102cm (very high) for men, and <80cm, 80–88cm (high) and >88cm (very high) for women. For South Asian men, the waist circumference was classified as: <90cm, 90–102cm (high), and >102cm (very high). High density lipoprotein (HDL) cholesterol and total cholesterol were treated as continuous variables.

To investigate medication use, we examined the use of diuretics, ß-blockers, reninangiotensin system (RAS) inhibitors (angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)), calcium channel blockers, and other antihypertensives in those with doctor diagnosed hypertension, doctor diagnosed diabetes and eGFR <60ml/min/1.73m², and use of lipid lowering agents (the majority of which are statins) in the whole population. In 2003, 47% of respondents answered yes to whether they were taking any prescribed medication, and 50% in 2009/10.

Serum creatinine was assayed using an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay in a single laboratory (Clinical Biochemistry Department at the Royal Victoria Infirmary (RVI), Newcastle-upon-Tyne). Both the Modified Diet in Renal Disease (MDRD) equation (in routine use in the UK) and the newer Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation (which provides better risk prediction and is

recommended for use in international guidelines) were used to define CKD.^{2,17} eGFR values were derived using the standard equations.^{18,19}

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri-level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1), 175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L.

Details of laboratory analysis, internal quality control, and external quality assurance are provided in the HSE 2009/10 documentation, with these methods replicated in the 2003 HSE.⁸ The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2012. Such freezing does not affect creatinine levels.²⁰-The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2010. Although such freezing is not thought to affect creatinine levels²⁰ we undertook a re-analysis in 2014 of a random sample of 500 serum creatinine samples taken from the 2009 HSE and subsequently frozen and stored under the same conditions as the HSE 2003 samples, stratified by quintile, to determine if there was a shift in measured creatinine on storage. We found mean serum creatinine increased on storage and was best predicted by a regression equation where the original 2009 serum creatinine value. We assumed the same effect applied to the 2003 serum creatinine data which were analysed in 2009-10 and we applied the same adjustment. This decreased the 2003 serum creatinine values_eGFR was classified as below 60ml/min/1.73m² or equal to or greater than 60ml/min/1.73m².

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1),175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L. We compared the change in mean serum creatinine in people aged 20-39 without any diabetes or any hypertension as per Coresh at al.⁹

Statistics

Patient characteristics were compared between the 2003 and 2009/10 HSEs using chisquared tests for categorical variables and Mann Whitney U tests for non-normally distributed continuous variables. eGFR<60ml/min/1.73m² prevalence in 2003 and 2009/10 was compared across age and sex groupings. BP levels were compared in all, in those with diagnosed hypertension and in those with eGFR<60ml/min/1.73m²; glycated haemoglobin (HBA1c) was compared in all participants and in those with doctor-diagnosed diabetes. Binary logistic regression models were used to examine the relationships between eGFR<60ml/min/1.73m² and age, sex and socioeconomic and clinical factors to determine if there were significant differences between the two survey time periods. The dependent variable were CKDEPI and MDRD equation eGFR <60ml/min/1.73m² (indicative of stage 3-5 CKD). Four models were produced for each: 1) Age-sex adjusted; 2) model 1 plus socioeconomic status and ethnicity; 3) model 2 plus behavioural, lipid levels (HDL and total

cholesterol) and clinical variables except hypertension, 4) Model 3 plus doctor-diagnosed hypertension. Interactions between period and both diabetes and hypertension were tested.

Sensitivity analyses were performed by replacing doctor-diagnosed diabetes with HBA1c and replacing doctor-diagnosed hypertension with diastolic and systolic blood pressure and adjusting for lipid lowering agents in the full model. Non-response and blood sample weights were used in all analyses to address issues with missing data individuals who did not have a blood sample taken and sent to laboratory for analysis to determine serum creatinine value. Full details on how the weights were obtained are provided in the final volume of the HSE report each year. The age, education and smoking status of those interviewed, having a nurse visit and having a blood test is similar once non-response is taken into account (data rforn. not shown). All analyses were performed using IBM SPSS Statistics version 20.

Results

The final sample for the study comprised of 13,896 individuals aged 16+ who had a valid serum creatinine value. Comparing the characteristics of these participants between the 2003 and 2009/10 surveys, the age structure, gender, NS-SEC and car ownership were similar while educational level improved and there was an increase in rented tenure (Table 1). Prevalence of diabetes however classified increased, as did obesity. In contrast, smoking and hypertension prevalence decreased.

There were significant increases in BMI, waist circumference and HBA1c in the population though no change in HBA1c in those with diagnosed diabetes (Table 2). Median BP levels (both systolic and diastolic) fell in all groups including those with diagnosed hypertension, doctor-diagnosed diabetes and with eGFR<60ml/min/1.73m². Median total and HDL cholesterol fell in both men and women.

The distribution of serum creatinine was shifted to the left in 2009/10; 1.7% values were greater than 130µmol/L in 2003, but only 0.1% in 2009/10 is similar for 2003 and 2009/10 (Figure 1). Mean serum creatinine decreased, leading to an increase in mean eGFR using both MDRD and CKDEPI formulae Median serum creatinine increased slightly, leading to a very small non-significant decrease in median eGFR using both MDRD and CKDEPI formulae (Table 2). Mean serum creatinine for those aged 20-39 without doctor diagnosed hypertension or diabetes fell significantly from 74.8µmol/L (SD 14.8) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p<0.001) increased slightly from 70.6µmol/L (SD 13.6) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p=0.09).-

The proportion of individuals with MDRD eGFR<60ml/min/1.73m² decreased from $\frac{9.66.7}{100}$ % in 2003 to 6.0% in 2009/10 (p<0.001p=0.13) and with eGFR <45ml/min/1.73m² from $\frac{2.41.9}{100}$ % to 1.4% (p<0.001=0.03). Corresponding figures for CKDEPI were $\frac{7.65.7}{100}$ % and 5.2% (p<0.001=0.26) and $\frac{2.21.8}{100}$ % and 1.4% (p=0.0017). Prevalence of low eGFR fell in all age and gender groups and with either CKDEPI or MDRD equations, except for males aged 65-74 where there was a slight increase (Figure 2).

There was an increase in the mean number of anti-hypertensive agents taken in individuals with: doctor-diagnosed hypertension (1.19 in 2003 to 2.01 in 2009-10), doctor-diagnosed hypertension and doctor-diagnosed diabetes (1.47 to 2.57); MDRD eGFR <60ml/min/1.73m² (1.2630 to 1.77); and CKDEPI eGFR < 60ml/min/1.73m² (1.2935 to 1.93). The proportion taking RAS inhibitors in individuals with doctor-diagnosed diabetes, doctor-diagnosed hypertension, MDRD eGFR <60ml/min/1.73m² or CKDEPI eGFR < 60ml/min/1.73m² also increased, as did overall lipid lowering agent use (Appendix 1).

The age-sex adjusted odds ratio (OR) of having low eGFR (MDRD eGFR<60ml/min/1.73m²) in 2009/10 compared with 2003 was 0.5284 (95% confidence interval (CI) 0.4572-0.9860) and fully adjusted was 0.75 (0.61-0.92) (Table 3). This pattern was maintained on further adjustment for potential confounding factors (Table 3) and when using CKDEPI eGFR (Table 4). The corresponding ORs for CKDEPI were 0.85 (0.72-1.00) and 0.73 (0.57-0.93) (Table 4).

Sensitivity analyses replacing doctor-diagnosed diabetes with HBA1c and doctor-diagnosed hypertension with diastolic and systolic BP made little difference to the adjusted ORs <u>as did</u> the inclusion of lipid lowering agents. No interactions between period and diabetes or hypertension were identified.

Discussion

These analyses show that CKD prevalence in England estimated by serum creatinine based equations in England decreased from 2003 to 2009/10. This decrease was seen across all age groupings (except makes aged 65-74), for CKD defined by both MDRD and CKDEPI eGFR equations (though more pronounced for the MDRD equation), and despite was more pronounced for the MDRD equation and occurred despite increased prevalence of both diabetes and obesity.²¹ Using the CKDEPI equation in place of MDRD to define CKD resulted in a lower prevalence of CKD. Whilst it reduces overall prevalence, the CKDEPI equation identifies more individuals aged 75+ with CKD compared with the MDRD equation.^{22,23}

The HSE 2003, 2009 and 2010 were nationally representative samples, with the 2009/10 data pooled over two years to increase numbers and precision of estimates. The age-sex characteristics of the different study periods sampled were similar. The surveys used standardised protocols for measurement by trained interviewers and nurses. All samples were tested in the same laboratory with standardised assays. The analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the

application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. We accounted for the shift in measured creatinine on storage in the 2003 HSE serum creatinine data by introduction of a correction factor derived from analysis of the effect of storage using 2009 data. Non-response weighting was undertaken in the HSE for both surveyed periods to reduce response bias and account for missing data for individuals who did not have blood sample taken and hence no serum creatinine value. We used both the HSE study design and the non-response weights to provide national prevalence estimates at each period and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences. The ethnic composition of the surveys changed over time with a small fall in the White population, but we adjusted for this change in the analysis.

The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. However the use of new, cross-sectional samples enables measurement of general population CKD prevalence at different time points. A single sample was tested for serum creatinine in each survey, and therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown. This is standard practice in national surveys such as NHANES, whereas studies based on routine testing can assess chronicity, such as the QICKD study.²⁴ Given the individual variation in kidney function, more extreme values will be averaged out on repeated testing (regression to the mean), reducing the prevalence of low eGFR.²⁴ The results may therefore slightly overestimate the prevalence of CKD. Despite high numbers of participants, <u>T</u>there were too few cases from the key minority ethnic groups to give robust data on ethnic differences in prevalence of CKD; over 90% of the participants for both survey periods were white (data not shown). South Asians and Black groups have higher rates of renal replacement but have been found to have lower prevalence of CKD than Caucasians.^{25,26}

Prevalence of stage 4/5 CKD is likely to be underestimated as, whilst the HSE is able to adjust for non-response among the general population in private households, it may not fully account for some in whom more severe CKD (stage 4/5) will be more common. This includes people who were not able to give a blood or urine sample because of poor health and those who did not participate due to concurrent illness or hospitalisation, as well as those in residential care.

The absence of albuminuria data in the 2003 HSE is a major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).³ We have therefore been unable to estimate changes in prevalence of albuminuria per se, in all CKD (stages1-5), and fully assess prevention and management.

The fall in <u>low prevalence of</u> eGFR could be due i) chance ii) artefact of differences in the serum creatinine measurement, iii) changes in serum creatinine production rather than excretion by the kidney, iv) residual confounding by differences in sample characteristics not adjusted for by sample weighting, v) true fall in eGFR. The period effects were highly statistically significant making chance unlikely. The 2003 assay results data were from stored sera, however this should be stable for creatinine even after long storage.²⁰ Moreover, if the 2003 serum creatinine had been underestimated this would have reduced any fall over the period. The two sets of samples were analysed in multiple analytical runs over a 19 month time period, which could lead to differences in results, however during this time period the internal quality control data indicates that the assay was accurate compared with assigned target values and stable, with no indication of assay drift with time. Artefact due to serum creatinine measurement changes does not seem to be the explanation. A fall in serum creatinine over time independent of kidney function could be due to less muscle

mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level. A fall in dietary protein consumption from cooked meat could also lead to fall in serum creatinine. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁷ but this was not done in HSE. We used the HSE study design and non response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

A change in serum creatinine over time independent of kidney function could be due to less muscle mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level.

A decline in dietary protein consumption from cooked meat could also lead to change in serum creatinine. Statistics from the National Diet and Nutrition Survey show that meat consumption increased from 2001-02 to 2008-10 while protein intake remained virtually stable over the same period. ²⁸ Mean consumption of meat and meat products increased from 154g per day in 2001-02 to 194g per day in 2008-10; protein intake contributing to food energy for adults aged 19+ increased slightly from 16-17% in 2001-02 to 17-18% in 2008-10; meat and meat products contributed to 37-38% of all protein intake for adults aged 19-64, with little change compared to 2008-10. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁹ but this was not done in HSE.

We used the HSE study design and non-response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

Key risk groups for developing CKD are those with hypertension and or diabetes especially if they have albuminuria. In this study there was evidence of modest reductions in the prevalence of hypertension, better control of hypertension in key groups, and greater use of RAS inhibitors which have anti-proteinuric as well as BP lowering effects, though the period changes in eGFR remained after correction for changes in hypertension prevalence. There is evidence from some studies using HSE, primary care databases and QOF data,²⁸⁻³⁰ though not all,³¹ of improved hypertension control in the last decade. However there are ethnic disparities with poorer control of BP in Black and South Asians who have higher risk of progression to need RRT.³² Population salt consumption also fell during the last decade which is likely to have influenced population BP.^{33,34} CKD prevalence could fall too if those identified with moderate CKD were treated more aggressively, especially those with hypertension and or albuminuria, leading to increased eGFR in some people to above 60ml/min/1.73m². The limited HSE data suggest better BP control and greater use of RAS inhibitors in those with eGFR <60ml/min/1.73m². Karunetatne et al examined BP control in those with and without CKD in a primary care population in Kent and showed that BP control had improved in CKD patients over time pre- and post the introduction of QOF and that it was greater than in non-CKD hypertensive patients. They also showed increased use of RAS inhibitors and other anti-hypertensive agents in CKD patients.³⁵ Whilst there was a small fall in population lipid levels and some evidence of increased statin use, this would not be expected to lead to a reduced incidence of CKD, and our period changes were not altered by adjusting for lipid levels.³⁶

There was evidence of increased lipid lowering agent use (indicative of increased statin use) and a small fall in population lipid levels. There is some evidence of reno-protective effects of statins in CKD patients; A lower rate of decline in GFR was found in patients with renal disease who took antilipemic agents.³⁸ In the Heart Protection Study, the use of the hypolipidemic drug simvastatin reduced the rise in slightly elevated creatinine over time in both diabetic and non-diabetic CKD participants.³⁹ In the SHARP trial allocation of the lipid lowering ezetimibe plus simvastatin in participants not already on dialysis at randomisation reduced the outcome of end stage renal disease or a doubling of creatinine with an odds ratio of 0.93, though this was not statistically significant.⁴⁰ In the GREACE trial statin treatment prevented decline in renal function in people with high blood lipids and coronary heart disease: patients not treated with statins showed a 5.2% decrease in creatinine clearance. ⁴¹ However our period changes were not altered by adjusting for statins (lipid lowering drugs) or lipid levels (HDL, total cholesterol).³⁷

There are limited data from other countries with which to compare these findings. Coresh et al analysed the US NHANES surveys of 1988-1994 and 1999-2004, which both collected albuminuria and eGFR data. Both prevalence of albuminuria and MDRD eGFR <60ml/min/1.73m² increased, the latter from 5.6% to 8.1%.⁸ The albuminuria increase was explained by changes in levels of obesity, diabetes and hypertension, whereas this adjustment only partly explained eGFR falls. Changes in population serum creatinine explained most of the remainder of the eGFR changes; this was analysed by comparing the mean serum creatinine in young people aged 20-39 without diabetes or hypertension and this had increased across the surveys.⁹ The authors suggested that this rise in serum creatinine could be due to residual laboratory assay differences or to changes in dietary protein or muscle mass. Grams et al showed that prevalence of eGFR<60ml/min/1.73m² had also increased using the same survey data when eGFR was estimated using Cystatin C, a marker of kidney function that is independent of muscle mass, and this was not explained by changes in demography, hypertension, diabetes or obesity, suggesting a true increase in low eGFR.³⁷

We can compare the estimated national CKD prevalence for HSE with QOF returns which record diagnosed CKD in primary care.⁴³ Prevalence has been increasing with improvements in detection and recording and in 2010 was 4.2%. The figures are not directly comparable as comparing a single screened value versus routine testing with presumed allowance for chronicity, but this may suggest some under-diagnosis of CKD.

If this change in prevalence in England is true, then based on the HSE 2003 age-sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 2.62 million based on the MDRD equation, falling by 0.03 million for 2009/10. Equivalent figures for CKDEPI eGFR <60ml/min/1.73m² are 2.23 million and 0.02 million increase respectively. The impact of such changes would be twofold: a consistent pool of patients at risk of progressing to need RRT; and a contribution to consistent cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

If this change in prevalence in England is true, then based on the HSE 2003 age sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 3.77 million based on the MDRD equation, falling by 1.18 million for 2009/10. Equivalent figures for CKDEPI eGER <60ml/min/1.73m² are 2.98 million and 0.75 million respectively. The impact of such changes would be twofold: a reduced pool of patients at risk of progressing to need RRT; and a contribution to falling cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

Conclusions

The prevalence of a low eGFR appears to have decreased in England from 2003 to 2009/10, despite increases in obesity and diabetes. It is unclear why this has occurred and it is difficult to infer directly that this is due to current policies to improve prevention of CKD and ment Gr., s to further ass. in C, both of which wc. the identification and management of people with CKD. There is a need for repeated national prevalence estimates to further assess CKD patterns over time, including measures of albuminuria and of Cystatin C, both of which were available in HSE 2009 and 2010.

What is already known on this topic
 eGFR and albuminuria are strong independent risk factors for progression to end-

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
16
40 47
41
48
49
50
51
52
53
54
55
55
50
5/
58

59 60 stage renal disease (ESRD), which may require costly renal replacement therapy (RRT)

- Prevalence of low eGFR has increased over time in countries such as the US, even . after adjustment for adverse trends in CKD risk factors
- Little is known about CKD prevalence trends in England

What this study adds

- Prevalence of a low eGFR derived from serum creatinine and indicative of CKD in England has decreased from 2003 to 2009/10, despite increasing prevalence of diabetes and obesity
- This pattern of prevalence of low eGFR was maintained even after adjustment for potential mediating and confounding factors
- Was

 evalence es

 de to further as

 A future need for repeated national prevalence estimates, that includes measures of albuminuria and Cystatin C, is required to further assess CKD patterns over time.

Contributors: GA was involved in the analysis and interpretation of the data. PR drafted the paper. GA, PR, SF and GM made substantial contributions to the study conception and

design. JM co-ordinated the Health Surveys for England. DO provided background information on CKD policy. JD conducted the laboratory analyses. All authors critically reviewed the paper and were involved in the drafting and approval of the manuscript. GA is the guarantor.

Acknowledgements: Scott Harris contributed to the production of the regression equation that was applied to the 2003 serum creatinine samples as a correction factor.

Funding: Kidney function testing in the Health Surveys for England was funded by NHS Kidney Care. GA is funded by a University of Southampton PhD scholarship.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Approval was obtained from the London Multi-Centre Research Ethnics Committee for the 2003 survey (HSE 2003 ref MREC/02/2/72) and approval was obtained from the Oxford B Research Ethics Committee for both 2009 and 2010 surveys (HSE 2009 ref 08/H0605/103, HSE 2010 ref 09/H0605/73).

Transparency: The lead author (the manuscript's guarantor) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing: The HSE 2003, 2009 and 2010 are archived with the UK Data Service. Creatinine measurements for the HSE 2003 undertaken for this study will be archived in due course.

Figure Legends

<u>Figure 1. Distribution of serum creatinine (µmol/L) for 2003 and 2009/10 survey data.</u> <u>Serum creatinine categories are grouped in bands of 5 µmol/L from 40µmol/L to 130µmol/L.</u> Serum creatinine values <40 µmol/L and those >130µmol/L are grouped together.

Figure 2. Comparison of low eGFR (<60ml/min/1.73m²) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender

References

1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 2011;80:1258-70. doi: 10.1038/ki.2011.368

2. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the evaluation and management of Chronic Kidney Disease. *Kidney Int Suppl* 2013;3:1-150. doi: 10.1038/kisup.2012.77

Available at: http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf

Last accessed March 16th 2014.

3. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet* 2010;375(9731):2073-81.

4. Castledine C, Casula A, Fogarty D. UK Renal Registry 14th Annual Report: Chapter 2 UK RRT Prevalence in 2010: national and centre-specific analyses. UK Renal Registry 2011. Available at:

http://www.renalreg.com/Report-Area/Report%202011/Chap02_Renal11_web.pdf Last accessed March 16th 2014.

5. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant* 2012;27 Suppl 3:iii73-iii80. doi: 10.1093/ndt/gfs269.

6. De Lusignan S, Chan T, Stevens P, O'Donoghue DJ, Hague N, Dzregah B et al. Identifying patients with chronic kidney disease from general practice computer records. *Fam Pract* 2005;22:234–241.

7. Mindell J, Biddulph JP, Hirani V, Stamatakis E, Craig R, Nunn S et al. Cohort profile: the health survey for England. *Int J Epidemiol* 2012;41:1585-93. doi: 10.1093/ije/dyr199.

8. Roth M, Roderick P, Mindell J. Kidney disease and renal function. Chapter 8 in Craig R, Mindell J (eds). Health Survey for England 2010. NHS Information Centre: Leeds, 2011.

9.Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al. Prevalence of chronic kidney disease in the United States. *JAMA* 2007;298:2038-47.

10. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new onset kidney disease in a community-based population. *JAMA* 2004;291:7844-50.

Field Code Changed

BMJ Open

11 Fierblad F. Fored MC. Linblad P. Fryzek, J. McJ. aughlin, JK. Nyrén O. Obesity and risk for		
chronic renal failure. J Am Soc Nephrol 2006;17:1695-702.		
12. The National Service Framework for Banal Services, Dart Two: Chronic Kidney Disease		
Acute Renal Failure and End of Life Care. Department of Health: London, 2005		
Available at:		
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/199002/Nation		
al_Service_Framework_for_Renal_Services_Part_Two		
Chronic Kidney Disease Acute Renal Failure and End of Life Care.pdf		
13. Quality and Outcomes Framework guidance for GMS contract 2011/12. Delivering investment in general practice. NHS Employers and British Medical Association; London, 2011		
Available at:		
http://www.nhsemployers.org/Aboutus/Publications/Documents/QOF guidance GMS contr	Field Code Changed	٦
act 2011 12.pdf		ſ
Last accessed March 16th 2014.		
14 NHS Health Check Programme Best Practice Guidance, Department of Health: London		
2013.		
Available at:		
http://www.healthcheck.nhs.uk/commissioners_and_healthcare_professionals/national_guid		
ance/		
Last accessed March 16th 2014.		
15. Sproston K, Primatesta P. Health Survey for England 2003. Volume 3: Methodology and		
documentation. The Stationery Office, London, 2004		
Available at:		
http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_cons	Field Code Changed	J
um_an/groups/an_aigitalassets/@dh/@en/documents/digitalasset/dh_4098912.pdf		
16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and		
Social Care Information Centre, Leeds, 2010.		
Available at:		2
nup://www.nsciC.gov.uk/pubs/nseugreport	Field Code Changed	J
17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al.		
Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for		
estimated domerular filtration rate JAMA 2012:307:1941-51		
18 Levev AS Stevens LA Schmid CH Zhang VL Castro AE 3rd Foldman HL et al. A now		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12 		
18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12.		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Cislofors RE, Grimerud TK, Markrid L, Long torm atability of corrupt components in the 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		
 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 		

BMJ Open

3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
12
12
40
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

21. Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes hypertension and hypertension diabetes comorbidity in England. *Public Health Nutr* 2008;11:521-7.

22. O'Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. *BMJ Open* 2011;1(2):e000308.

23. Carter JL, Stevens PE, Irving JE, Lamb EJ. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effects of age. *QJM* 2011;104:839-47.

24. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year population based study of the effects of gender and age. *Kidney Int* 2006;69:375–82.

25. Roderick PJ, Raleigh VS, Hallam L, Mallick NP. The need and demand for Renal Replacement Therapy in ethnic minorities in England. *J Epidemiol Community Health* 1996;50:334-9.

26. Dreyer G, Hull S, Aitken Z, Chesser A, Yacoub MM. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJ Med 2009;102:261-69.

27. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for Chronic Conditions. Royal College of Physicians, London, 2008.

28. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. *Hypertension* 2009;53:480-6.

29. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. *BMJ* 2008;337:a2030 doi:10.1136/bmj.a2030

30. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. *J Hum Hypertens* 2009;23:764-7.

31. Serumaga B, Ross Degnan D, Avery AJ, Elliott RA, Majumdar SR, Zhang F et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. *BMJ* 2011;342;d108 doi:10.1136/bmj.a2030.

32. Millett C, Gray J, Bottle A, Majeed A. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. *Ann Fam Med* 2008;76:490-6.

33. Millett C, Laverty AA, Stylianou N, Bibbins Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. *Plos One* 2012:7;e29836 doi: 10.1371/journal.pone.0029836.

34.Sadler K, Nicholson S, Steer T, Gill V, Bates B, Tipping S et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012. Available at: Formatted: Portuguese (Portugal)

BMJ Open

Provide the second	Formatted: Portuguese (Portugal)
m Survey England 2011 Text_to DH_FINALT.pdf	Field Code Changed
	Formatted: Portuguese (Portugal)
35. Karunatatne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of	
pay for performance on the control of blood pressure in people with chronic kidney disease	
stage 3 5. Nephrol Dial Transplant 2013;28:2107 16. doi 10.1093/ndt/gft093	
36. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C et al. The effects	
of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney	
disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet	
2011;377:2181_92. doi: 10.1016/S0140_6736(11)60739_3.	
37. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH et al. Trends in	
the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin	
c based estimates. Am J Kidney Dis 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013	
24. de Lusignan S, Gallagher H, Chan T, Thomas N, van Vlymen J, Nation M et al. The	Formatted: Font: 11 pt, (Asian) Chines
QICKD study protocol: a cluster randomised trial to compare quality improvement	(PRC), (Other) Portuguese (Portugal)
interventions to lower systolic BP in chronic kidney disease (CKD) in primary care.	
Implementation Science 2009;4:39	
25. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year	
population based study of the effects of gender and age. Kidney Int 2006;69:375-82.	
26. Roderick PJ. Raleigh VS. Hallam L. Mallick NP. The need and demand for Renal	
Replacement Therapy in ethnic minorities in England. J Epidemiol Community Health	
<u>1996;50:334-9.</u>	
27 Drever G. Hull S. Aitken Z. Chesser A. Vacoub MM. The effect of ethnicity on the	
prevalence of diabetes and associated chronic kidney disease. QJ Med 2009:102:261-69.	
28. Bates B, Lennox A, Bates C, Swan G. National Diet and Nutrition Survey: Headline	
results from Years 1 and 2 (combined) of the Rolling Programme (2008/09 – 2009/10)	
<u>Available al.</u> https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/dh_12	Field Code Changed
8550.pdf	
Last accessed June 22nd 2014.	
29 Chronic kidney disease: national clinical quideline for early identification and	
management in adults in primary and secondary care. National Collaborating Centre for	
Chronic Conditions. Royal College of Physicians, London, 2008.	
30. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in	
hypertension management in England: results from the Health Survey for England 2006.	
<u>Hypertension 2009;53:480-6.</u>	
31. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure	
monitoring and control in England: a survey of data from the quality and outcomes	
framework. BMJ 2008;337:a2030 doi:10.1136/bmj.a2030	

BMJ Open

2 3 4	
5 6 7 8	<u>32.</u> rec J H
9 10 11 12	<u>33.</u> of p Kin
13 14 15 16	<u>34.</u> pati 200
17 18 19	<u>35.</u> stra 201
20 21 22 23 24 25 26	36. Nut in E Ava http <u>m-S</u> Las
27 28 29 30	<u>37.</u> pay stag
31 32	<u>38.</u> dise
33 34 35 36	<u>39.</u> cho con
37 38 39	<u>40.</u> with <u>Clir</u>
40 41 42 43 44	<u>41.</u> Edu pre stue
45 46 47 48	<u>42.</u> the c ba
49 50 51 52 53 54	<u>42.</u> Eng Ava http Las
55 56 57 58 59 60	I

32. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. J Hum Hypertens 2009;23:764-7.	
<u>33. Serumaga B, Ross-Degnan D, Avery AJ, Elliott RA, Majumdar SR, Zhang F et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. <i>BMJ</i> 2011;342;d108 doi:10.1136/bmj.a2030.</u>	
34. Millett C, Gray J, Bottle A, Majeed A. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. <i>Ann Fam Med</i> 2008;76:490-6.	
<u>35. Millett C, Laverty AA, Stylianou N, Bibbins-Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. <i>Plos One</i> 2012:7;e29836 doi: 10.1371/journal.pone.0029836.</u>	
36.Sadler K, Nicholson S, Steer T, Gill V, Bates B, Tipping S et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012.	
Available at:	Formatted: English (U.K.)
nttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu	Formatted: English (U.K.)
Last accessed March 16th 2014	Formatted: English (U.K.)
<u>37. Karunatatne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. <i>Nephrol Dial Transplant</i> 2013;28:2107-16. doi 10.1093/ndt/gft093</u>	
38. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. <i>Kidney Int</i> 2001;59:1:260-9.	
39. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo- controlled trial. <i>Lancet</i> . 2002;360:9326:7-22.	
40. Lewis D. Effect of LDL-Cholestrol lowering on renal disease progression among patients with chronic kidney disease: Results of the Study of Heart And Renal Protection (SHARP). <i>Clinical Kidney Journal</i> . 2011;4:Issue suppl 2.	
41. Mikhailidis DP, Wierzbicki AS. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. <i>Curr Med Res Opin.</i> 2002;18:4:215-9.	
42. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH et al. Trends in the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin c based estimates. <i>Am J Kidney Dis</i> 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013	
<u>42. Health & Social Care Information Centre: Quality and Outcomes Framework – 2009-10</u> England level. <u>Available at:</u>	
http://www.hscic.gov.uk/catalogue/PUB04431	Field Code Changed
Last accessed June 22nd 2014.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Variable	Category	2003		2009-	Chi- squared test	
		Number	%	Number	%	p-value
All	Aged 16+	7850 ²	100.0	6046²	100.0	-
	16-34	2425	31.0	1847	30.6	
	34-54	2790	35.7	2129	35.3	
٨٥٥	55-64	1126	14.4	886	14.7	n = 0.441
Аус	65-74	813	10.4	639	10.6	p = 0.44
	75+	662	8.5	539	8.9	
	Missing	0	-	0	-	
	White	7226	92.5	5244	90.7	p < 0.001
	South Asian	332	4.3	243	4.2	
Ethnicity	Black	144	1.8	154	2.7	
	Other	108	1.4	139	2.4	
	Missing	0	-	0	-	
0	Male	3795	48.6	2961	49.0	- 0.000
Sex	Female	4020	51.4	3080	51.0	p = 0.80
	Missing	0	-	0	-	
Qualification	Degree	1375	17.6	1295	22.5	p < 0.001
	Below degree	4551	58.3	3296	57.0	
	Missing	1874	24.0	1191	20.6	
	Highoot	2514	- 22 7	3	- 24.0	n = 0.42
NSSEC	Middlo	2014	22.1	1094	34.0 22.1	p = 0.434
	Iviluale	10/4	42.0	1203	ZZ. I 42. 1	
	Lowest	3273	43.9	2343	43.1	
	Vas	6460	82.7	4728	81 7	p = 0.176
Car Ownership	No	1348	17.3	1056	18.3	p = 0.1 <u>7</u> 0
	Missing	2		1000	10.5	
	Own	5878	75.4	3955	68.5	p < 0.001
Tenure	Rent	1914	24.6	1817	31.5	p voice
	Missing	11		13	-	
	Current	1960	25.2	1210	21.0	p < 0.001
.	Ex	1877	24.1	1429	24.8	
Smoking	Never	3951	50.7	3126	54.2	
	Missing	22	-	20	-	
	Normal	2867	39.2	1956	36.8	p < 0.001
	/underweight (<25kg/m²)					•
Body mass index	Overweight (25-30 kg/m ²)	2868	39.2	2047	38.5	
	Obese (>30kg/m ²)	1587	21.7	1314	24.7	
	Missing	489	-	469	-	
Waist	Low (<94cm male, <80cm female)	3060	39.8	2120	37.1	p < 0.001
Circumference	High (94-102cm male, 80-88cm	1929	25.1	1347	23.6	

	Very High (>102cm male, >88cm female)	2703	35.1	2242	39.3		
	Missing	118	-	77	-		
Doctor	Yes	305	3.9	322	5.3	p < 0.001	
diagnosed	No	7504	96.1	5715	94.7		
Diabetes	Missing	6	-	2	-		
Survey	Yes (HBA1c ≥6.5%)	296	3.8	316	5.5	p < 0.001	
diagnosed Diabetes	No (HBA1c <6.5%)	7401	96.2	5417	94.5		
	Missing	113	-	52	-		
	Yes	406	5.2	446	7.4	p < 0.001	
Total Diabetes	No	7405	94.8	5585	92.6		
	Missing	0	-	0	-		
Doctor	Yes	2118	27.2	1501	25.0	p = 0.003]
diagnosed	No	5662	72.8	4527	75.0	-	1
Hypertension	Missing	36	-	10	-		
Survey	Yes	2065	31.5	1545	29.2	p = 0.0 <mark>219</mark>	1
diagnosed	No	4499	68.5	3744	70.8		
Hypertension	Missing	1246		496	-		
	Yes	2866	36.7	2062	34.2	p = 0.004	1
Total	No	4933	63.3	3968	65.8	P	
Hypertension	Missing	12		0000			
	<45 (ml/min/1.73m ²)	<u>142</u> 176	<u>1.8</u> 2.2	<u>81</u> 81	<u>1.4</u> 1.4	<u>p = 0.07</u> p = 0.001	
eGFR CKDEPI	<60 (ml/min/1.73m ²)	<u>444</u> 594	<u>5.7</u> 7.6	<u>303</u> 303	<u>5.2</u> 5.2	<u>p = 0.26</u> p <	
	Missing	<u>0</u> 0		<u>0</u> 0	-	0.001	
	<45 (ml/min/1.73m ²)	<u>146</u> 186	<u>1.9</u> 2.4	<u>80</u> 80	<u>1.4</u> 1.4	<u>p = 0.03p ≺</u> 0.001	
eGFR MDRD	<60 (ml/min/1.73m ²)	<u>521</u> 751	<u>6.7</u> 9.6	<u>349</u> 349	<u>6.0</u> 6.0	p = 0.13p < 0.001	
	Missing	0	-	0	-	0.001	
¹ Weighted for no	on-response (unless	stated othe	erwise)				
² Not weighted							

Formatted Table

Variable	Category	Category 2003		Mann Whitney U test
		Median value (IQR)	Median value (IQR)	p value
Serum Creatinine (µmol/L)	Median value	<u>71.7 (62.3 to 82.1)</u> 76.0 (66.0 to 87.0)	<u>72.0 (62.0 to 83.0)</u> 72.0 (62.0 to 83.0)	<u>p=0.66</u> p<0.001
α CED (m)/min/(4.72m ²)	MDRD	90.5 (77.2 to 105.4)84.7 (72.2 to 98.7)	<u>90.3 (77.1 to</u> 104.7) 90.3(77.1 to 104.7)	<u>p=0.62</u> p<0.001
egrk (m/min/1.73m)	СКДЕРІ	<u>99.3 (84.1 to 113.9)</u> 94.3 (78.6 to 109.7)	98.6 (84.0. to 112.5) (84.0. to 112.5) (84.0. to 112.5)	<u>p=0.11</u> p<0.001
	All	26.2 (23.3 to 29.4)	26.6 (23.5 to 30.0)	p<0.001
BMI (kg/m²)	Male	26.6 (24.0 to 29.4)	27.0 (24.2 to 29.9)	p=0.001
-	Female	25.7 (22.7 to 29.5)	26.1 (23.1 to 30.0)	p<0.001
	All	90.6 (81.1 to 100.0)	92.0 (81.6 to 101.7)	p<0.001
Waist circumference (cm)	Male	95.8 (88.0 to 104.0)	96.7 (88.2 to 105.0)	p=0.05 <mark>2</mark>
	Female	84.6 (76.4 to 94.0)	86.3 (77.3 to 96.7)	p<0.001
	All	125.5 (115.5 to 138.0)	124.5 (114.0 to 136.0)	p<0.001
	Dr-diagnosed HT	135.5 (124.0 to 149.5)	134.0 (122.2 to 145.5)	p<0.001
Systolic BP (mmHg)	Dr-diagnosed DM	134.5 (122.5 to 148.0)	131.8 (120.0 to 143.5)	p<0.001
	CKD (CKDEPI)	139.5 (126.0 to 154.5)	131.8 (119.0 to 143.5)	p<0.001
	CKD (MDRD)	137.0 (123.0 to 151.0)	129.2 (118.0 to 142.5)	p<0.001
	All	73.0 (65.5 to 80.5)	72.5 (65.5 to 80.)	p<0.001
	Dr-diagnosed HT	77.5 (70.0 to 85.5)	76.0 (68.0 to 83.5)	p<0.001
Diastolic BP (mmHg)	Dr-diagnosed DM	72.0 (64.5 to 80.5)	71.50 (64.5 to 78.5)	p<0.001
	eGFR<60 (CKDEPI)	72.0 (64.5 to 80.5)	68.5 (60.5 to 76.0)	p<0.001
	eGFR<60 (MDRD)	73.0 (65.5 to 81.5)	69.0 (61.5 to 76.8)	p<0.001
Glycated Hb (%)	All	5.20 (5.00 to 5.50)	5.30 (5.10 to 5.70)	p<0.001
Giycaleu HD (70)	Dr-diagnosed DM	6.90 (5.90 to 8.20)	6.90 (5.90 to 8.30)	p=0.8 <u>5</u> 46
	All	1.50 (1.20 to 1.70)	1.40 (1.20 to 1.70)	p<0.001
HDL Cholesterol (mmol/L)	Male	1.30 (1.20 to 1.60)	1.30 (1.10 to 1.50)	p<0.001
	Female	1.60 (1.40 to 1.90)	1.60 (1.30 to 1.90)	p=0.0 <mark>5</mark> 46
Total Cholesterol (mmol/L)	All	5.40 (4.70 to 6.20)	5.20 (4.40 to 5.90)	p<0.001
	Male	5.40 (4.70 to 6.20)	5.10 (4.30 to 5.90)	p<0.001

Female	5.40 (4.70 to 6.20)	5.20 (4.50 to 6.00)	p=0.001
	000, 100		
For peer i	eview only - http://bmjopen.l	omj.com/site/about/guidel	ines.xhtml

BMJ Open

clinical factors	linical factors									
		MDRD								
Varia	able	Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI)⁴	OR (95% CI)⁵				
	2003	<u>6.7</u> 9.6	1	1	1	1				
HSE Year	2009-10	<u>6.0</u> 6.0	<u>0.84 (0.72 –</u> <u>0.98)*<mark>0.52 (0.45 –</mark> 0.60)**</u>	<u>0.84 (0.73 –</u> <u>0.99)*0.53 (0.44 – 0.62)**</u>	<u>0.75 (0.61 –</u> <u>0.92)**<mark>0.48 (0.41 –</mark> 0.57)**</u>	<u>0.75 (0.61 –</u> <u>0.92)**<mark>0.49 (0.42 –</mark> 0.57)**</u>				
	16-34	<u>0.2</u> 0.6	1	1	1	1				
	35-54	<u>2.1</u> 3.0	<u>10.8 (5.3 – 22.0)**</u> 5.8 (3.7 9.0)**	<u>11.1 (5.5 –</u> <u>22.8)**5.7 (3.5- 9.1)**</u>	<u>10.8 (5.0 –</u> <u>23.4)**5.2 (3.3 – 8.2)**</u>	<u>10.7 (4.9 –</u> <u>23.2)**5.0 (3.2 – 7.9)**</u>				
Age	55-64	<u>6.8</u> 9.2	<u>37 (18 – 75)**</u> 19 (12 – 30)**	<u>36 (18 – 73)**</u> (11 – 28)**	<u>33 (15 – 72)**</u> 1 4 (9 – 23)**	<u>32 (14 – 69)**</u> 13 (8 – 20)**				
	65-74	<u>14.5</u> 19.0	<u>87 (43 – 175)**</u> 44 (28 – 68)**	<u>82 (40 – 167)**</u> 39 (24 – 63)**	<u>65 (30 – 143)**</u> 31 (20 – 50)**	<u>62 (28 – 135)**</u> 28 (17 – 44)**				
	75+	<u>35.6</u> 4 0.3	<u>276 (138 – 555)**</u> 127 (83 – 196)**	247 (122 – <u>501)**</u> 109 (69 – 175)**	<u>216 (99 – 470)**88</u> (55 – 140)**	<u>202 (93 – 440)**76</u> (48 – 122)**				
	Male	<u>5.0</u> 6.3	1	1	1	1				
Sex	Female	<u>7.7</u> 9.8	<u>1.42 (1.22 –</u> <u>1.65)**¹.45 (1.26 –</u> 1.68)**	<u>1.37 (1.17 –</u> <u>1.60)**1.39 (1.19 – 1.62)**</u>	<u>1.69 (1.36 –</u> <u>2.10)**^{1.45} (1.23 –</u> 1.70)**	<u>1.66 (1.34 –</u> <u>2.06)**¹.43 (1.22 –</u> 1.67)**				
	White	<u>6.8</u> 8.6	-	1	1	1				
	South Asian	<u>1.7</u> 2.3	-	<u>0.83 (0.43 –</u> <u>1.59)</u> 0. 63 (0.32 – 1.26)	<u>0.73 (0.33 –</u> <u>1.60)</u> 0.74 (0.41 – 1.34)	<u>0.71 (0.32 –</u> <u>1.56)</u> 0.72 (0.40 – 1.32)				
Ethnic	Black	<u>1.7</u> 2.7	-	<u>0.38 (0.15 –</u> <u>1.00)0.73 (0.32 – 1.69)</u>	<u>0.33 (0.09 –</u> <u>1.19)0.41 (0.17 – 1.02)</u>	<u>0.32 (0.09 –</u> <u>1.16)</u> 0.40 (0.16 – 1.01)				
	Other	<u>1.6</u> 2.4	-	<u>0.81 (0.29 –</u> <u>2.30)</u> 1. 19 (0.46 – 3.08)	<u>0.64 (0.17 –</u> <u>2.46)0.92 (0.36 – 2.30)</u>	<u>0.64 (0.17 –</u> <u>2.44)</u> 0. 93 (0.37 – 2.34)				
	Own	<u>6.3</u> 8.3	-	1	1	1				
Tenure	Rent	<u>6.6</u> 7.6	-	<u>1.34 (1.11 –</u> <u>1.60)**</u> 1.13 (0.93 –	<u>1.23 (0.97 –</u> <u>1.57)</u> 1.11 (0.92 –	<u>1.23 (0.96 –</u> <u>1.56)</u> 1.10 (0.91 –				

Table 3. Prevalence and associations of low eGFR (<60ml/min/1.73m²) by MDRD equation with adjustment for socio-demographic and clinical factors

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				1.36)	1.34)	1.33)
	Degree Level	<u>2.4</u> 3.1	-	1	1	1
				<u>1.31 (0.99 –</u>	<u>1.15 (0.83 –</u>	<u>1.20 (0.84 –</u>
	Below degree	<u>4.4</u> 5.9	-	<u>1.74)</u> 1.29 (0.98 –	<u>1.60)</u> 1.34 (1.03 –	<u>1.70)</u> 1.33 (1.02 –
Education	-			1.70)	1.74)*	1.74)*
				<u>1.52 (1.13 –</u>	1.20 (0.84 -	1.23 (0.96 -
	None	<u>14.9</u> 18.2	-	<u>2.04)**1.43 (1.06 -</u>	<u>1.70)</u> 1.50 (1.14 –	<u>1.57)1.50 (1.13 –</u>
				1.93)*	1.99)**	1.98)**
	Never	<u>6.1</u> 7.7	-	-	1	1
					<u> 1.17 (0.91 –</u>	<u>1.15 (0.85 –</u>
	Ex-Smoker	<u>10.1</u> 12.8	-	-	<u>1.49)1.23 (0.97 –</u>	<u>1.54)1.20 (0.94 –</u>
Smoking					1.55)	1.53)
					<u> 1.02 (0.75 –</u>	<u> 1.04 (0.80 –</u>
	Current Smoker	<u>3.2</u> 4.3		-	<u>1.38)</u> 1.22 (0.96 –	<u>1.40)</u> 1.19 (0.94 –
					1.57)	1.51)
	Normal (<25)	<u>3.4</u> 4.3	-	-	1	1
					<u>1.16 (0.91 –</u>	<u>1.15 (0.90 –</u>
•	Overweight (25-30)	<u>6.6</u> 8.8	-	-	<u>1.49)</u> 1.57 (1.30 –	<u>1.47)</u> 1.51 (1.25 –
BMI (kg/m²)					1.90)**	1.83)**
					<u>1.31 (0.99 –</u>	<u> 1.26 (0.96 –</u>
	Obese (>30)	<u>8.4</u> 10.6	-	-	<u>1.71)</u> 1.80 (1.47 –	<u>1.65)</u> 1.65 (1.33 –
					2.21)**	2.03)**
					<u>0.51 (0.38 –</u>	<u>0.51 (0.38 –</u>
HDL Cholesterol	Continuous	<u></u>	-	-	<u>0.67)**</u> 0.53 (0.41 –	<u>0.68)**</u> 0.54 (0.43 –
					0.68)**	0.69)**
					<u>0.91 (0.84 –</u>	<u>0.92 (0.84 –</u>
Total Cholesterol	Continuous	<u></u>	-	-	<u>1.00)</u> 0.95 (0.88 –	<u>1.00)</u> 0.96 (0.90 –
					1.11)	1.12)
	No	<u>5.9</u> 7.5	-	-	1	1
Doctor diagnosed Diabetes					<u>1.42 (0.92 –</u>	<u>1.36 (0.87 –</u>
	Yes	<u>17.3</u> 19.9	-	-	<u>2.22)</u> 1.4 <u>2 (0.95 –</u>	<u>2.11)</u> 1.31 (0.88 –
					2.12)	1.97)
-	No	<u>4.0</u> 5.1	-	-	-	1
Doctor diagnosed						<u>1.27 (1.03 –</u>
Hypertension	Yes	<u>13.3</u> 16.5	-	-	-	<u>1.55)*</u> 1.47 (1.23 –
1 Describer of fam						1.75)**

¹Prevalence for combined 2003 and 2009-10 HSE ²Adjusted for age and sex

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8 9 10	 ³Adjusted for age, sex, ethnicity, tenure and education ⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes ⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension
11 12	* p<0.05 **p<0.01
13	
14 15	
16	
17 18	
19	
20	
21	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
42	
43	
44 45	
46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
47	
48	

				CKDEPI		
Variable		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)
	2003	<u>5.7</u> 7.6	1	1	1	1
HSE Year	2009-10	<u>5.2</u> 5.2	<u>0.85 (0.72 –</u> <u>1.00)</u> 0.57 (0.48- 0.67)**	<u>0.86 (0.72 –</u> <u>1.01)0.59 (0.49 – 0.71)**</u>	<u>0.73 (0.57 –</u> <u>0.93)*<mark>0.52 (0.43 –</mark> 0.63)**</u>	<u>0.73 (0.57 –</u> <u>0.93)*0.52 (0.4 0.62)**</u>
	16-34	<u>0.1</u> 0.1	1	1	1	1
	35-54	<u>1.0</u> 1.3	<u>15.1 (4.5 – 51.4)**</u> 8.4 (3.7 – 19.2)**	<u>16.1 (4.7 –</u> <u>55.0)**7.5 (3.3 – 17.1)**</u>	<u>13.8 (4.0 –</u> <u>47.2)**9.1 (3.7 – 22.1)**</u>	<u>13.5 (3.9 –</u> <u>46.5)**<mark>8.7 (3.6</mark></u> 21.2)**
A .g.o	55-64	<u>4.2</u> 5.6	<u>67 (20 – 225)**38</u> (17.4 – 86.0)**	<u>67 (20 – 227)**</u> 31 (14 – 69)**	<u>55 (16 – 190)**</u> 38 (16 – 91)**	<u>52 (15 – 177)*</u> (14 – 81)**
Age -	65-74	<u>12.5</u> 16.3	<u>219 (66 – 725)**128</u> (58 – 292)**	<u>219 (65 –</u> <u>731)**</u> 104 (47 – 231)**	<u>162 (47 –</u> <u>553)**119 (50 –</u> 269)**	<u>151 (44 –</u> <u>517)**</u> 103 (43 247)**
	75+	<u>36.8</u> 41.0	<u>890 (269 –</u> <u>2938)**465 (212 –</u> 1019)**	<u>844 (253 –</u> <u>2808)**</u> 356 (160 – 790)**	<u>754 (222 –</u> <u>2559)**420 (175 –</u> 1003)**	<u>693 (203 –</u> 2355)**357 (14 857)**
	Male	4.6 5.6	1	1	1	1
Sex	Female	<u>6.3</u> 7.6	<u>1.15 (0.97 –</u> <u>1.36)</u> 1.17 (1.01 – 1.37) *	<u>1.11 (0.93 –</u> <u>1.31)^{1.11 (0.93 –}</u> 1.32)	<u>1.31 (1.01 –</u> <u>1.68)*</u> 1.37 (1.09 – 1.70)**	<u>1.28 (1.00 -</u> <u>1.65)*</u> 1.36 (1.) 1.67)**
	White	<u>5.8</u> 7.0	-	1	1	1
	South Asian	<u>1.4</u> 1.7	-	<u>0.93 (0.43 –</u> <u>2.00)0.80 (0.36 – 1.79)</u>	<u>0.89 (0.35 –</u> <u>2.42)0.66 (0.30 – 1.99)</u>	<u>0.85 (0.34 -</u> 2.16) 0.63 (0.2 1.97)
Ethnic	Black	<u>2.0</u> 2.3	-	<u>0.56 (0.23 –</u> <u>1.39)0.90 (0.35 –</u> 2.34)	<u>0.55 (0.16 –</u> <u>1.82)</u> 0.47 (0.16 – <u>1.87)</u>	<u>0.53 (0.16 - 1.77)</u> <u>1.77)</u> 0.44 (0.1 1.56)
	Other	<u>1.6</u> 1.6	-	<u>1.19 (0.40 –</u> <u>3.56)1.13 (0.33 –</u> 3.88)	<u>1.13 (0.29 –</u> <u>4.41)1.42 (0.22 –</u> 2.89)	<u>1.13 (0.29</u> <u>4.41)</u> 1.44 (0.2 <u>3.03)</u>
-	Own	5.3 6.5	-	1	1	1
lenure	Rent	6.06.8	-	1.44 (1.19 –	1.29 (0.98 -	1.28 (0.97

Table 4. Prevalence and associations of low eGFR (<60) by CKDEPI equation with adjustment for socio-demographic and clinical						
	Table 4. Prevalence and associations of low effective stress of low effective stress of the stress o	GFR (<60) by CKDEPI	equation	with adjustment for	socio-demographic and clir	nical
	factore	····(···,··,···			J	

Page 53 of 61

				<u>1.75)**</u> 1.31 (1.07 – 1.62)*	<u>1.69)</u> 1.30 (1.04 – 1.59)*	<u>1.69)</u> 1.29 (1.05 1.59)*
	Degree Level	<u>1.8</u> 2.1	-	1	1	1
Education	Below degree	<u>3.6</u> 4.4	-	<u>1.36 (0.97 –</u> <u>1.90)1.32 (0.94 – 1.84)</u>	<u>1.05 (0.69 –</u> <u>1.58)1.23 (0.87 – 1.79)</u>	<u>1.04 (0.69 –</u> <u>1.58)</u> 1.24 (0.86 1.81)
	None	<u>13.6</u> 16.2	-	<u>1.51 (1.08 –</u> <u>2.13)*1.42 (0.99 –</u> <u>2.02)</u>	<u>1.12 (0.76 –</u> <u>1.66)1.32 (0.95 – 1.85)</u>	<u>1.11 (0.75 –</u> <u>1.65)</u> 1.33 (0.97 1.86)
	Never	<u>5.2</u> 6.2	-	-	1	1
Smoking	Ex-Smoker	<u>9.0</u> 10.7	0	-	<u>1.09 (0.77 –</u> <u>1.55)1.20 (0.90 – 1.59)</u>	<u>1.07 (0.75 –</u> <u>1.52)^{1.17 (0.81}</u> 1.44)
-	Current Smoker	<u>2.6</u> 3.1	C'A	-	<u>0.80 (0.70 –</u> <u>1.41)</u> 0.99 (0.70 – 1.41)	<u>0.79 (0.54 –</u> <u>1.14)</u> 0.96 (0.68 <u>1.45)</u>
	Normal (<25)	<u>2.7</u> 3.4	-	-	1	1
BMI (kg/m²)	Overweight (25-30)	<u>5.5</u> 6.8	-	Qr.	<u>1.14 (0.86 –</u> <u>1.51)1.43 (1.15 – 1.78)**</u>	<u>1.12 (0.85 – 1.49)</u> <u>1.49)</u> 1.36 (1.09 1.70) **
	Obese (>30)	<u>7.2</u> 8.6	-	-/0	<u>1.31 (0.96 –</u> <u>1.80)1.78 (1.40 – 2.25)**</u>	<u>1.25 (0.91 –</u> <u>1.72)1.72 (1.27 2.04)**</u>
HDL Cholesterol	Continuous	=	-	-	<u>0.40 (0.29 –</u> <u>0.56)**0.49 (0.37 –</u> <u>0.66)**</u>	<u>0.40 (0.29 –</u> 0.57)**0.49 (0.3 0.65)**
Total Cholesterol	Continuous	=	-	-	<u>0.93 (0.84 –</u> <u>1.04)</u> 0.95 (0.89 – 1.03)	<u>0.94 (0.86 –</u> <u>1.04)</u> 0.97 (0.90 <u>1.04)</u>
	No	<u>5.0</u> 6.0	-	-	1	1
Doctor diagnosed Diabetes	Yes	<u>16.3</u> 18.4	-	-	<u>1.55 (0.96 –</u> <u>2.48)1.59 (1.02 – 2.48)*</u>	<u>1.46 (0.91 –</u> 2.35)1.49 (0.96 2.33)
	No	<u>3.1</u> 3.8	-	-	-	1
Doctor diagnosed Hypertension	Yes	<u>12.3</u> 14.5	-	-	-	<u>1.33 (1.05 –</u> <u>1.67)**^{1.40} (1.1</u>

BMJ Open

²Adjusted for age and sex

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed or beer review only hypertension

* p<0.05 **p<0.01

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	55	of	61
------	----	----	----

Appendix 1: M	edication use	in kev subarou	ips who reported	ves to taking do	ctor	· prescribed medic:	ation	
			2003				2009-10	
Group	Drug type	Number	Yes (%)	No (%)		Number	Yes (%)	No (%)
Any Doctor-	Diuretics	2118	523 (24.7%)	1595 (75.3%)		1501	378 (25.2%)	1123 (74.8%)
diagnosed	<u>ß-</u>		419 (19.8%)	1699 (80.2%)			249 (16.6%)	1252 (83.4%)
hypertension	Blockers			· · · ·				· · · ·
	Calcium		324 (15.3%)	1794 (84.7%)			357 (23.8%)	1144 (76.2%)
	channel							· · · ·
	blockers							
	RAS		1027 (48.5%)	1091 (52.5%)			932 (62.1%)	569 (37.9%)
	inhibitors							
Any Doctor-	RAS	305	172 (56.4%)	133 (43.6%)		322	199 (61.8%)	123 (38.2%)
diagnosed	inhibitors			· · · ·				
diabetes								
eGFR	RAS	751	386 (51.4%)	365 (48.6%)		349	205 (58.7%)	144 (41.3%)
<60ml/min/1.7	inhibitors							
3m ² MDRD								
eGFR	RAS	594	351(59.1%)	243 (40.9%)		303	199 (65.7%)	104 (34.3%)
<60ml/min/1.7	inhibitors							
3m ² CKDEPI								

7326 (93.8%)

BMJ Open

770 (13.3%)

5786

5016 (86.7%)

7/

 Lipid

lowering

All

484 (6.2%)

Figure 1. Distribution of serum creatinine (µmol/L) for 2003 and 2009/10 survey data. Serum creatinine categories are grouped in bands of 5 µmol/L from 40µmol/L to 130µmol/L. Serum creatinine values <40 µmol/L and those >130µmol/L are grouped together.

156x93mm (300 x 300 DPI)

Figure 2. Comparison of low eGFR (<60ml/min/1.73m2) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender 159x179mm (300 x 300 DPI)

BMJ Open

		2003			2009-10			
Group	Drug type	Number	Yes (%)	No (%)	Number	Yes (%)	No (%)	
Any Doctor-	Diuretics		523 (24.7%)	1595 (75.3%)		378 (25.2%)	1123 (74.8%)	
diagnosed	ß-Blockers		419 (19.8%)	1699 (80.2%)		249 (16.6%)	1252 (83.4%)	
hypertension	Calcium channel blockers	2118	324 (15.3%)	1794 (84.7%)	1501	357 (23.8%)	1144 (76.2%)	
	RAS inhibitors		1027 (48.5%)	1091 (52.5%)		932 (62.1%)	569 (37.9%)	
Any Doctor- diagnosed diabetes	RAS inhibitors	305	172 (56.4%)	133 (43.6%)	322	199 (61.8%)	123 (38.2%)	
eGFR <60ml/min/1.7 3m ² MDRD	RAS inhibitors	521	279 (53.6%)	242 (46.4%)	349	205 (58.7%)	144 (41.3%)	
eGFR <60ml/min/1.7 3m ² CKDEPI	RAS inhibitors	444	273 (61.5%)	171 (38.5%)	303	199 (65.7%)	104 (34.3%)	
All	Lipid lowering	7810	484 (6.2%)	7326 (93.8%)	5786	770 (13.3%)	5016 (86.7%)	

Appendix 1: Medication use in key subgroups who reported yes to taking doctor prescribed medication

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found			
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3	
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3	
Methods				
Study design	4	Present key elements of study design early in the paper	4	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	4	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4,5	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4,5	
Bias	9	Describe any efforts to address potential sources of bias	4,5	
Study size	10	Explain how the study size was arrived at	4	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4,5	
Statistical methods	cal methods 12 (a) Describe all statistical methods, including those used to control for confounding		5	
		(b) Describe any methods used to examine subgroups and interactions	5	
		(c) Explain how missing data were addressed	5	
		(d) If applicable, describe analytical methods taking account of sampling strategy	5	
		(e) Describe any sensitivity analyses	5	
Results				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	6
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6, 16
		(b) Indicate number of participants with missing data for each variable of interest	16
Outcome data	15*	Report numbers of outcome events or summary measures	16
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	21,22,23
		(b) Report category boundaries when continuous variables were categorized	16,17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	n/a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	6
Discussion			
Key results	18	Summarise key results with reference to study objectives	7
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	nding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based		11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative crosssectional surveys from 2003 to 2010

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005480.R2
Article Type:	Research
Date Submitted by the Author:	05-Sep-2014
Complete List of Authors:	Aitken, Grant; University of Southampton, Geography and Environment Roderick, Paul; University of Southampton, Academic Unit of Primary Care and Population Sciences Fraser, Simon; University of Southampton, Academic Unit of Primary Care and Population Sciences Mindell, Jenny; UCL (University College London), Epidemiology and Public Health O'Donoghue, Donal ; Salford Royal NHS Foundation Trust, Renal Medicine Day, Julie; Royal Victoria Infirmary, Department of Clinical Biochemistry Moon, Graham; University of Southampton, Geography and Environment
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Renal medicine, Health policy, Epidemiology
Keywords:	EPIDEMIOLOGY, Chronic renal failure < NEPHROLOGY, End stage renal failure < NEPHROLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts 3/2

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010

Grant R Aitken, Paul J Roderick, Simon Fraser, Jennifer S Mindell, Donal O'Donoghue, Julie Day, Graham Moon

Department of Geography, Faculty of Social and Human Sciences, University of Southampton, Southampton, UK, SO171BJ Grant R Aitken PhD researcher, Graham Moon Professor of spatial analysis

Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, SO16 6YD Paul J Roderick Professor of Public Health Simon Fraser Clinical Lecturer in Public Health

Research Department of Epidemiology and Public Health, UCL (University College London), London, UK, WC1E 6BT Jennifer S Mindell Clinical Senior Lecturer

Renal Unit, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD Donal O'Donoghue Professor of Nephrology

Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne UK Dr Julie Day Consultant Clinical Scientist

Correspondence to: P Roderick pir@soton.ac.uk

Abstract

Objectives

To determine whether the prevalence of CKD in England has changed over time.

Design

Cross-sectional analysis of nationally representative Health Survey for England (HSE) random samples.

Setting

England 2003 and 2009/2010.

Survey participants

13,896 Adults aged 16+ participating in HSE, adjusted for sampling and non-response, 2009/10 surveys combined.

Main outcome measure

Change in prevalence of eGFR <60ml/min/1.73m² (as proxy for stage 3-5 chronic kidney disease [CKD]), from 2003 to 2009/10 based on a single serum creatinine measure using IDMS traceable enzymatic assay in a single laboratory; eGFR derived using MDRD and CKDEPI eGFR formulae.

Analysis

Multivariate logistic regression modelling to adjust time changes for socio-demographic and clinical factors (body mass index, hypertension, diabetes, lipids). A correction factor was applied to the 2003 HSE serum creatinine to account for a storage effect.

Results

National prevalence of low eGFR (<60) decreased within each age and gender group for both formulae except males aged 65-74. Prevalence of both obesity and diabetes increased in this period, there was a decrease in hypertension. Adjustment for demographic and clinical factors led to a significant decrease in CKD between the surveyed periods. The fully adjusted odds ratio for eGFR<60ml/min/1.73m² was 0.75 (0.61-0.92) comparing 2009/10 with 2003 using the MDRD equation, and was similar using the CKDEPI equation 0.73 (0.57-0.93).

Conclusion

The prevalence of a low eGFR indicative of CKD in England appeared to decrease over this seven year period, despite rising prevalence of obesity and diabetes, two key causes of CKD. Hypertension prevalence declined and blood pressure control improved but this did not appear to explain the fall. Periodic assessment of eGFR and albuminuria in future HSEs is needed to evaluate trends in CKD.

Article Summary

Strengths & Limitations of this study

- This study used nationally representative samples, with later HSEs pooled over two years to increase numbers and precision of estimates. The surveys used standardised protocols for measurement by trained interviewers and nurses, with all samples tested in the same laboratory with standardised assays.
- Another strength of the study is that the analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. A correction factor was applied to 2003 HSE data to adjust for the shift in measured creatinine due to sample storage.
- The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. The study was also limited by use of a single sample to test for serum creatinine in each survey, therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown.
- The prevalence of stage 4/5 CKD is likely to be underestimated as the HSE may not fully account for some people in whom more severe CKD (stage 4/5) will be more common.
- The absence of albuminuria data in the 2003 HSE is another major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of renin-angiotensin system (RAS) inhibition).

Total word count n=3,844

Introduction

Chronic kidney disease (CKD) is recognised as a global public health problem.¹ CKD is defined and staged using the estimated glomerular filtration rate (eGFR) and markers of kidney damage, mainly albuminuria.² Both eGFR and albuminuria are strong independent risk factors for all-cause and cardiovascular disease (CVD) mortality, and progression to end-stage renal disease (ESRD), which may require renal replacement therapy (RRT) by dialysis or transplantation.³ In England in 2010 the prevalence of RRT was 832 per million population, a 3% increase from 2009; NHS costs of RRT were estimated at £780 million for 2009/10, and the total cost at £1.45 billion, a nearly threefold increase on estimated costs for 2002.^{4,5}

The population prevalence of CKD in England was reported for the first time using data on eGFR and albuminuria in the nationally-representative Health Surveys for England (HSE) 2009 and 2010, though there had previously been estimates based on routine testing using primary care data.^{6,7} In the combined 2009/2010 HSE, 6% of men and 7% of women had eGFR <60ml/min/1.73m² (equivalent to CKD stage 3-5 if chronic) with a strong age gradient.⁸ The prevalence of low eGFR increased in the US, based on National Health and Nutrition Examination (NHANES) surveys between 1988-2004, even after adjusting for adverse trends in risk factors (obesity, diabetes, hypertension), but little is known about CKD prevalence trends in England.^{9,10,11}

Information on prevalence change is needed to assess the impact of trends in underlying determinants, and of strategies to prevent and manage CKD. Several policy initiatives have been introduced in England that have had an impact on prevention, detection and management of CKD. The National Service Framework for Renal Services 2004/05 led to national reporting of eGFR by clinical biochemistry laboratories from 2006,¹² the General Practice pay for performance Quality Outcomes Framework (QOF) included targets for CKD management from 2006/07,¹³ and the NHS Vascular Checks Programme, introduced in 2009, includes screening for CKD (stage 3-5) in people aged 35-74 with newly identified type 2 diabetes or hypertension.¹⁴ This study therefore aimed to compare the prevalence of CKD in the HSE 2003 with the combined HSE 2009/10 and to relate this to any changes in prevalence of risk factors for CKD, particularly obesity, diabetes and hypertension, over this period.

Methods

Full details of the conduct of the HSE, measurement of non-CKD variables and response rates are shown in the 2003 and 2009 Health Survey for England reports.^{15,16} Survey participants within private households were selected using a multistage stratified random probability sample. Household response rates were 73% in HSE 2003 and 68%/66% in HSE 2009/2010. In co-operating households, 90% and 89%/86% of adults completed an interview questionnaire while 70% and 62%/57% respectively consented to a nurse visit, of whom 74%-76% provided a blood test. The HSE 2003 contained 18,533 individuals and data from HSE 2009 and HSE 2010 were combined to provide a sample size of 13,065 individuals. This totalled 31,598 individuals for the combined 2003, 2009 and 2010 HSEs. Eligible participants were individuals aged 16 years and older who had a valid serum creatinine value. This left 7,850 individuals from the 2003 HSE and 6,046 individuals from the combined 2009/10 HSEs, a total of 13,896 individuals for analysis.

Age was grouped into five categories: 16-34, 35-54, 55-64, 65-74 and 75+. There were four separate ethnic groupings: White, South Asian, Black and Other. Socio-economic factors included: i) occupation National Statistics Socio-Economic Classification (NS-SEC, divided into three categories: managerial and professional occupations; intermediate occupations and routine and manual occupations); ii) qualifications grouped as: degree or equivalent; below degree (other qualification) and none (no qualification); iii) household tenure (own vs renting); iv) access to motor vehicle (none vs. any).

Smoking status was defined as current, ex-smoker or never smoked. Hypertension was defined as doctor-diagnosed (pre-existing diagnosis), survey-defined (identified as having high blood pressure (BP, systolic \geq 140mmHg and/or diastolic \geq 90mmHg and/or taking medication for hypertension) at the survey examination), and 'total' (doctor + survey diagnosed). Survey-defined diabetes was glycated haemoglobin (HBA1c) \geq 6.5% at nurse visit. Glycated haemoglobin data are presented for those with and without diagnosed diabetes. Body mass index (BMI) was defined as normal (<25kg/m²), overweight (\geq 25, <30kg/m²), and obese (\geq 30kg/m²). Waist circumference was classified as: <94cm, 94–102cm (high), and >102cm (very high) for men, and <80cm, 80–88cm (high) and >88cm (very high) for women. For South Asian men, the waist circumference was classified as: <90cm, 90–102cm (high), and >102cm (very high). High density lipoprotein (HDL) cholesterol and total cholesterol were treated as continuous variables.

To investigate medication use, we examined the use of diuretics, ß-blockers, reninangiotensin system (RAS) inhibitors (angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)), calcium channel blockers, and other antihypertensives in those with doctor diagnosed hypertension, doctor diagnosed diabetes and eGFR <60ml/min/1.73m², and use of lipid lowering drugs (the majority of which are statins) in the whole population. In 2003, 47% of respondents answered yes to whether they were taking any prescribed medication, and 50% in 2009/10.

Serum creatinine was assayed using an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay in a single laboratory (Clinical Biochemistry Department at the Royal Victoria Infirmary (RVI), Newcastle-upon-Tyne). Both the Modified Diet in Renal Disease (MDRD) equation (in routine use in the UK) and the newer Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation (which provides better risk prediction and is recommended for use in international guidelines) were used to define CKD.^{2,17} eGFR values were derived using the standard equations.^{18,19}

Details of laboratory analysis, internal quality control, and external quality assurance are provided in the HSE 2009/10 documentation, with these methods replicated in analysis of the 2003 HSE samples.⁸

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri-level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1), 175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L.

The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2010. Although such freezing is not thought to affect creatinine levels²⁰ we undertook a reanalysis in 2014 of a random sample of 500 serum creatinine samples taken from the 2009 HSE and subsequently frozen and stored under the same conditions as the HSE 2003 samples, stratified by quintile, to determine if there was a shift in measured creatinine on storage. We found mean serum creatinine increased on storage and was best predicted by a regression equation where the original 2009 serum creatinine value without storage equaled 0.303 plus 0.94 multiplied by the stored serum creatinine value. We assumed the same effect applied to the 2003 serum creatinine data which were analysed in 2009-10 and we applied the same adjustment. This decreased the 2003 serum creatinine values. eGFR was classified as below $60ml/min/1.73m^2$ or equal to or greater than $60ml/min/1.73m^2$. We compared the change in mean serum creatinine in people aged 20-39 without any diabetes or any hypertension as per Coresh at al.⁹

Statistics

Patient characteristics were compared between the 2003 and 2009/10 HSEs using chisquared tests for categorical variables and Mann Whitney U tests for non-normally distributed continuous variables. eGFR<60ml/min/1.73m² prevalence in 2003 and 2009/10 was compared across age and sex groupings. BP levels were compared in all, in those with diagnosed hypertension and in those with eGFR<60ml/min/1.73m²; glycated haemoglobin (HBA1c) was compared in all participants and in those with doctor-diagnosed diabetes. Binary logistic regression models were used to examine the relationships between eGFR<60ml/min/1.73m² and age, sex and socioeconomic and clinical factors to determine if there were significant differences between the two survey time periods. The dependent variable were CKDEPI and MDRD equation eGFR <60ml/min/1.73m² (indicative of stage 3-5 CKD). Four models were produced for each: 1) Age-sex adjusted; 2) model 1 plus socioeconomic status and ethnicity; 3) model 2 plus behavioural, lipid levels (HDL and total cholesterol) and clinical variables except hypertension, 4) Model 3 plus doctor-diagnosed hypertension. Interactions between period and both diabetes and hypertension were tested.

Sensitivity analyses were performed by replacing doctor-diagnosed diabetes with HBA1c, replacing doctor-diagnosed hypertension with diastolic and systolic blood pressure and adjusting for lipid lowering agents in the full model. Non-response and blood sample weights were used in all analyses to address issues with missing individuals who did not have a blood sample taken and sent to laboratory for analysis to determine serum creatinine value. Full details on how the weights were obtained are provided in the final volume of the HSE report each year. The age, education and smoking status of those interviewed, having a nurse visit and having a blood test is similar once non-response is taken into account (data not shown). All analyses were performed using IBM SPSS Statistics version 20.

Results

The final sample for the study comprised of 13,896 individuals aged 16+ who had a valid serum creatinine value. Comparing the characteristics of these participants between the 2003 and 2009/10 surveys, the age structure, gender, NS-SEC and car ownership were similar while educational level improved and there was an increase in rented tenure (Table 1). Prevalence of diabetes however classified increased, as did obesity. In contrast, smoking and hypertension prevalence decreased.

There were significant increases in BMI, waist circumference and HBA1c in the population though no change in HBA1c in those with diagnosed diabetes (Table 2). Median BP levels (both systolic and diastolic) fell in all groups including those with diagnosed hypertension, doctor-diagnosed diabetes and with eGFR<60ml/min/1.73m². Median total and HDL cholesterol fell in both men and women.

The distribution of serum creatinine is similar for 2003 and 2009/10 (Figure 1). Median serum creatinine increased slightly, leading to a very small non-significant decrease in median eGFR using both MDRD and CKDEPI formulae (Table 2). Mean serum creatinine for those aged 20-39 without doctor diagnosed hypertension or diabetes increased slightly from 70.6µmol/L (SD 13.6) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p=0.09).

The proportion of individuals with MDRD eGFR<60ml/min/ $1.73m^2$ decreased from 6.7% in 2003 to 6.0% in 2009/10 (p=0.13) and with eGFR <45ml/min/ $1.73m^2$ from 1.9% to 1.4% (p=0.03). Corresponding figures for CKDEPI were 5.7% and 5.2% (p=0.26) and 1.8% and 1.4% (p=0.07). Prevalence of low eGFR fell in all age and gender groups and with either CKDEPI or MDRD equations, except for males aged 65-74 where there was a slight increase (Figure 2).

There was an increase in the mean number of anti-hypertensive agents taken in individuals with: doctor-diagnosed hypertension (1.19 in 2003 to 2.01 in 2009/10), doctor-diagnosed hypertension and doctor-diagnosed diabetes (1.47 to 2.57); MDRD eGFR <60ml/min/1.73m² (1.30 to 1.77); and CKDEPI eGFR < 60ml/min/1.73m² (1.35 to 1.93). The proportion taking RAS inhibitors in individuals with doctor-diagnosed diabetes, doctor-diagnosed hypertension, MDRD eGFR <60ml/min/1.73m² or CKDEPI eGFR < 60ml/min/1.73m² also increased, as did overall lipid lowering agent use (Appendix 1).

The age-sex adjusted odds ratio (OR) of having low eGFR (MDRD eGFR<60ml/min/1.73m²) in 2009/10 compared with 2003 was 0.84 (95% confidence interval (CI) 0.72-0.98) and fully adjusted was 0.75 (0.61-0.92) (Table 3). The corresponding ORs for CKDEPI were 0.85 (0.72-1.00) and 0.73 (0.57-0.93) (Table 4).

Sensitivity analyses replacing doctor-diagnosed diabetes with HBA1c and doctor-diagnosed hypertension with diastolic and systolic BP made little difference to the adjusted ORs, as did the inclusion of lipid lowering agents. No interactions between period and diabetes or hypertension were identified.

Discussion

These analyses show that CKD prevalence in England estimated by serum creatinine based equations in England appeared to decrease from 2003 to 2009/10. This decrease was seen across all age groupings (except males aged 65-74), for CKD defined by both MDRD and CKDEPI eGFR equations, was more pronounced for the MDRD equation and occurred despite increased prevalence of both diabetes and obesity.²¹ Using the CKDEPI equation in place of MDRD to define CKD resulted in a lower prevalence of CKD. Whilst it reduced overall prevalence, the CKDEPI equation identified more individuals aged 75+ with CKD compared with the MDRD equation.^{22,23}

The HSE 2003, 2009 and 2010 were nationally representative samples, with the 2009/10 data pooled over two years to increase numbers and precision of estimates. The age-sex characteristics of the different study periods sampled were similar. The surveys used standardised protocols for measurement by trained interviewers and nurses. All samples were tested in the same laboratory with standardised assays. The analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. We accounted for the shift in measured creatinine on storage in the 2003 HSE serum creatinine data by introduction of a correction factor derived from analysis of the effect of storage using 2009 data. Nonresponse weighting was undertaken in the HSE for both surveyed periods to reduce response bias and account for missing data for individuals who did not have blood sample taken and hence no serum creatinine value. We used both the HSE study design and the non-response weights to provide national prevalence estimates at each period and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences. The ethnic composition of the surveys changed over time with a small fall in the White population, but we adjusted for this change in the analysis.

The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. However the use of new, cross-sectional samples enables measurement of general population CKD prevalence at different time points. A single sample was tested for serum creatinine in each survey, and therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown. This is standard practice in national surveys such as NHANES, whereas studies based on routine testing can assess chronicity, such as the QICKD study. ²⁴ Given the individual variation in kidney function, more extreme values will be averaged out on repeated testing (regression to the mean), reducing the prevalence of low eGFR.²⁵ The results may therefore slightly overestimate the prevalence of CKD. There were too few cases from the key minority ethnic groups to give robust data on ethnic differences in prevalence of CKD. South Asians and Black groups have higher rates of renal replacement but have been found to have lower prevalence of CKD than Caucasians.^{26,27}

Prevalence of stage 4/5 CKD is likely to be underestimated as, whilst the HSE is able to adjust for non-response among the general population in private households, it may not fully account for some in whom more severe CKD (stage 4/5) will be more common. This includes people who were not able to give a blood or urine sample because of poor health and those who did not participate due to concurrent illness or hospitalisation, as well as those in residential care.

The absence of albuminuria data in the 2003 HSE is a major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).³ We have therefore been unable to estimate

changes in prevalence of albuminuria per se, in all CKD (stages 1-5), and fully assess prevention and management.

The fall in low prevalence of eGFR could be due i) chance ii) artefact of differences in the serum creatinine measurement, iii) changes in serum creatinine production rather than excretion by the kidney, iv) residual confounding by differences in sample characteristics not adjusted for by sample weighting, v) true fall in eGFR. The two sets of samples were analysed in multiple analytical runs over a 19 month time period, which could lead to differences in results, however during this time period the internal quality control data indicates that the assay was accurate compared with assigned target values and stable. We found a storage artefact on serum creatinine measurement and accounted for this by introduction of a correction factor. A change in serum creatinine over time independent of kidney function could be due to less muscle mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level.

A decline in dietary protein consumption from cooked meat could also lead to change in serum creatinine. Statistics from the National Diet and Nutrition Survey show that meat consumption increased from 2001-02 to 2008-10 while protein intake remained virtually stable over the same period. ²⁸ Mean consumption of meat and meat products increased from 154g per day in 2001-02 to 194g per day in 2008-10; protein intake contributing to food energy for adults aged 19+ increased slightly from 16-17% in 2001-02 to 17-18% in 2008-10; meat and meat products contributed to 37-38% of all protein intake for adults aged 19-64, with little change compared to 2008-10. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁹ but this was not done in HSE.

We used the HSE study design and non-response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

Key risk groups for developing CKD are people with hypertension and or diabetes especially if they have albuminuria. In this study there was evidence of modest reductions in the prevalence of hypertension, better control of hypertension in key groups, and greater use of RAS inhibitors which have anti-proteinuric as well as BP lowering effects, though the period changes in eGFR remained after correction for changes in hypertension prevalence. There is evidence from some studies using HSE, primary care databases and QOF data,³⁰⁻³² though not all,³³ of improved hypertension control in the last decade. However there are ethnic disparities with poorer control of BP in Black and South Asians who have higher risk of progression to need RRT.³⁴ Population salt consumption also fell during the last decade which is likely to have influenced population BP.^{35,36} CKD prevalence could fall too if those identified with moderate CKD were treated more aggressively, especially those with hypertension and or albuminuria, leading to increased eGFR in some people to above 60ml/min/1.73m². The limited HSE data suggest better BP control and greater use of RAS inhibitors in those with eGFR <60ml/min/1.73m². Karunaratne et al examined BP control in those with and without CKD in a primary care population in Kent and showed that BP control had improved in CKD patients over time pre- and post the introduction of QOF and that it was greater than in non-CKD hypertensive patients. They also showed increased use of RAS inhibitors and other anti-hypertensive agents in CKD patients.³⁷

There was evidence of increased lipid lowering agent use (indicative of increased statin use) and a small fall in population lipid levels. There is some evidence of reno-protective effects of statins in CKD patients; A lower rate of decline in GFR was found in patients with renal

disease who took antilipemic agents.³⁸ In the Heart Protection Study, the use of the hypolipidemic drug simvastatin reduced the rise in slightly elevated creatinine over time in both diabetic and non-diabetic CKD participants.³⁹ In the SHARP trial allocation of the lipid lowering ezetimibe plus simvastatin in participants not already on dialysis at randomisation reduced the outcome of end stage renal disease or a doubling of creatinine with an odds ratio of 0.93, though this was not statistically significant.⁴⁰ In the GREACE trial statin treatment prevented decline in renal function in people with high blood lipids and coronary heart disease; patients not treated with statins showed a 5.2% decrease in creatinine clearance. ⁴¹ However our period changes were not altered by adjusting for statins (lipid lowering drugs) or lipid levels (HDL, total cholesterol).³⁷

There are limited data from other countries with which to compare these findings. Coresh et al analysed the US NHANES surveys of 1988-1994 and 1999-2004, which both collected albuminuria and eGFR data. Both prevalence of albuminuria and MDRD eGFR <60ml/min/1.73m² increased, the latter from 5.6% to 8.1%.⁸ The albuminuria increase was explained by changes in levels of obesity, diabetes and hypertension, whereas such adjustment only partly explained the fall in eGFR. Changes in population serum creatinine explained most of the remainder of the eGFR changes; this was analysed by comparing the mean serum creatinine in young people aged 20-39 without diabetes or hypertension and this had increased across the surveys.⁹ The authors suggested that this rise in serum creatinine could be due to residual laboratory assay differences or to changes in dietary protein or muscle mass. Grams et al showed that prevalence of eGFR<60ml/min/1.73m² had also increased using the same survey data when eGFR was estimated using Cystatin C, a marker of kidney function that is independent of muscle mass, and this was not explained by changes in demography, hypertension, diabetes or obesity, suggesting a true increase in low eGFR.⁴¹

We can compare the estimated national CKD prevalence for HSE with QOF returns which record diagnosed CKD in primary care.⁴² Prevalence has been increasing with improvements in detection and recording and in 2010 was 4.2%. The figures are not directly comparable as comparing a single screened value versus routine testing with presumed allowance for chronicity, but this may suggest some under-diagnosis of CKD.

If this change in prevalence in England is true, then based on the HSE 2003 age-sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 2.62 million based on the MDRD equation, falling by 0.03 million for 2009/10. Equivalent figures for CKDEPI eGFR <60ml/min/1.73m² are 2.23 million and 0.02 million increase respectively. The impact of such changes would be twofold: a consistent pool of patients at risk of progressing to need RRT; and a contribution to consistent cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

Conclusions

The prevalence of a low eGFR appears to have decreased in England from 2003 to 2009/10, despite increases in obesity and diabetes. It is unclear why this has occurred and it is difficult to infer directly that this is due to current policies to improve prevention of CKD and the identification and management of people with CKD. There is a need for repeated national prevalence estimates to further assess CKD patterns over time, including measures of albuminuria and of Cystatin C, both of which were available in HSE 2009 and 2010.

2
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
22
32
33
34
35
36
30
37
38
39
40
40
41
42
43
44
1-
40
46
47
48
10
49
50
51
52
52
55
54
55
56
57
57
58
59
60

Wha	t is already known on this topic
•	eGFR and albuminuria are strong independent risk factors for progression to end- stage renal disease (ESRD), which may require costly renal replacement therapy (RRT)
•	 Prevalence of low eGFR has increased over time in countries such as the US, ever after adjustment for adverse trends in CKD risk factors
•	Little is known about CKD prevalence trends in England
Wha	t this study adds
•	Prevalence of a low eGFR derived from serum creatinine and indicative of CKD in England has decreased from 2003 to 2009/10, despite increasing prevalence of

- diabetes and obesity
 This pattern of prevalence of low eGFR was maintained even after adjustment for potential mediating and confounding factors
- A future need for repeated national prevalence estimates, that includes measures of albuminuria and Cystatin C, is required to further assess CKD patterns over time.

Contributors: GA was involved in the analysis and interpretation of the data. PR drafted the paper. GA, PR, SF and GM made substantial contributions to the study conception and design. JM co-ordinated the Health Surveys for England. DO provided background information on CKD policy. JD conducted the laboratory analyses. All authors critically reviewed the paper and were involved in the drafting and approval of the manuscript. GA is the guarantor.

Acknowledgements: Scott Harris contributed to the production of the regression equation that was applied to the 2003 serum creatinine samples as a correction factor.

Funding: Kidney function testing in the Health Surveys for England was funded by NHS Kidney Care. GA is funded by a University of Southampton PhD scholarship.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Approval was obtained from the London Multi-Centre Research Ethnics Committee for the 2003 survey (HSE 2003 ref MREC/02/2/72) and approval was obtained from the Oxford B Research Ethics Committee for both 2009 and 2010 surveys (HSE 2009 ref 08/H0605/103, HSE 2010 ref 09/H0605/73).

Transparency: The lead author (the manuscript's guarantor) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing: The HSE 2003, 2009 and 2010 are archived with the UK Data Service. Technical Appendix, statistical code and dataset available from corresponding author Grant Aitken at G.Aitken@soton.ac.uk. Creatinine measurements for the HSE 2003 undertaken for this study will be archived in due course.

Figure Legends

Figure 1. Distribution of serum creatinine (μ mol/L) for 2003 and 2009/10 survey data. Serum creatinine categories are grouped in bands of 5 μ mol/L from 40 μ mol/L to 130 μ mol/L. Serum creatinine values <40 μ mol/L and those >130 μ mol/L are grouped together.

Figure 2. Comparison of low eGFR (<60ml/min/1.73m²) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender

References

1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 2011;80:1258-70. doi: 10.1038/ki.2011.368

2. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the evaluation and management of Chronic Kidney Disease. *Kidney Int Suppl* 2013;3:1-150. doi: 10.1038/kisup.2012.77

Available at:

http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf Last accessed March 16th 2014.

3. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet* 2010;375(9731):2073-81.

4. Castledine C, Casula A, Fogarty D. UK Renal Registry 14th Annual Report: Chapter 2 UK RRT Prevalence in 2010: national and centre-specific analyses. UK Renal Registry 2011. Available at:

http://www.renalreg.com/Report-Area/Report%202011/Chap02_Renal11_web.pdf Last accessed March 16th 2014.

5. Kerr M, Bray B, Medcalf J, et al. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant* 2012;27 Suppl 3:iii73-iii80. doi: 10.1093/ndt/gfs269.

6. De Lusignan S, Chan T, Stevens P, et al. Identifying patients with chronic kidney disease from general practice computer records. *Fam Pract* 2005;22:234–241.

7. Mindell J, Biddulph JP, Hirani V, et al. Cohort profile: the health survey for England. *Int J Epidemiol* 2012;41:1585-93. doi: 10.1093/ije/dyr199.

8. Roth M, Roderick P, Mindell J. Kidney disease and renal function. Chapter 8 in Craig R, Mindell J (eds). Health Survey for England 2010. NHS Information Centre: Leeds, 2011.

9.Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. *JAMA* 2007;298:2038-47.

10. Fox CS, Larson MG, Leip EP, et al. Predictors of new onset kidney disease in a community-based population. *JAMA* 2004;291:7844-50.

11. Ejerblad E, Fored MC, Linblad P et al. Obesity and risk for chronic renal failure. *J Am Soc Nephrol* 2006;17:1695-702.

12. The National Service Framework for Renal Services. Part Two: Chronic Kidney Disease, Acute Renal Failure and End of Life Care. Department of Health; London, 2005 Available at:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/199002/Nation al_Service_Framework_for_Renal_Services_Part_Two
Chronic Kidney Disease Acute Renal Failure and End of Life Care.pdf Last accessed March 16th 2014.
13. Quality and Outcomes Framework guidance for GMS contract 2011/12. Delivering investment in general practice. NHS Employers and British Medical Association; London, 2011
http://www.nhsemployers.org/Aboutus/Publications/Documents/QOF_guidance_GMS_contr act_2011_12.pdf Last accessed March 16th 2014.
14. NHS Health Check Programme Best Practice Guidance. Department of Health; London, 2013.
http://www.healthcheck.nhs.uk/commissioners_and_healthcare_professionals/national_guid ance/ Last accessed March 16th 2014.
15. Sproston K, Primatesta P. Health Survey for England 2003. Volume 3: Methodology and documentation. The Stationery Office, London, 2004
http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_cons um_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_4098912.pdf Last accessed March 16th 2014.
16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at:
http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014.
17. Matsushita K, Mahmoodi BK, Woodward M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51.
18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12.
19. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54.
20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9.
21. Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes hypertension and hypertension diabetes comorbidity in England. <i>Public Health Nutr</i> 2008;11:521-7.

22. O'Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. *BMJ Open* 2011;1(2):e000308.

23. Carter JL, Stevens PE, Irving JE, et al. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effects of age. *QJM* 2011;104:839-47.

24. de Lusignan S, Gallagher H, Chan T, et al. The QICKD study protocol: a cluster randomised trial to compare quality improvement interventions to lower systolic BP in chronic kidney disease (CKD) in primary care. *Implementation Science* 2009;4:39

25. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year population based study of the effects of gender and age. *Kidney Int* 2006;69:375–82.

26. Roderick PJ, Raleigh VS, Hallam L, et al. The need and demand for Renal Replacement Therapy in ethnic minorities in England. *J Epidemiol Community Health* 1996;50:334-9.

27. Dreyer G, Hull S, Aitken Z, et al. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJ Med 2009;102:261-69.

28. Bates B, Lennox A, Bates C, et al. National Diet and Nutrition Survey: Headline results from Years 1 and 2 (combined) of the Rolling Programme (2008/09 – 2009/10) Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/db_1

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/dh_12 8550.pdf

Last accessed June 22nd 2014.

 29. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for Chronic Conditions. Royal College of Physicians, London, 2008.

30. Falaschetti E, Chaudhury M, Mindell J, et al. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. *Hypertension* 2009;53:480-6.

31. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. *BMJ* 2008;337:a2030 doi:10.1136/bmj.a2030

32. Carey IM, Nightingale CM, DeWilde S, et al. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. *J Hum Hypertens* 2009;23:764-7.

33. Serumaga B, Ross-Degnan D, Avery AJ, et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. *BMJ* 2011;342;d108 doi:10.1136/bmj.a2030.

34. Millett C, Gray J, Bottle A, et al. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. *Ann Fam Med* 2008;76:490-6.

35. Millett C, Laverty AA, Stylianou N, et al. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. *Plos One* 2012:7;e29836 doi: 10.1371/journal.pone.0029836.

BMJ Open

36.Sadler K, Nicholson S, Steer T, et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012.

Available at:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu m-Survey-England-2011 Text to-DH FINAL1.pdf Last accessed March 16th 2014.

37. Karunaratne K, Stevens P, Irving J, et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. *Nephrol Dial Transplant* 2013;28:2107-16. doi 10.1093/ndt/gft093

38. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. *Kidney Int* 2001;59:1:260-9.

39. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. *Lancet.* 2002;360:9326:7-22.

40. Lewis D. Effect of LDL-Cholestrol lowering on renal disease progression among patients with chronic kidney disease: Results of the Study of Heart And Renal Protection (SHARP). *Clinical Kidney Journal.* 2011;4:Issue suppl 2.

41. Mikhailidis DP, Wierzbicki AS. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. *Curr Med Res Opin.* 2002;18:4:215-9.

42. Grams ME, Juraschek SP, Selvin E, et al. Trends in the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin c based estimates. *Am J Kidney Dis* 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013

Health & Social Care Information Centre: Quality and Outcomes Framework – 2009-10 England level.

Available at:

http://www.hscic.gov.uk/catalogue/PUB04431 Last accessed June 22nd 2014.

Table 1. Comparison of prevalence of categorical measures in 2003 and 2009/10¹

Variable	Category	2003		2009-10		Chi- squared test	
		Number	%	Number	%	p-value	
All	Aged 16+	7850 ²	100.0	6046 ²	100.0	-	
	16-34	2425	31.0	1847	30.6		
	34-54	2790	35.7	2129	35.3		
A	55-64	1126	14.4	886	14.7	n = 0.44	
Age	65-74	813	10.4	639	10.6	p = 0.44	
	75+	662	8.5	539	8.9		
	Missing	0	-	0	-		
	White	7226	92.5	5244	90.7		
	South Asian	332	4.3	243	4.2		
Ethnicity	Black	144	1.8	154	2.7	p < 0.001	
-	Other	108	1.4	139	2.4	-	
	Missing	0	-	0	-		
	Male	3795	48.6	2961	49.0		
Sex	Female	4020	51.4	3080	51.0	p = 0.80	
	Missing	0	-	0	-		
_	Degree	1375	17.6	1295	22.5		
	Below degree	4551	58.3	3296	57.0		
Qualification	None	1874	24.0	1191	20.6	p < 0.001	
	Missing	11	-	3	-		
	Highest	2514	33.7	1894	34.8		
	Middle	1674	22.4	1203	22.1	p = 0.43	
NSSEC	Lowest	3273	43.9	2343	43.1		
	Missing	350	-	345	_		
	Yes	6460	82.7	4728	81.7		
Car Ownership	No	1348	17.3	1056	18.3	p = 0.17	
	Missing	2	-	1	-		
	Own	5878	75.4	3955	68.5		
Tenure	Rent	1914	24.6	1817	31.5	p < 0.001	
	Missing	11	_	13	-		
	Current	1960	25.2	1210	21.0		
	Ex	1877	24.1	1429	24.8		
Smoking	Never	3951	50.7	3126	54.2	p < 0.001	
	Missing	22	-	20	-		
	Normal						
	/underweight	2867	39.2	1956	36.8		
	(<25kg/m ²)						
Bodv mass	Overweight	0000	00.0	00.47	00.5		
index	(25-30 kg/m ²)	2868	39.2	2047	38.5	p < 0.001	
	Obese	4507	04.7	4044	047		
	(>30kg/m ²)	1587	21.7	1314	24.7		
	Missing	489	-	469	-	1	
	Low (<94cm						
	male, <80cm	3060	39.8	2120	37.1		
Maint	female)						
vvalst	High (94-102cm					p < 0.001	
Gircumference	male, 80-88cm	1929	25.1	1347	23.6		
	female)						
	Very High	2703	35.1	2242	39.3		
BMJ Open

1	
2	
3	
4	
5	
0	
0	
1	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	י 8
1	0 0
ו ר	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
2	ñ
2	1
ວ ວ	ר ר
ა ი	2
ა ი	ۍ ا
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
1	6
4	70
4	1
4	8 C
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5	6
5	7
5	, פ
5	0
ິ	3

60

	(>102cm					
	(~102011 male >88cm					
	female)					
	Missing	118	_	77	_	
Doctor	Yes	305	3.9	322	5.3	
diagnosed	No	7504	96.1	5715	94.7	p < 0.001
Diabetes	Missing	6	-	2	-	
Survey	Yes (HBA1c ≥6.5%)	296	3.8	316	5.5	
diagnosed Diabetes	No (HBA1c <6.5%)	7401	96.2	5417	94.5	p < 0.001
	Missing	113	-	52	-	
	Yes	406	5.2	446	7.4	
Total Diabetes	No	7405	94.8	5585	92.6	p < 0.001
	Missing	0	-	0	-	
Doctor	Yes	2118	27.2	1501	25.0	
diagnosed	No	5662	72.8	4527	75.0	p = 0.003
Hypertension	Missing	36	-	10	-	
Survey	Yes	2065	31.5	1545	29.2	
diagnosed	No	4499	68.5	3744	70.8	p = 0.02
Hypertension	Missing	1246	-	496	-	
Total	Yes	2866	36.7	2062	34.2	
Hypertension	No	4933	63.3	3968	65.8	p = 0.004
Typerteneiten	Missing	12	-	0	-	
	<45 (ml/min/1.73m ²)	142	1.8	81	1.4	p = 0.07
eGFR CKDEPI	<60 (ml/min/1.73m ²)	444	5.7	303	5.2	p = 0.26
	Missing	0		0	-	
	<45 (ml/min/1.73m ²)	146	1.9	80	1.4	p = 0.03
eGFR MDRD	<60 (ml/min/1.73m ²)	521	6.7	349	6.0	p = 0.13
[Missing	0	-	0	-	

¹ Weighted for non-response (unless stated otherwise) ² Not weighted

Variable	Category	2003	2009-10	Mann Whitney U test
		Median value (IQR)	Median value (IQR)	p value
ວຍrum Creatinine (µmol/L)	Median value	71.7 (62.3 to 82.1)	72.0 (62.0 to 83.0)	p=0.66
$CED (m)/min/(1.72m^2)$	MDRD	90.5 (77.2 to 105.4)	90.3 (77.1 to 104.7)	p=0.62
GFR (m/mm/1.73m)	CKDEPI	99.3 (84.1 to 113.9)	98.6 (84.0. to 112.5)	p=0.11
	All	26.2 (23.3 to 29.4)	26.6 (23.5 to 30.0)	p<0.001
3MI (kg/m²)	Male	26.6 (24.0 to 29.4)	27.0 (24.2 to 29.9)	p=0.001
	Female	25.7 (22.7 to 29.5)	26.1 (23.1 to 30.0)	p<0.001
	All	90.6 (81.1 to 100.0)	92.0 (81.6 to 101.7)	p<0.001
Naist circumference (cm)	Male	95.8 (88.0 to 104.0)	96.7 (88.2 to 105.0)	p=0.05
•	Female	84.6 (76.4 to 94.0)	86.3 (77.3 to 96.7)	p<0.001
	All	125.5 (115.5 to 138.0)	124.5 (114.0 to 136.0)	p<0.001
	Dr-diagnosed HT	135.5 (124.0 to 149.5)	134.0 (122.2 to 145.5)	p<0.001
ያystolic BP (mmHg)	Dr-diagnosed DM	134.5 (122.5 to 148.0)	131.8 (120.0 to 143.5)	p<0.001
	eGFR<60 (CKDEPI)	140.2 (126.0 to 156.0)	131.8 (119.0 to 143.5)	p<0.001
	eGFR<60 (MDRD)	137.5 (124.0 to 153.7)	129.2 (118.0 to 142.5)	p<0.001
	All	73.0 (65.5 to 80.5)	72.5 (65.5 to 80.)	p<0.001
	Dr-diagnosed HT	77.5 (70.0 to 85.5)	76.0 (68.0 to 83.5)	p<0.001
Diastolic BP (mmHg)	Dr-diagnosed DM	72.0 (64.5 to 80.5)	71.50 (64.5 to 78.5)	p<0.001
	eGFR<60 (CKDEPI)	71.5 (62.9 to 80.5)	68.5 (60.5 to 76.0)	p<0.001
	eGFR<60 (MDRD)	72.5 (64.0 to 81.5)	69.0 (61.5 to 76.8)	p<0.001
	All	5.20 (5.00 to 5.50)	5.30 (5.10 to 5.70)	p<0.001
Siycated nd (%)	Dr-diagnosed DM	6.90 (5.90 to 8.20)	6.90 (5.90 to 8.30)	p=0.85
	All	1.50 (1.20 to 1.70)	1.40 (1.20 to 1.70)	p<0.001
IDL Cholesterol (mmol/L)	Male	1.30 (1.20 to 1.60)	1.30 (1.10 to 1.50)	p<0.001
• •	Female	1.60 (1.40 to 1.90)	1.60 (1.30 to 1.90)	p=0.046
	All	5.40 (4.70 to 6.20)	5.20 (4.40 to 5.90)	p<0.001
ɾ̃otal Cholesterol (mmol/L)	Male	5.40 (4.70 to 6.20)	5.10 (4.30 to 5.90)	p<0.001
• •	Female	5.40 (4.70 to 6.20)	5.20 (4.50 to 6.00)	p=0.001

			MDRD				
Variable		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
HSE Voar	2003	6.7	1	1	1	1	
H3L Teal	2009-10	6.0	0.84 (0.72 – 0.98)*	0.84 (0.73 – 0.99)*	0.75 (0.61 – 0.92)**	0.75 (0.61 – 0.92)*	
	16-34	0.2	1	1	1	1	
	35-54	2.1	10.8 (5.3 – 22.0)**	11.1 (5.5 –22.8)**	10.8 (5.0 – 23.4)**	10.7 (4.9 – 23.2)**	
Age	55-64	6.8	37 (18 – 75)**	36 (18 – 73)**	33 (15 – 72)**	32 (14 – 69)**	
	65-74	14.5	87 (43 – 175)**	82 (40 – 167)**	65 (30 – 143)**	62 (28 – 135)**	
	75+	35.6	276 (138 – 555)**	247 (122 – 501)**	216 (99 – 470)**	202 (93 – 440)**	
Cov	Male	5.0	1	1	1	1	
Sex	Female	7.7	1.42 (1.22 – 1.65)**	1.37 (1.17 – 1.60)**	1.69 (1.36 - 2.10)**	1.66 (1.34 - 2.06)*	
	White	6.8	-	1	1	1	
Etheria	South Asian	1.7	-	0.83 (0.43 – 1.59)	0.73 (0.33 – 1.60)	0.71 (0.32 - 1.56)	
Ethnic	Black	1.7	-	0.38 (0.15 – 1.00)	0.33 (0.09 – 1.19)	0.32 (0.09 - 1.16)	
	Other	1.6		0.81 (0.29 - 2.30)	0.64 (0.17 – 2.46)	0.64 (0.17 – 2.44)	
Tenune	Own	6.3		1	1	1	
Tenure	Rent	6.6	-	1.34 (1.11 – 1.60)**	1.23 (0.97 – 1.57)	1.23 (0.96 - 1.56)	
	Degree Level	2.4	-	1	1	1	
Education	Below degree	4.4	-	1.31 (0.99 – 1.74)	1.15 (0.83 – 1.60)	1.20 (0.84 - 1.70)	
	None	14.9	-	1.52 (1.13 - 2.04)**	1.20 (0.84 – 1.70)	1.23 (0.96 – 1.57)	
	Never	6.1	-	-	1	1	
Smoking	Ex-Smoker	10.1	-	-	1.17 (0.91 – 1.49)	1.15 (0.85 – 1.54)	
· ·	Current Smoker	3.2	-	-	1.02 (0.75 – 1.38)	1.04 (0.80 - 1.40)	
	Normal (<25)	3.4	-	-	1	1	
BMI (kg/m²)	Overweight (25-30)	6.6	-	-	1.16 (0.91 – 1.49)	1.15 (0.90 – 1.47)	
	Obese (>30)	8.4	-	-	1.31 (0.99 – 1.71)	1.26 (0.96 – 1.65)	
HDL Cholesterol	Continuous	-	-	-	0.51 (0.38 - 0.67)**	0.51 (0.38 – 0.68)*	
Total Cholesterol	Continuous	-	-	-	0.91 (0.84 - 1.00)	0.92 (0.84 - 1.00)	
Doctor diagnosed	No	5.9	-	-	1	1	
Diabetes	Yes	17.3	-	-	1.42 (0.92 – 2.22)	1.36 (0.87 – 2.11)	
Doctor diagnosed	No	4.0	-	-	-	<u> </u>	
Hypertension	Yes	13.3	-	-	-	1.27 (1.03 - 1.55)*	

Table 3. Prevalence and associations of low eGFR (<60ml/min/1.73m²) by MDRD equation with adjustment for socio-demographic and clinical factors

¹Prevalence for combined 2003 and 2009-10 HSE

²Adjusted for age and sex

BMJ Open

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension

* p<0.05 **p<0.01 For Deer Teview only

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Mand	- 1- 1 -	CKDEPI					
Varia	able	Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵	
	2003	5.7	1	1	1	1	
ISE fear	2009-10	5.2	0.85 (0.72 – 1.00)	0.86 (0.72 – 1.01)	0.73 (0.57 - 0.93)*	0.73 (0.57 - 0.93)*	
	16-34	0.1	1	1	1	1	
	35-54	1.0	15.1 (4.5 – 51.4)**	16.1 (4.7 – 55.0)**	13.8 (4.0 – 47.2)**	13.5 (3.9 - 46.5)**	
Age	55-64	4.2	67 (20 – 225)**	67 (20 – 227)**	55 (16 – 190)**	52 (15 – 177)**	
-	65-74	12.5	219 (66 – 725)**	219 (65 – 731)**	162 (47 – 553)**	151 (44 – 517)**	
	75+	36.8	890 (269 – 2938)**	844 (253 – 2808)**	754 (222 – 2559)**	693 (203 - 2355)**	
0	Male	4.6	1	1	1	1	
Sex	Female	6.3	1.15 (0.97 – 1.36)	1.11 (0.93 – 1.31)	1.31 (1.01 – 1.68)*	1.28 (1.00 - 1.65)*	
	White	5.8	-	1	1	1	
F thuis	South Asian	1.4	-	0.93 (0.43 - 2.00)	0.89 (0.35 - 2.42)	0.85 (0.34 - 2.16)	
Ethnic	Black	2.0	-	0.56 (0.23 – 1.39)	0.55 (0.16 – 1.82)	0.53 (0.16 – 1.77)	
	Other	1.6		1.19 (0.40 – 3.56)	1.13 (0.29 – 4.41)	1.13 (0.29 – 4.41)	
Tamura	Own	5.3		1	1	1	
Tenure	Rent	6.0	-	1.44 (1.19 – 1.75)**	1.29 (0.98 – 1.69)	1.28 (0.97 - 1.69)	
	Degree Level	1.8	-	1	1	1	
Education	Below degree	3.6	-	1.36 (0.97 – 1.90)	1.05 (0.69 – 1.58)	1.04 (0.69 - 1.58)	
	None	13.6	-	1.51 (1.08 - 2.13)*	1.12 (0.76 – 1.66)	1.11 (0.75 – 1.65)	
	Never	5.2	-		1	1	
Smoking	Ex-Smoker	9.0	-	-	1.09 (0.77 – 1.55)	1.07 (0.75 – 1.52)	
0	Current Smoker	2.6	-		0.80 (0.70 – 1.41)	0.79 (0.54 – 1.14)	
	Normal (<25)	2.7	-	-	1	1	
BMI (kg/m²)	Overweight (25-30)	5.5	-	-	1.14 (0.86 – 1.51)	1.12 (0.85 - 1.49)	
	Obese (>30)	7.2	-	-	1.31 (0.96 – 1.80)	1.25 (0.91 – 1.72)	
HDL Cholesterol	Continuous	-	-	-	0.40 (0.29 - 0.56)**	0.40 (0.29 - 0.57)*	
Total Cholesterol	Continuous	-	-	-	0.93 (0.84 - 1.04)	0.94 (0.86 - 1.04)	
Doctor diagnosed	No	5.0	-	-	1	1	
Diabetes	Yes	16.3	-	-	1.55 (0.96 – 2.48)	1.46 (0.91 – 2.35)	
Doctor diagnosed	No	3.1	-	-	-	1	
Hypertension	Yes	12.3	_	_	-	1.33 (1.05 - 1.67)*	

Table 4. Prevalence and associations of low eGFR (<60) by CKDEPI equation with adjustment for socio-demographic and clinical

"Prevalence for combined 2003 and 2009-10 HSE

²Adjusted for age and sex

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension i peer teview only

* p<0.05 **p<0.01

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Change in prevalence of Chronic Kidney Disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010

Grant Aitken, Paul Roderick, Simon Fraser, Jennifer Mindell, Donal O'Donoghue, Julie Day, Graham Moon

Department of Geography, Faculty of Social and Human Sciences, University of Southampton, Southampton, UK, SO171BJ Grant Aitken PhD researcher, Graham Moon Professor of spatial analysis

Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK, SO16 6YD Paul Roderick Professor of Public Health Simon Fraser Speciality Registrar in Public Health

Research Department of Epidemiology and Public Health, UCL (University College London), London, UK, WC1E 6BT Jennifer Mindell Clinical Senior Lecturer

Renal Unit, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD Donal O'Donoghue Professor of Nephrology

Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne UK Dr Julie Day Consultant Clinical Scientist

Correspondence to: P Roderick pjr@soton.ac.uk

Abstract

Objectives

To determine whether the prevalence of CKD in England has changed over time.

Design

Cross-sectional analysis of nationally representative Health Survey for England (HSE) random samples.

Setting

England 2003 and 2009/2010.

Survey participants

13,896 Adults aged 16+ participating in HSE, adjusted for sampling and non-response, 2009/10 surveys combined.

Main outcome measure

Change in prevalence of eGFR <60ml/min/1.73m² (as proxy for stage 3-5 chronic kidney disease [CKD]), from 2003 to 2009/10 based on a single serum creatinine measure using IDMS traceable enzymatic assay in a single laboratory; eGFR derived using MDRD and CKDEPI eGFR formulae.

Analysis

Multivariate logistic regression modelling to adjust time changes for socio-demographic and clinical factors (body mass index, hypertension, diabetes, lipids). <u>A correction factor was applied to the 2003 HSE serum creatinine to account for a storage effect.</u>

Results

National prevalence of low eGFR (<60) decreased from 9.6% to 6.0% using MDRD (P<0.001) and from 7.6% in 2003 to 5.2% in 2009/10 using CKDEPI (p<0.001). National pPrevalence of low eGFR (<60) decreased within each age and gender group for both formulae except males aged 65-74. Prevalence of both obesity and diabetes increased in this period, there was a decrease in hypertension. Adjustment for demographic and clinical factors led to a significant decrease in CKD between the surveyed periods. The fully adjusted odds ratio for eGFR<60ml/min/1.73m² was 0.49 (0.42 0.57)-0.75 (0.61-0.92) comparing 2009/10 with 2003 using the MDRD equation, and was similar using the CKDEPI equation 0.73 (0.57-0.93).

Conclusion

The prevalence of a low eGFR indicative of CKD in England has decreased over this seven year period, despite rising prevalence of obesity and diabetes, two key causes of CKD. Hypertension prevalence declined and blood pressure control improved but this did not appear to explain the fall. Periodic assessment of eGFR and albuminuria in future HSEs is needed to evaluate trends in CKD.

Article Summary

Strengths & Limitations of this study

- This study uses of nationally representative samples, with later HSEs pooled over two years to increase numbers and precision of estimates. The surveys used standardised protocols for measurement by trained interviewers and nurses, with all samples were tested in the same laboratory with standardised assays.
- Another strength of the study is that the analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. <u>A correction</u> factor was applied to 2003 HSE data to adjust for the shift in measured creatinine <u>due to sample storage.</u>
- The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. The study was also limited by a single sample was tested for serum creatinine in each survey,

therefore the persistence of reduced eGFR levels to confirm chronicity cannot be	е
shown.	

- Another weakness is that The prevalence of stage 4/5 CKD is likely to be underestimated as the HSE may not fully account for some in whom more severe CKD (stage 4/5) will be more common.
- <text> The absence of albuminuria data in the 2003 HSE is another major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition). (e.g. use of reninangiotensin system (RAS) inhibition).

Total word count n=3225 3,844

Introduction

Chronic kidney disease (CKD) is recognised as a global public health problem.¹ CKD is defined and staged using the estimated glomerular filtration rate (eGFR) and markers of kidney damage, mainly albuminuria.² Both eGFR and albuminuria are strong independent risk factors for all-cause and cardiovascular disease (CVD) mortality, and progression to end-stage renal disease (ESRD), which may require renal replacement therapy (RRT) by dialysis or transplantation.³ In England in 2010 the prevalence of RRT was 832 per million population, a 3% increase from 2009; NHS costs of RRT were estimated at £780 million for 2009/10, and the total cost at £1.45 billion, a nearly threefold increase on estimated costs for 2002.^{4,5}

The population prevalence of CKD in England was reported for the first time using data on eGFR and albuminuria in the nationally-representative Health Surveys for England (HSE) 2009 and 2010, though there had previously been estimates based on routine testing using primary care data.^{6.7} In the combined 2009/2010 HSE, 6% of men and 7% of women had eGFR <60ml/min/1.73m² (equivalent to CKD stage 3-5 if chronic) with a strong age gradient.⁸ The prevalence of low eGFR increased in the US, based on National Health and Nutrition Examination (NHANES) surveys between 1988-2004, even after adjusting for adverse trends in risk factors (obesity, diabetes, hypertension), but little is known about CKD prevalence trends in England.^{9,10,11}

Information on prevalence change is needed to assess the impact of trends in underlying determinants, and of strategies to prevent and manage CKD. Several policy initiatives have been introduced in England that have had an impact on prevention, detection and management of CKD. The National Service Framework for Renal Services 2004/05 led to national reporting of eGFR by clinical biochemistry laboratories from 2006,¹² the General Practice pay for performance Quality Outcomes Framework (QOF) included targets for CKD management from 2006/07,¹³ and the NHS Vascular Checks Programme, introduced in 2009, includes screening for CKD (stage 3-5) in people aged 35-74 with newly identified type 2 diabetes or hypertension.¹⁴ This study therefore aimed to compare the prevalence of CKD in the HSE 2003 with the combined HSE 2009-10 and to relate this to any changes in prevalence of risk factors for CKD, particularly obesity, diabetes and hypertension, over this period.

Methods

Full details of the conduct of the HSE, measurement of non-CKD variables and response rates are shown in the 2003, 2009 and 2010 Health Survey for England reports.^{15,16} Survey participants within private households were selected using a multistage stratified random probability sample. Household response rates were 73% in HSE2003 and 68%/66% in HSE 2009/2010. In co-operating households, 90% and 89%/86% of adults completed an interview questionnaire while 70% and 62%/57% respectively consented to a nurse visit, of whom 74%-76% provided a blood test. The HSE 2003 contained 18,533 individuals and data from HSE 2009 and HSE 2010 were combined to provide a larger sample size of 13,065 individuals. This totalled 31,598 individuals for the combined 2003, 2009 and 2010 HSEs. Eligible participants were individuals aged 16 years and older who had a valid serum creatinine value. This left 7,850 individuals from the 2003 HSE and 6,046 individuals from the combined 2009/10 HSEs, leaving a total of 13,896 individuals for analysis.

Age was grouped into five categories: 16-34, 35-54, 55-64, 65-74 and 75+. There were four separate ethnic groupings: White, South Asian, Black and Other. Socio-economic factors included: i) occupation National Statistics Socio-Economic Classification (NS-SEC, divided into three categories: managerial and professional occupations; intermediate occupations and routine and manual occupations); ii) qualifications grouped as: degree or equivalent; below degree (other qualification) and none (no qualification); iii) household tenure (own vs renting); iv) access to motor vehicle (none vs. any).

Smoking status was defined as current, ex-smoker or never smoked. Hypertension was defined as doctor-diagnosed (pre-existing diagnosis), survey-defined (identified as having high blood pressure (BP, systolic ≥140mmHg and/or diastolic ≥90mmHg and/or taking medication for hypertension) at the survey examination), and 'total' (doctor + survey diagnosed). Survey-defined diabetes was glycated haemoglobin (HBA1c) ≥6.5% at nurse visit. Glycated haemoglobin data are presented for those with and without diagnosed diabetes. Body mass index (BMI) was defined as normal (<25kg/m²), overweight (≥25, <30kg/m²), and obese (≥30kg/m²). Waist circumference was classified as: <94cm, 94–102cm (high), and >102cm (very high) for men, and <80cm, 80–88cm (high) and >88cm (very high) for women. For South Asian men, the waist circumference was classified as: <90cm, 90–102cm (high), and >102cm (very high). High density lipoprotein (HDL) cholesterol and total cholesterol were treated as continuous variables.

To investigate medication use, we examined the use of diuretics, ß-blockers, reninangiotensin system (RAS) inhibitors (angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)), calcium channel blockers, and other antihypertensives in those with doctor diagnosed hypertension, doctor diagnosed diabetes and eGFR <60ml/min/1.73m², and use of lipid lowering agents (the majority of which are statins) in the whole population. In 2003, 47% of respondents answered yes to whether they were taking any prescribed medication, and 50% in 2009/10.

Serum creatinine was assayed using an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay in a single laboratory (Clinical Biochemistry Department at the Royal Victoria Infirmary (RVI), Newcastle-upon-Tyne). Both the Modified Diet in Renal Disease (MDRD) equation (in routine use in the UK) and the newer Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation (which provides better risk prediction and is

recommended for use in international guidelines) were used to define CKD.^{2,17} eGFR values were derived using the standard equations.^{18,19}

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri-level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1), 175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L.

Details of laboratory analysis, internal quality control, and external quality assurance are provided in the HSE 2009/10 documentation, with these methods replicated in the 2003 HSE.⁸ The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2012. Such freezing does not affect creatinine levels.²⁰-The HSE 2003 samples had been stored, frozen at -40°C, then thawed for measurement in 2010. Although such freezing is not thought to affect creatinine levels²⁰ we undertook a re-analysis in 2014 of a random sample of 500 serum creatinine samples taken from the 2009 HSE and subsequently frozen and stored under the same conditions as the HSE 2003 samples, stratified by quintile, to determine if there was a shift in measured creatinine on storage. We found mean serum creatinine increased on storage and was best predicted by a regression equation where the original 2009 serum creatinine value. We assumed the same effect applied to the 2003 serum creatinine data which were analysed in 2009-10 and we applied the same adjustment. This decreased the 2003 serum creatinine values_eGFR was classified as below 60ml/min/1.73m² or equal to or greater than 60ml/min/1.73m².

Samples were assayed for serum creatinine over a 19 month time period with two different batches of tri level Internal Quality Control (IQC) material. HSE 2009 and 2010 samples were analysed with Batch 1 or Batch 2 IQC, HSE 2003 samples were analysed with Batch 2 IQC. The creatinine assay was stable over time with IQC results very close to expected target values. Batch 1 IQC gave mean (SD) creatinine concentrations of 56(0.6),167(1.3) and 586(4.9) umol/L for levels 1,2 and 3 respectively compared with target means of 56, 167 and 588 umol/L. Batch 2 material gave mean(SD) creatinine concentrations of 51(1.1),175(2.2) and 597(5.6)umol/L for levels 1,2 and 3 respectively compared with target means of 51, 175 and 599 umol/L. We compared the change in mean serum creatinine in people aged 20-39 without any diabetes or any hypertension as per Coresh at al.⁹

Statistics

Patient characteristics were compared between the 2003 and 2009/10 HSEs using chisquared tests for categorical variables and Mann Whitney U tests for non-normally distributed continuous variables. eGFR<60ml/min/1.73m² prevalence in 2003 and 2009/10 was compared across age and sex groupings. BP levels were compared in all, in those with diagnosed hypertension and in those with eGFR<60ml/min/1.73m²; glycated haemoglobin (HBA1c) was compared in all participants and in those with doctor-diagnosed diabetes. Binary logistic regression models were used to examine the relationships between eGFR<60ml/min/1.73m² and age, sex and socioeconomic and clinical factors to determine if there were significant differences between the two survey time periods. The dependent variable were CKDEPI and MDRD equation eGFR <60ml/min/1.73m² (indicative of stage 3-5 CKD). Four models were produced for each: 1) Age-sex adjusted; 2) model 1 plus socioeconomic status and ethnicity; 3) model 2 plus behavioural, lipid levels (HDL and total

cholesterol) and clinical variables except hypertension, 4) Model 3 plus doctor-diagnosed hypertension. Interactions between period and both diabetes and hypertension were tested.

Sensitivity analyses were performed by replacing doctor-diagnosed diabetes with HBA1c and replacing doctor-diagnosed hypertension with diastolic and systolic blood pressure and adjusting for lipid lowering agents in the full model. Non-response and blood sample weights were used in all analyses to address issues with missing data individuals who did not have a blood sample taken and sent to laboratory for analysis to determine serum creatinine value. Full details on how the weights were obtained are provided in the final volume of the HSE report each year. The age, education and smoking status of those interviewed, having a nurse visit and having a blood test is similar once non-response is taken into account (data rforn. not shown). All analyses were performed using IBM SPSS Statistics version 20.

Results

The final sample for the study comprised of 13,896 individuals aged 16+ who had a valid serum creatinine value. Comparing the characteristics of these participants between the 2003 and 2009/10 surveys, the age structure, gender, NS-SEC and car ownership were similar while educational level improved and there was an increase in rented tenure (Table 1). Prevalence of diabetes however classified increased, as did obesity. In contrast, smoking and hypertension prevalence decreased.

There were significant increases in BMI, waist circumference and HBA1c in the population though no change in HBA1c in those with diagnosed diabetes (Table 2). Median BP levels (both systolic and diastolic) fell in all groups including those with diagnosed hypertension, doctor-diagnosed diabetes and with eGFR<60ml/min/1.73m². Median total and HDL cholesterol fell in both men and women.

The distribution of serum creatinine was shifted to the left in 2009/10; 1.7% values were greater than 130µmol/L in 2003, but only 0.1% in 2009/10 is similar for 2003 and 2009/10 (Figure 1). Mean serum creatinine decreased, leading to an increase in mean eGFR using both MDRD and CKDEPI formulae Median serum creatinine increased slightly, leading to a very small non-significant decrease in median eGFR using both MDRD and CKDEPI formulae (Table 2). Mean serum creatinine for those aged 20-39 without doctor diagnosed hypertension or diabetes fell significantly from 74.8µmol/L (SD 14.8) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p<0.001) increased slightly from 70.6µmol/L (SD 13.6) in 2003 to 71.4µmol/L (SD 14.3) in 2009/10 (p=0.09).-

The proportion of individuals with MDRD eGFR<60ml/min/1.73m² decreased from $\frac{9.66.7}{100}$ % in 2003 to 6.0% in 2009/10 (p<0.001p=0.13) and with eGFR <45ml/min/1.73m² from $\frac{2.41.9}{100}$ % to 1.4% (p<0.001=0.03). Corresponding figures for CKDEPI were $\frac{7.65.7}{100}$ % and 5.2% (p<0.001=0.26) and $\frac{2.21.8}{100}$ % and 1.4% (p=0.0017). Prevalence of low eGFR fell in all age and gender groups and with either CKDEPI or MDRD equations, except for males aged 65-74 where there was a slight increase (Figure 2).

There was an increase in the mean number of anti-hypertensive agents taken in individuals with: doctor-diagnosed hypertension (1.19 in 2003 to 2.01 in 2009-10), doctor-diagnosed hypertension and doctor-diagnosed diabetes (1.47 to 2.57); MDRD eGFR <60ml/min/1.73m² (1.2630 to 1.77); and CKDEPI eGFR < 60ml/min/1.73m² (1.2935 to 1.93). The proportion taking RAS inhibitors in individuals with doctor-diagnosed diabetes, doctor-diagnosed hypertension, MDRD eGFR <60ml/min/1.73m² or CKDEPI eGFR < 60ml/min/1.73m² also increased, as did overall lipid lowering agent use (Appendix 1).

The age-sex adjusted odds ratio (OR) of having low eGFR (MDRD eGFR<60ml/min/1.73m²) in 2009/10 compared with 2003 was 0.5284 (95% confidence interval (CI) 0.4572-0.9860) and fully adjusted was 0.75 (0.61-0.92) (Table 3). This pattern was maintained on further adjustment for potential confounding factors (Table 3) and when using CKDEPI eGFR (Table 4). The corresponding ORs for CKDEPI were 0.85 (0.72-1.00) and 0.73 (0.57-0.93) (Table 4).

Sensitivity analyses replacing doctor-diagnosed diabetes with HBA1c and doctor-diagnosed hypertension with diastolic and systolic BP made little difference to the adjusted ORs <u>as did</u> the inclusion of lipid lowering agents. No interactions between period and diabetes or hypertension were identified.

Discussion

These analyses show that CKD prevalence in England estimated by serum creatinine based equations in England decreased from 2003 to 2009/10. This decrease was seen across all age groupings (except makes aged 65-74), for CKD defined by both MDRD and CKDEPI eGFR equations (though more pronounced for the MDRD equation), and despite was more pronounced for the MDRD equation and occurred despite increased prevalence of both diabetes and obesity.²¹ Using the CKDEPI equation in place of MDRD to define CKD resulted in a lower prevalence of CKD. Whilst it reduces overall prevalence, the CKDEPI equation identifies more individuals aged 75+ with CKD compared with the MDRD equation.^{22,23}

The HSE 2003, 2009 and 2010 were nationally representative samples, with the 2009/10 data pooled over two years to increase numbers and precision of estimates. The age-sex characteristics of the different study periods sampled were similar. The surveys used standardised protocols for measurement by trained interviewers and nurses. All samples were tested in the same laboratory with standardised assays. The analyses enable a longitudinal comparison of CKD estimates across different age-sex groupings and the

application and comparison of the two equations to derive eGFR. Weighting was introduced for both surveyed periods to reduce response bias and account for missing data. We accounted for the shift in measured creatinine on storage in the 2003 HSE serum creatinine data by introduction of a correction factor derived from analysis of the effect of storage using 2009 data. Non-response weighting was undertaken in the HSE for both surveyed periods to reduce response bias and account for missing data for individuals who did not have blood sample taken and hence no serum creatinine value. We used both the HSE study design and the non-response weights to provide national prevalence estimates at each period and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences. The ethnic composition of the surveys changed over time with a small fall in the White population, but we adjusted for this change in the analysis.

The study was limited by the cross-sectional nature of the HSE, which restricts the ability to infer causal relationships from the associations identified. However the use of new, cross-sectional samples enables measurement of general population CKD prevalence at different time points. A single sample was tested for serum creatinine in each survey, and therefore the persistence of reduced eGFR levels to confirm chronicity cannot be shown. This is standard practice in national surveys such as NHANES, whereas studies based on routine testing can assess chronicity, such as the QICKD study.²⁴ Given the individual variation in kidney function, more extreme values will be averaged out on repeated testing (regression to the mean), reducing the prevalence of low eGFR.²⁴ The results may therefore slightly overestimate the prevalence of CKD. Despite high numbers of participants, <u>T</u>there were too few cases from the key minority ethnic groups to give robust data on ethnic differences in prevalence of CKD; over 90% of the participants for both survey periods were white (data not shown). South Asians and Black groups have higher rates of renal replacement but have been found to have lower prevalence of CKD than Caucasians.^{25,26}

Prevalence of stage 4/5 CKD is likely to be underestimated as, whilst the HSE is able to adjust for non-response among the general population in private households, it may not fully account for some in whom more severe CKD (stage 4/5) will be more common. This includes people who were not able to give a blood or urine sample because of poor health and those who did not participate due to concurrent illness or hospitalisation, as well as those in residential care.

The absence of albuminuria data in the 2003 HSE is a major limitation, given its strong independent association with adverse outcomes and its use to stratify risk for prevention and management (e.g. use of RAS inhibition).³ We have therefore been unable to estimate changes in prevalence of albuminuria per se, in all CKD (stages1-5), and fully assess prevention and management.

The fall in <u>low prevalence of</u> eGFR could be due i) chance ii) artefact of differences in the serum creatinine measurement, iii) changes in serum creatinine production rather than excretion by the kidney, iv) residual confounding by differences in sample characteristics not adjusted for by sample weighting, v) true fall in eGFR. The period effects were highly statistically significant making chance unlikely. The 2003 assay results data were from stored sera, however this should be stable for creatinine even after long storage.²⁰ Moreover, if the 2003 serum creatinine had been underestimated this would have reduced any fall over the period. The two sets of samples were analysed in multiple analytical runs over a 19 month time period, which could lead to differences in results, however during this time period the internal quality control data indicates that the assay was accurate compared with assigned target values and stable, with no indication of assay drift with time. Artefact due to serum creatinine measurement changes does not seem to be the explanation. A fall in serum creatinine over time independent of kidney function could be due to less muscle

mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level. A fall in dietary protein consumption from cooked meat could also lead to fall in serum creatinine. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁷ but this was not done in HSE. We used the HSE study design and non response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

A change in serum creatinine over time independent of kidney function could be due to less muscle mass (leading to lower serum creatinine production); there is no evidence for this and it seems unlikely to have occurred at the population level.

A decline in dietary protein consumption from cooked meat could also lead to change in serum creatinine. Statistics from the National Diet and Nutrition Survey show that meat consumption increased from 2001-02 to 2008-10 while protein intake remained virtually stable over the same period. ²⁸ Mean consumption of meat and meat products increased from 154g per day in 2001-02 to 194g per day in 2008-10; protein intake contributing to food energy for adults aged 19+ increased slightly from 16-17% in 2001-02 to 17-18% in 2008-10; meat and meat products contributed to 37-38% of all protein intake for adults aged 19-64, with little change compared to 2008-10. Cooked meat consumption has been shown to increase serum creatinine in small case studies of volunteers and of patients with diabetic nephropathy and hence national guidance is to avoid eating cooked meat for 12 hours before a blood test for creatinine²⁹ but this was not done in HSE.

We used the HSE study design and non-response weights and adjusted for a wide range of socio-demographic factors so residual confounding due to differences in sample characteristics differences is less likely. Moreover, the distribution of age groupings was similar for both periods, so does not explain the observed eGFR differences.

Key risk groups for developing CKD are those with hypertension and or diabetes especially if they have albuminuria. In this study there was evidence of modest reductions in the prevalence of hypertension, better control of hypertension in key groups, and greater use of RAS inhibitors which have anti-proteinuric as well as BP lowering effects, though the period changes in eGFR remained after correction for changes in hypertension prevalence. There is evidence from some studies using HSE, primary care databases and QOF data,²⁸⁻³⁰ though not all,³¹ of improved hypertension control in the last decade. However there are ethnic disparities with poorer control of BP in Black and South Asians who have higher risk of progression to need RRT.³² Population salt consumption also fell during the last decade which is likely to have influenced population BP.^{33,34} CKD prevalence could fall too if those identified with moderate CKD were treated more aggressively, especially those with hypertension and or albuminuria, leading to increased eGFR in some people to above 60ml/min/1.73m². The limited HSE data suggest better BP control and greater use of RAS inhibitors in those with eGFR <60ml/min/1.73m². Karunetatne et al examined BP control in those with and without CKD in a primary care population in Kent and showed that BP control had improved in CKD patients over time pre- and post the introduction of QOF and that it was greater than in non-CKD hypertensive patients. They also showed increased use of RAS inhibitors and other anti-hypertensive agents in CKD patients.³⁵ Whilst there was a small fall in population lipid levels and some evidence of increased statin use, this would not be expected to lead to a reduced incidence of CKD, and our period changes were not altered by adjusting for lipid levels.³⁶

There was evidence of increased lipid lowering agent use (indicative of increased statin use) and a small fall in population lipid levels. There is some evidence of reno-protective effects of statins in CKD patients; A lower rate of decline in GFR was found in patients with renal disease who took antilipemic agents.³⁸ In the Heart Protection Study, the use of the hypolipidemic drug simvastatin reduced the rise in slightly elevated creatinine over time in both diabetic and non-diabetic CKD participants.³⁹ In the SHARP trial allocation of the lipid lowering ezetimibe plus simvastatin in participants not already on dialysis at randomisation reduced the outcome of end stage renal disease or a doubling of creatinine with an odds ratio of 0.93, though this was not statistically significant.⁴⁰ In the GREACE trial statin treatment prevented decline in renal function in people with high blood lipids and coronary heart disease: patients not treated with statins showed a 5.2% decrease in creatinine clearance. ⁴¹ However our period changes were not altered by adjusting for statins (lipid lowering drugs) or lipid levels (HDL, total cholesterol).³⁷

There are limited data from other countries with which to compare these findings. Coresh et al analysed the US NHANES surveys of 1988-1994 and 1999-2004, which both collected albuminuria and eGFR data. Both prevalence of albuminuria and MDRD eGFR <60ml/min/1.73m² increased, the latter from 5.6% to 8.1%.⁸ The albuminuria increase was explained by changes in levels of obesity, diabetes and hypertension, whereas this adjustment only partly explained eGFR falls. Changes in population serum creatinine explained most of the remainder of the eGFR changes; this was analysed by comparing the mean serum creatinine in young people aged 20-39 without diabetes or hypertension and this had increased across the surveys.⁹ The authors suggested that this rise in serum creatinine could be due to residual laboratory assay differences or to changes in dietary protein or muscle mass. Grams et al showed that prevalence of eGFR<60ml/min/1.73m² had also increased using the same survey data when eGFR was estimated using Cystatin C, a marker of kidney function that is independent of muscle mass, and this was not explained by changes in demography, hypertension, diabetes or obesity, suggesting a true increase in low eGFR.³⁷

We can compare the estimated national CKD prevalence for HSE with QOF returns which record diagnosed CKD in primary care.⁴³ Prevalence has been increasing with improvements in detection and recording and in 2010 was 4.2%. The figures are not directly comparable as comparing a single screened value versus routine testing with presumed allowance for chronicity, but this may suggest some under-diagnosis of CKD.

If this change in prevalence in England is true, then based on the HSE 2003 age-sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 2.62 million based on the MDRD equation, falling by 0.03 million for 2009/10. Equivalent figures for CKDEPI eGFR <60ml/min/1.73m² are 2.23 million and 0.02 million increase respectively. The impact of such changes would be twofold: a consistent pool of patients at risk of progressing to need RRT; and a contribution to consistent cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

If this change in prevalence in England is true, then based on the HSE 2003 age sexspecific estimates and 2001 and 2011 Census data, the estimated number of CKD cases (for those aged 16 and over) would be 3.77 million based on the MDRD equation, falling by 1.18 million for 2009/10. Equivalent figures for CKDEPI eGER <60ml/min/1.73m² are 2.98 million and 0.75 million respectively. The impact of such changes would be twofold: a reduced pool of patients at risk of progressing to need RRT; and a contribution to falling cardiovascular incidence and mortality. The former is supported by stabilised acceptance rates onto RRT in England.⁴

Conclusions

The prevalence of a low eGFR appears to have decreased in England from 2003 to 2009/10, despite increases in obesity and diabetes. It is unclear why this has occurred and it is difficult to infer directly that this is due to current policies to improve prevention of CKD and ment Gr., s to further ass. in C, both of which wc. the identification and management of people with CKD. There is a need for repeated national prevalence estimates to further assess CKD patterns over time, including measures of albuminuria and of Cystatin C, both of which were available in HSE 2009 and 2010.

What is already known on this topic
 eGFR and albuminuria are strong independent risk factors for progression to end-

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
16
40 47
41
48
49
50
51
52
53
54
55
55
50
5/
58

59 60 stage renal disease (ESRD), which may require costly renal replacement therapy (RRT)

- Prevalence of low eGFR has increased over time in countries such as the US, even . after adjustment for adverse trends in CKD risk factors
- Little is known about CKD prevalence trends in England

What this study adds

- Prevalence of a low eGFR derived from serum creatinine and indicative of CKD in England has decreased from 2003 to 2009/10, despite increasing prevalence of diabetes and obesity
- This pattern of prevalence of low eGFR was maintained even after adjustment for potential mediating and confounding factors
- Was

 evalence es

 de to further as

 A future need for repeated national prevalence estimates, that includes measures of albuminuria and Cystatin C, is required to further assess CKD patterns over time.

Contributors: GA was involved in the analysis and interpretation of the data. PR drafted the paper. GA, PR, SF and GM made substantial contributions to the study conception and

design. JM co-ordinated the Health Surveys for England. DO provided background information on CKD policy. JD conducted the laboratory analyses. All authors critically reviewed the paper and were involved in the drafting and approval of the manuscript. GA is the guarantor.

Acknowledgements: Scott Harris contributed to the production of the regression equation that was applied to the 2003 serum creatinine samples as a correction factor.

Funding: Kidney function testing in the Health Surveys for England was funded by NHS Kidney Care. GA is funded by a University of Southampton PhD scholarship.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Approval was obtained from the London Multi-Centre Research Ethnics Committee for the 2003 survey (HSE 2003 ref MREC/02/2/72) and approval was obtained from the Oxford B Research Ethics Committee for both 2009 and 2010 surveys (HSE 2009 ref 08/H0605/103, HSE 2010 ref 09/H0605/73).

Transparency: The lead author (the manuscript's guarantor) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing: The HSE 2003, 2009 and 2010 are archived with the UK Data Service. Creatinine measurements for the HSE 2003 undertaken for this study will be archived in due course.

Figure Legends

<u>Figure 1. Distribution of serum creatinine (µmol/L) for 2003 and 2009/10 survey data.</u> <u>Serum creatinine categories are grouped in bands of 5 µmol/L from 40µmol/L to 130µmol/L.</u> Serum creatinine values <40 µmol/L and those >130µmol/L are grouped together.

Figure 2. Comparison of low eGFR (<60ml/min/1.73m²) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender

References

1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 2011;80:1258-70. doi: 10.1038/ki.2011.368

2. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the evaluation and management of Chronic Kidney Disease. *Kidney Int Suppl* 2013;3:1-150. doi: 10.1038/kisup.2012.77

Available at: http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf

Last accessed March 16th 2014.

3. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet* 2010;375(9731):2073-81.

4. Castledine C, Casula A, Fogarty D. UK Renal Registry 14th Annual Report: Chapter 2 UK RRT Prevalence in 2010: national and centre-specific analyses. UK Renal Registry 2011. Available at:

http://www.renalreg.com/Report-Area/Report%202011/Chap02_Renal11_web.pdf Last accessed March 16th 2014.

5. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant* 2012;27 Suppl 3:iii73-iii80. doi: 10.1093/ndt/gfs269.

6. De Lusignan S, Chan T, Stevens P, O'Donoghue DJ, Hague N, Dzregah B et al. Identifying patients with chronic kidney disease from general practice computer records. *Fam Pract* 2005;22:234–241.

7. Mindell J, Biddulph JP, Hirani V, Stamatakis E, Craig R, Nunn S et al. Cohort profile: the health survey for England. *Int J Epidemiol* 2012;41:1585-93. doi: 10.1093/ije/dyr199.

8. Roth M, Roderick P, Mindell J. Kidney disease and renal function. Chapter 8 in Craig R, Mindell J (eds). Health Survey for England 2010. NHS Information Centre: Leeds, 2011.

9.Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al. Prevalence of chronic kidney disease in the United States. *JAMA* 2007;298:2038-47.

10. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new onset kidney disease in a community-based population. *JAMA* 2004;291:7844-50.

Field Code Changed

BMJ Open

11 Eigrhlad E. Egred MC. Linblad P. Eryzek, J. Mel aughlin, JK. Nyrén O. Obesity and risk for		
chronic renal failure. J Am Soc Nephrol 2006;17:1695-702.		
12 The National Service Framework for Renal Services. Part Two: Chronic Kidney Disease		
Acute Renal Failure and End of Life Care. Department of Health; London, 2005		
Available at:		
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/199002/Nation_		
al Service Framework for Renal Services Part Two -		
Last accessed March 16th 2014		
13. Quality and Outcomes Framework guidance for GMS contract 2011/12. Delivering investment in general practice. NHS Employers and British Medical Association; London, 2011		
Available at		
http://www.nhsemployers.org/Aboutus/Publications/Documents/QOF guidance GMS contr	Field Code Changed	
act 2011 12.pdf	-	
Last accessed March 16th 2014.		
14 NHS Hoalth Chack Programme Post Practice Quidance, Department of Health: London		
14. NHS Realth Check Programme Best Practice Guidance. Department of Health; London, 2013		
Available at:		
http://www.healthcheck.nhs.uk/commissioners_and_healthcare_professionals/national_guid_		
ance/		
Last accessed March 16th 2014.		
15 Sproston K. Primatesta P. Health Survey for England 2003 Volume 3: Methodology and		
documentation. The Stationerv Office. London. 2004		
Available at:		
http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_cons	Field Code Changed	
um_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_4098912.pdf		
Last accessed March 16th 2014.		
Last accessed March 16th 2014. 16. Craig R. Hirani V.Health Survey for England 2009. Health and lifestyles. Health and		
Last accessed March 16th 2014.16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010.		
Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at:		
Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u>	Field Code Changed	
Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014.	Field Code Changed	
Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson, IR, Jafar TH, Jee SH, et al.	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-FPI equation and the MDRD study equation for 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh L, Greene T, Stevens LA, Zhang YL, Hondrikson S, et al. Using 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatining values in the modification of diet in renal disease study 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: <u>http://www.hscic.gov.uk/pubs/hse09report</u> Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V. Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	
 Last accessed March 16th 2014. 16. Craig R, Hirani V.Health Survey for England 2009. Health and lifestyles. Health and Social Care Information Centre, Leeds, 2010. Available at: http://www.hscic.gov.uk/pubs/hse09report Last accessed March 16th 2014. 17. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. <i>JAMA</i> 2012;307:1941-51. 18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009;150:604-12. 19. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. <i>Ann Intern Med</i> 2006;145:247-54. 20. Gislefoss RE, Grimsrud TK, Mørkrid L. Long-term stability of serum components in the Janus Serum Bank. <i>Scand J Clin Lab Invest</i> 2008;68:402–9. 	Field Code Changed	

BMJ Open

3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
12
12
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

21. Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes hypertension and hypertension diabetes comorbidity in England. *Public Health Nutr* 2008;11:521-7.

22. O'Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. *BMJ Open* 2011;1(2):e000308.

23. Carter JL, Stevens PE, Irving JE, Lamb EJ. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effects of age. *QJM* 2011;104:839-47.

24. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year population based study of the effects of gender and age. *Kidney Int* 2006;69:375–82.

25. Roderick PJ, Raleigh VS, Hallam L, Mallick NP. The need and demand for Renal Replacement Therapy in ethnic minorities in England. *J Epidemiol Community Health* 1996;50:334-9.

26. Dreyer G, Hull S, Aitken Z, Chesser A, Yacoub MM. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJ Med 2009;102:261-69.

27. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for Chronic Conditions. Royal College of Physicians, London, 2008.

28. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. *Hypertension* 2009;53:480-6.

29. Ashworth M, Medina J, Morgan M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. *BMJ* 2008;337:a2030 doi:10.1136/bmj.a2030

30. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. *J Hum Hypertens* 2009;23:764-7.

31. Serumaga B, Ross Degnan D, Avery AJ, Elliott RA, Majumdar SR, Zhang F et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. *BMJ* 2011;342;d108 doi:10.1136/bmj.a2030.

32. Millett C, Gray J, Bottle A, Majeed A. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. *Ann Fam Med* 2008;76:490-6.

33. Millett C, Laverty AA, Stylianou N, Bibbins Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. *Plos One* 2012:7;e29836 doi: 10.1371/journal.pone.0029836.

34.Sadler K, Nicholson S, Steer T, Gill V, Bates B, Tipping S et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012. Available at: Formatted: Portuguese (Portugal)

BMJ Open

- Current England 0044 Test to DU EINAL4 and	Formatted: Portuguese (Portugal)
M SURVEY England 2011 16XE to DH_FINAL1.pdf	Field Code Changed
	Formatted: Portuguese (Portugal)
35. Karunatatne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of	
pay for performance on the control of blood pressure in people with chronic kidney disease	
stage 3 5. Nephrol Dial Transplant 2013;28:2107 16. doi 10.1093/ndt/gft093	
36. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C et al. The effects	
of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney	
disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet	
2011;377:2181_92. doi: 10.1016/S0140_6736(11)60739_3.	
37. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH et al. Trends in	
the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin	
c based estimates. Am J Kidney Dis 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013	
24. de Lusignan S, Gallagher H, Chan T, Thomas N, van Vlymen J, Nation M et al. The	Formatted: Font: 11 pt, (Asian) Chines
QICKD study protocol: a cluster randomised trial to compare quality improvement	(PRC), (Other) Portuguese (Portugal)
interventions to lower systolic BP in chronic kidney disease (CKD) in primary care.	
Implementation Science 2009;4:39	
25. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10 year	
population based study of the effects of gender and age. Kidney Int 2006;69:375-82.	
26. Roderick PJ, Raleigh VS, Hallam L, Mallick NP, The need and demand for Renal	
Replacement Therapy in ethnic minorities in England. J Epidemiol Community Health	
<u>1996;50:334-9.</u>	
27 Drever G. Hull S. Aitken Z. Chesser A. Vacoub MM. The effect of ethnicity on the	
prevalence of diabetes and associated chronic kidney disease. QJ Med 2009:102:261-69	
28. Bates B, Lennox A, Bates C, Swan G. National Diet and Nutrition Survey: Headline	
results from Years 1 and 2 (combined) of the Rolling Programme (2008/09 – 2009/10)	
Available at: https://www.gov.uk/government/upleads/system/upleads/attachment_data/file/216484/db_12	Field Cade Changed
nitps://www.gov.uk/governmen/uploads/system/uploads/attachment_data/me/210484/df_12	
Last accessed June 22nd 2014.	
20. Obvious laiden of discourse patients laiving available for early identification and	
29. Chronic kioney disease: national clinical guideline for early identification and management in adults in primary and secondary care. National Collaborating Centre for	
Chronic Conditions. Royal College of Physicians, London, 2008.	
30. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in hypertension management in England: results from the Health Survey for England 2006	
Hypertension 2009;53:480-6.	
21 Ashworth M. Modina, J. Morean M. Effect of assist desrivation on blood processor	
on Ashworth M, Medina J, Morgan M. Effect of Social deprivation on blood pressure	
framework. BMJ 2008:337:a2030 doi:10 1136/bmi a2030	

BMJ Open

2 3 4	
5 6 7 8	<u>32.</u> rec J H
9 10 11 12	<u>33.</u> of p Kin
13 14 15 16	<u>34.</u> pati 200
17 18 19	<u>35.</u> stra 201
20 21 22 23 24 25 26	36. Nut in E Ava http <u>n-S</u> Las
27 28 29 30	<u>37.</u> pay stag
31 32	<u>38.</u> dise
33 34 35 36	<u>39.</u> cho con
37 38 39	<u>40.</u> with <u>Clir</u>
40 41 42 43 44	<u>41.</u> Edu pre stue
45 46 47 48	<u>42.</u> the c ba
49 50 51 52 53 54	<u>42.</u> Eng Ava http Las
55 56 57 58 59 60	I

32. Carey IM, Nightingale CM, DeWilde S, Harris T, Whincup PH, Cook DG. Blood pressure recording bias during a period when the Quality and Outcomes Framework was introduced. J Hum Hypertens 2009;23:764-7.	
<u>33. Serumaga B, Ross-Degnan D, Avery AJ, Elliott RA, Majumdar SR, Zhang F et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series analysis. <i>BMJ</i> 2011;342;d108 doi:10.1136/bmj.a2030.</u>	
34. Millett C, Gray J, Bottle A, Majeed A. Ethnic disparities in blood pressure management in patients with hypertension after the introduction of pay for performance. <i>Ann Fam Med</i> 2008;76:490-6.	
<u>35. Millett C, Laverty AA, Stylianou N, Bibbins-Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. <i>Plos One</i> 2012:7;e29836 doi: 10.1371/journal.pone.0029836.</u>	
36.Sadler K, Nicholson S, Steer T, Gill V, Bates B, Tipping S et al. National Diet and Nutrition Survey - Assessment of Dietary Sodium Levels Among Adults (aged 19-64 years) in England, 2011. Department of Health, London, 2012.	
Available at:	Formatted: English (U.K.)
nttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213420/Sodiu	Formatted: English (U.K.)
Last accessed March 16th 2014	Formatted: English (U.K.)
<u>37. Karunatatne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. <i>Nephrol Dial Transplant</i> 2013;28:2107-16. doi 10.1093/ndt/gft093</u>	
38. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. <i>Kidney Int</i> 2001;59:1:260-9.	
39. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo- controlled trial. <i>Lancet</i> . 2002;360:9326:7-22.	
40. Lewis D. Effect of LDL-Cholestrol lowering on renal disease progression among patients with chronic kidney disease: Results of the Study of Heart And Renal Protection (SHARP). <i>Clinical Kidney Journal</i> . 2011;4:Issue suppl 2.	
41. Mikhailidis DP, Wierzbicki AS. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. <i>Curr Med Res Opin</i> . 2002;18:4:215-9.	
42. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH et al. Trends in the prevalence of reduced eGFR in the United States: comparison of creatinine and cystatin c based estimates. <i>Am J Kidney Dis</i> 2013;62:253-60. doi 10.1053/j.ajkd2013.03.013	
<u>42. Health & Social Care Information Centre: Quality and Outcomes Framework – 2009-10</u> England level. <u>Available at:</u>	
http://www.hscic.gov.uk/catalogue/PUB04431	Field Code Changed
Last accessed June 22nd 2014.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2003 Variable Category		2009-10		Chi- squared test		
		Number	%	Number	%	p-value
All	Aged 16+	7850 ²	100.0	6046²	100.0	-
	16-34	2425	31.0	1847	30.6	
	34-54	2790	35.7	2129	35.3	
٨٥٥	55-64	1126	14.4	886	14.7	n = 0.441
Аус	65-74	813	10.4	639	10.6	p = 0.44
	75+	662	8.5	539	8.9	
	Missing	0	-	0	-	
	White	7226	92.5	5244	90.7	p < 0.001
	South Asian	332	4.3	243	4.2	
Ethnicity	Black	144	1.8	154	2.7	
	Other	108	1.4	139	2.4	
	Missing	0	-	0	-	
•	Male	3795	48.6	2961	49.0	
Sex	Female	4020	51.4	3080	51.0	p = 0.80
	Missing	0	-	0	-	
	Degree Delaw de area	1375	17.6	1295	22.5	$\frac{2.5}{7.0}$ p < 0.001
Qualification	Below degree	4551	58.3	3296	57.0	
	Missing	1874	24.0	1191	20.6	
	Highoot	2514	- 22 7	3	- 24.0	n = 0.42
NSSEC	Middlo	2014	22.1	1094	34.0 22.1	p = 0.434
	Ivildule	10/4	42.0	1203	ZZ. I 42. 1	
	Lowesi	3273	43.9	2343	43.1	
	Vas	6460	82.7	4728	81 7	p = 0.176
Car Ownership	No	1348	17.3	1056	18.3	p = 0.1 <u>7</u> 0
	Missing	2		1000	10.5	
	Own	5878	75.4	3955	68.5	p < 0.001
Tenure	Rent	1914	24.6	1817	31.5	p voice
lonalo	Missing	11		13	-	
	Current	1960	25.2	1210	21.0	p < 0.001
.	Ex	1877	24.1	1429	24.8	
Smoking	Never	3951	50.7	3126	54.2	
	Missing	22	-	20	-	
	Normal	2867	39.2	1956	36.8	p < 0.001
Body mass index	/underweight (<25kg/m²)					•
	Overweight (25-30 kg/m ²)	2868	39.2	2047	38.5	
	Obese (>30kg/m ²)	1587	21.7	1314	24.7	
	Missing	489	-	469	-	
Waist	Low (<94cm male, <80cm female)	3060	39.8	2120	37.1	p < 0.001
Waist Circumference	High (94-102cm male, 80-88cm	1929	25.1	1347	23.6	

	Very High (>102cm male, >88cm female)	2703	35.1	2242	39.3		
	Missing	118	-	77	-		
Doctor	Yes	305	3.9	322	5.3	p < 0.001	
diagnosed	No	7504	96.1	5715	94.7		
Diabetes	Missing	6	-	2	-		
Survey	Yes (HBA1c ≥6.5%)	296	3.8	316	5.5	p < 0.001	
diagnosed Diabetes	No (HBA1c <6.5%)	7401	96.2	5417	94.5		
	Missing	113	-	52	-		
	Yes	406	5.2	446	7.4	p < 0.001	
Total Diabetes	No	7405	94.8	5585	92.6		
	Missing	0	-	0	-		
Doctor	Yes	2118	27.2	1501	25.0	p = 0.003	1
diagnosed	No	5662	72.8	4527	75.0		
Hypertension	Missing	36	-	10	-		
Survey	Yes	2065	31.5	1545	29.2	p = 0.0 <mark>219</mark>	1
diagnosed	No	4499	68.5	3744	70.8		
Hypertension	Missing	1246	- V	496	-		
T . 4 . 1	Yes	2866	36.7	2062	34.2	p = 0.004	1
Iotal	No	4933	63.3	3968	65.8	. •	
Hypertension	Missing	12	-	0	-		
	<45 (ml/min/1.73m ²)	<u>142</u> 176	<u>1.8</u> 2.2	<u>81</u> 81	<u>1.4</u> 1.4	<u>p = 0.07</u> p = 0.001	
eGFR CKDEPI	<60 (ml/min/1.73m ²)	<u>444</u> 594	<u>5.7</u> 7.6	<u>303</u> 303	<u>5.25.2</u>	<u>p = 0.26</u> p < 0.001	
	Missing	<u>0</u> 0		<u>0</u> 0	-		
	<45 (ml/min/1.73m ²)	<u>146</u> 186	<u>1.9<mark>2.4</mark></u>	<u>80</u> 80	<u>1.4</u> 1.4	<u>p = 0.03p < 0.001</u>	
egfr mdrd	<60 (ml/min/1.73m ²)	<u>521</u> 751	<u>6.79.6</u>	<u>349</u> 349	<u>6.06.0</u>	<u>p = 0.13</u> p <	
	Missing	0	-	0	-		
¹ Weighted for no	on-response (unless	stated othe	erwise)				
² Not weighted							

Formatted Table

Variable	Category	2003	2009-10	Mann Whitney U test
		Median value (IQR)	Median value (IQR)	p value
Serum Creatinine (µmol/L)	Median value	<u>71.7 (62.3 to 82.1)</u> 76.0 (66.0 to 87.0)	<u>72.0 (62.0 to 83.0)</u> 72.0 (62.0 to 83.0)	<u>p=0.66</u> p<0.001
α CED (m)/min/(4.72m ²)	MDRD	90.5 (77.2 to 105.4)84.7 (72.2 to 98.7)	<u>90.3 (77.1 to</u> 104.7) 90.3(77.1 to 104.7)	<u>p=0.62</u> p<0.001
egrk (m/min/1.73m)	СКДЕРІ	<u>99.3 (84.1 to 113.9)</u> 94.3 (78.6 to 109.7)	98.6 (84.0. to 112.5) (84.0. to 112.5) (84.0. to 112.5)	<u>p=0.11</u> p<0.001
	All	26.2 (23.3 to 29.4)	26.6 (23.5 to 30.0)	p<0.001
BMI (kg/m²)	Male	26.6 (24.0 to 29.4)	27.0 (24.2 to 29.9)	p=0.001
	Female	25.7 (22.7 to 29.5)	26.1 (23.1 to 30.0)	p<0.001
	All	90.6 (81.1 to 100.0)	92.0 (81.6 to 101.7)	p<0.001
Waist circumference (cm)	Male	95.8 (88.0 to 104.0)	96.7 (88.2 to 105.0)	p=0.05 <mark>2</mark>
	Female	84.6 (76.4 to 94.0)	86.3 (77.3 to 96.7)	p<0.001
	All	125.5 (115.5 to 138.0)	124.5 (114.0 to 136.0)	p<0.001
	Dr-diagnosed HT	135.5 (124.0 to 149.5)	134.0 (122.2 to 145.5)	p<0.001
Systolic BP (mmHg)	Dr-diagnosed DM	134.5 (122.5 to 148.0)	131.8 (120.0 to 143.5)	p<0.001
	CKD (CKDEPI)	139.5 (126.0 to 154.5)	131.8 (119.0 to 143.5)	p<0.001
	CKD (MDRD)	137.0 (123.0 to 151.0)	129.2 (118.0 to 142.5)	p<0.001
	All	73.0 (65.5 to 80.5)	72.5 (65.5 to 80.)	p<0.001
	Dr-diagnosed HT	77.5 (70.0 to 85.5)	76.0 (68.0 to 83.5)	p<0.001
Diastolic BP (mmHg)	Dr-diagnosed DM	72.0 (64.5 to 80.5)	71.50 (64.5 to 78.5)	p<0.001
	eGFR<60 (CKDEPI)	72.0 (64.5 to 80.5)	68.5 (60.5 to 76.0)	p<0.001
	eGFR<60 (MDRD)	73.0 (65.5 to 81.5)	69.0 (61.5 to 76.8)	p<0.001
Glycated Hb (%)	All	5.20 (5.00 to 5.50)	5.30 (5.10 to 5.70)	p<0.001
Giycaleu HD (70)	Dr-diagnosed DM	6.90 (5.90 to 8.20)	6.90 (5.90 to 8.30)	p=0.8 <u>5</u> 46
	All	1.50 (1.20 to 1.70)	1.40 (1.20 to 1.70)	p<0.001
HDL Cholesterol (mmol/L)	Male	1.30 (1.20 to 1.60)	1.30 (1.10 to 1.50)	p<0.001
	Female	1.60 (1.40 to 1.90)	1.60 (1.30 to 1.90)	p=0.0 <mark>5</mark> 46
Total Cholesterol (mmol/L)	All	5.40 (4.70 to 6.20)	5.20 (4.40 to 5.90)	p<0.001
	Male	5.40 (4.70 to 6.20)	5.10 (4.30 to 5.90)	p<0.001

Female	5.40 (4.70 to 6.20)	5.20 (4.50 to 6.00)	p=0.001

BMJ Open

clinical factors								
Variable		MDRD						
		Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)⁵		
	2003	<u>6.7</u> 9.6	1	1	1	1		
HSE Year	2009-10	<u>6.0</u> 6.0	<u>0.84 (0.72 –</u> <u>0.98)*<mark>0.52 (0.45 –</mark> 0.60)**</u>	<u>0.84 (0.73 –</u> <u>0.99)*0.53 (0.44 –</u> 0.62)**	<u>0.75 (0.61 –</u> <u>0.92)**<mark>0.48 (0.41 –</mark> 0.57)**</u>	<u>0.75 (0.61 –</u> <u>0.92)**<mark>0.49 (0.42 –</mark> 0.57)**</u>		
	16-34	<u>0.2</u> 0.6	1	1	1	1		
	35-54	<u>2.1</u> 3.0	<u>10.8 (5.3 – 22.0)**</u> 5.8 (3.7 9.0)**	<u>11.1 (5.5 –</u> <u>22.8)**^{5.7} (3.5</u> - 9.1)**	<u>10.8 (5.0 –</u> <u>23.4)**5.2 (3.3 – 8.2)**</u>	<u>10.7 (4.9 –</u> <u>23.2)**5.0 (3.2 – 7.9)**</u>		
Age	55-64	<u>6.8</u> 9.2	<u>37 (18 – 75)**</u> 19 (12 – 30)**	<u>36 (18 − 73)**</u> (11 − 28)**	<u>33 (15 – 72)**</u> 14 (9 – <u>23</u>)**	<u>32 (14 – 69)**</u> 13 (8 – 20)**		
	65-74	<u>14.5</u> 19.0	<u>87 (43 – 175)**</u> 44 (28 – 68)**	<u>82 (40 - 167)**</u> 39 (24 - 63)**	<u>65 (30 – 143)**</u> 31 (20 – 50)**	<u>62 (28 – 135)**</u> 28 (17 – 44)**		
	75+	<u>35.6</u> 4 0.3	<u>276 (138 – 555)**</u> 127 (83 – 196)**	<u>247 (122 – 501)**</u> 109 (69 – 175)**	<u>216 (99 – 470)**88</u> (55 – 140)**	<u>202 (93 – 440)**76</u> (48 – 122)**		
	Male	<u>5.0</u> 6.3	1	1	1	1		
Sex	Female	<u>7.7</u> 9.8	<u>1.42 (1.22 –</u> <u>1.65)**¹.45 (1.26 –</u> 1.68)**	<u>1.37 (1.17 –</u> <u>1.60)**¹.39 (1.19 – 1.62)**</u>	<u>1.69 (1.36 –</u> <u>2.10)**1.45 (1.23 – 1.70)**</u>	<u>1.66 (1.34 –</u> <u>2.06)**¹.43 (1.22 –</u> 1.67)**		
	White	<u>6.8</u> 8.6	-	1	1	1		
	South Asian	<u>1.7</u> 2.3	-	<u>0.83 (0.43 –</u> <u>1.59)</u> 0.63 (0.32 – 1.26)	<u>0.73 (0.33 –</u> <u>1.60)</u> 0.74 (0.41 – 1.34)	<u>0.71 (0.32 –</u> <u>1.56)</u> 0.72 (0.40 – 1.32)		
Ethnic	Black	<u>1.7</u> 2.7	-	<u>0.38 (0.15 –</u> <u>1.00)0.73 (0.32 – 1.69)</u>	<u>0.33 (0.09 –</u> <u>1.19)0.41 (0.17 – 1.02)</u>	<u>0.32 (0.09 –</u> <u>1.16)^{0.40} (0.16 –</u> 1.01)		
	Other	<u>1.6</u> 2.4	-	<u>0.81 (0.29 –</u> <u>2.30)</u> 1. 19 (0.46 – 3.08)	<u>0.64 (0.17 –</u> <u>2.46)0.92 (0.36 – 2.30)</u>	<u>0.64 (0.17 –</u> <u>2.44)</u> 0.93 (0.37 – 2.34)		
	Own	<u>6.3</u> 8.3	-	1	1	1		
Tenure	Rent	<u>6.6</u> 7.6	-	<u>1.34 (1.11 –</u> <u>1.60)**</u> 1.13 (0.93 –	<u>1.23 (0.97 –</u> <u>1.57)</u> 1.11 (0.92 –	<u>1.23 (0.96 –</u> <u>1.56)</u> 1.10 (0.91 –		

Table 3. Prevalence and associations of low eGFR (<60ml/min/1.73m²) by MDRD equation with adjustment for socio-demographic and clinical factors

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				1.36)	1.34)	1.33)
	Degree Level	<u>2.4</u> 3.1	-	1	1	1
				<u>1.31 (0.99 –</u>	<u>1.15 (0.83 –</u>	<u> 1.20 (0.84 –</u>
	Below degree	<u>4.4</u> 5.9	-	<u>1.74)</u> 1.29 (0.98 –	<u>1.60)</u> 1.34 (1.03 –	<u>1.70)</u> 1.33 (1.02 –
Education				1.70)	1.74)*	1.74)*
	-			<u>1.52 (1.13 –</u>	1.20 (0.84 -	1.23 (0.96 -
	None	<u>14.9</u> 18.2	-	<u>2.04)**1.43 (1.06 -</u>	<u>1.70)</u> 1.50 (1.14 –	<u>1.57)</u> 1.50 (1.13 –
				1.93)*	1.99)**	1.98)**
	Never	<u>6.1</u> 7.7	-	-	1	1
					<u> 1.17 (0.91 –</u>	<u>1.15 (0.85 –</u>
	Ex-Smoker	<u>10.1</u> 12.8	-	-	<u>1.49)1.23 (0.97 –</u>	<u>1.54)1.20 (0.94 –</u>
Smoking					1.55)	1.53)
					<u> 1.02 (0.75 –</u>	<u> 1.04 (0.80 –</u>
	Current Smoker	<u>3.2</u> 4.3		-	<u>1.38)</u> 1.22 (0.96 –	<u>1.40)</u> 1.19 (0.94 –
					1.57)	1.51)
	Normal (<25)	<u>3.4</u> 4.3	-	-	1	1
					<u>1.16 (0.91 –</u>	<u>1.15 (0.90 –</u>
•	Overweight (25-30)	<u>6.6</u> 8.8	-	-	<u>1.49)</u> 1.57 (1.30 –	<u>1.47)</u> 1.51 (1.25 –
BMI (kg/m²)					1.90)**	1.83)**
					<u>1.31 (0.99 –</u>	<u> 1.26 (0.96 –</u>
	Obese (>30)	<u>8.4</u> 10.6	-	-	<u>1.71)</u> 1.80 (1.47 –	<u>1.65)</u> 1.65 (1.33 –
					2.21)**	2.03)**
					<u>0.51 (0.38 –</u>	<u>0.51 (0.38 –</u>
HDL Cholesterol	Continuous	<u></u>	-	-	<u>0.67)**</u> 0.53 (0.41 –	<u>0.68)**</u> 0.54 (0.43 –
					0.68)**	0.69)**
					<u>0.91 (0.84 –</u>	<u>0.92 (0.84 –</u>
Total Cholesterol	Continuous	<u></u>	-	-	<u>1.00)</u> 0.95 (0.88 –	<u>1.00)</u> 0.96 (0.90 –
					1.11)	1.12)
	No	<u>5.9</u> 7.5	-	-	1	1
Doctor diagnosed					<u>1.42 (0.92 –</u>	<u>1.36 (0.87 –</u>
Diabetes	Yes	<u>17.3</u> 19.9	-	-	<u>2.22)</u> 1.42 (0.95 –	<u>2.11)</u> 1.31 (0.88 –
					2.12)	1.97)
	No	<u>4.0</u> 5.1	-	-	-	1
Doctor diagnosed						<u> </u>
Hypertension	Yes	<u>13.3</u> 16.5	-	-	-	<u>1.55)*</u> 1.47 (1.23 –
1 Describer of fam						1.75)**

¹Prevalence for combined 2003 and 2009-10 HSE ²Adjusted for age and sex

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8 9 10	 ³Adjusted for age, sex, ethnicity, tenure and education ⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes ⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed hypertension
11 12	* p<0.05 **p<0.01
13	
14 15	
16	
17 18	
19	
20	
22	
23	
24 25	
26	
28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
40 41	
42	
43 44	
45	
46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
47 48	

				CKDEPI		
Var	iable	Prevalence of CKD (%) ¹	OR (95% CI) ²	OR (95% CI) ³	OR (95% CI) ⁴	OR (95% CI)
	2003	<u>5.7</u> 7.6	1	1	1	1
HSE Year	2009-10	<u>5.2</u> 5.2	<u>0.85 (0.72 –</u> <u>1.00)0.57 (0.48- 0.67)**</u>	<u>0.86 (0.72 –</u> <u>1.01)0.59 (0.49 – 0.71)**</u>	<u>0.73 (0.57 –</u> <u>0.93)*<mark>0.52 (0.43 –</mark> 0.63)**</u>	<u>0.73 (0.57 –</u> <u>0.93)*0.52 (0.4 0.62)**</u>
	16-34	<u>0.1</u> 0.1	1	1	1	1
	35-54	<u>1.0</u> 1.3	<u>15.1 (4.5 – 51.4)**</u> 8.4 (3.7 – 19.2)**	<u>16.1 (4.7 –</u> <u>55.0)**7.5 (3.3 – 17.1)**</u>	<u>13.8 (4.0 –</u> <u>47.2)**9.1 (3.7 – 22.1)**</u>	<u>13.5 (3.9 –</u> <u>46.5)**<mark>8.7 (3.6</mark></u> 21.2)**
A .g.o	55-64	<u>4.2</u> 5.6	<u>67 (20 – 225)**38</u> (17.4 – 86.0)**	<u>67 (20 – 227)**</u> 31 (14 – 69)**	<u>55 (16 – 190)**</u> 38 (16 – 91)**	<u>52 (15 – 177)*</u> (14 – 81)**
Aye	65-74	<u>12.5</u> 16.3	<u>219 (66 – 725)**</u> 128 (58 – 292)**	<u>219 (65 –</u> <u>731)**</u> 104 (47 – 231)**	<u>162 (47 –</u> <u>553)**^{119 (50 –}</u> 269)**	<u>151 (44 –</u> <u>517)**</u> 103 (43 247)**
	75+	<u>36.8</u> 41.0	<u>890 (269 –</u> <u>2938)**</u> 4 65 (212 – 1019)**	<u>844 (253 –</u> <u>2808)**</u> 356 (160 – 790)**	<u>754 (222 –</u> <u>2559)**420 (175 –</u> 1003)**	<u>693 (203 –</u> 2355)**357 (14 857)**
	Male	4.6 5.6	1	1	1	1
Sex	Female	<u>6.3</u> 7.6	<u>1.15 (0.97 –</u> <u>1.36)</u> 1.17 (1.01 – 1.37) *	<u>1.11 (0.93 –</u> <u>1.31)^{1.11 (0.93 – 1.32)}</u>	<u>1.31 (1.01 –</u> <u>1.68)*</u> 1.37 (1.09 – 1.70)**	<u>1.28 (1.00 ·</u> <u>1.65)*</u> 1.36 (1.(1.67)**
	White	<u>5.8</u> 7.0	-	1	1	1
	South Asian	<u>1.4</u> 1.7	-	<u>0.93 (0.43 –</u> <u>2.00)0.80 (0.36 – 1.79)</u>	<u>0.89 (0.35 –</u> <u>2.42)0.66 (0.30 – 1.99)</u>	<u>0.85 (0.34 -</u> 2.16) 0.63 (0.2 1.97)
Ethnic	Black	<u>2.0</u> 2.3		<u>0.56 (0.23 –</u> <u>1.39)</u> 0.90 (0.35 – 2.34)	<u>0.55 (0.16 –</u> <u>1.82)</u> 0.47 (0.16 – 1.87)	<u>0.53 (0.16 -</u> <u>1.77)</u> 0.44 (0.1 1.56)
	Other	<u>1.6</u> 1.6	-	<u>1.19 (0.40 –</u> <u>3.56)1.13 (0.33 –</u> 3.88)	<u>1.13 (0.29 –</u> <u>4.41)1.42 (0.22 –</u> 2.89)	<u>1.13 (0.29 - 4.41)</u> <u>4.41)</u> 1.44 (0.2 - 3.03)
-	Own	5.3 6.5	-	1	1	1
renure	Rent	6.06.8	-	1.44 (1.19 –	1.29 (0.98 -	1.28 (0.97

Table 4. Prevalence and associations of low eGFR (<60) by CKDEPI equation with adjustment for socio-demographic and clinical		
······································	Table 4. Prevalence and associations of low eGFR (<60) by CKDEF	I equation with adjustment for socio-demographic and clinical
Page 53 of 61

				<u>1.75)**</u> 1.31 (1.07 – 1.62)*	<u>1.69)</u> 1.30 (1.04 – 1.59)*	<u>1.69)</u> 1.29 (1.05 1.59)*
	Degree Level	<u>1.8</u> 2.1	-	1	1	1
Education	Below degree	<u>3.6</u> 4.4	-	<u>1.36 (0.97 –</u> <u>1.90)1.32 (0.94 – 1.84)</u>	<u>1.05 (0.69 –</u> <u>1.58)1.23 (0.87 – 1.79)</u>	<u>1.04 (0.69 –</u> <u>1.58)</u> 1.24 (0.86 – 1.81)
	None	<u>13.6</u> 16.2	-	<u>1.51 (1.08 –</u> <u>2.13)*1.42 (0.99 –</u> <u>2.02)</u>	<u>1.12 (0.76 –</u> <u>1.66)1.32 (0.95 – 1.85)</u>	<u>1.11 (0.75 –</u> <u>1.65)</u> 1. 33 (0.97 1.86)
	Never	<u>5.2</u> 6.2	-	-	1	1
Smoking	Ex-Smoker	<u>9.0</u> 10.7	0	-	<u>1.09 (0.77 –</u> <u>1.55)1.20 (0.90 – 1.59)</u>	<u>1.07 (0.75 –</u> <u>1.52)</u> 1.17 (0.81 <u>1.44)</u>
	Current Smoker	<u>2.6</u> 3.1	C'A	-	<u>0.80 (0.70 –</u> <u>1.41)</u> 0.99 (0.70 – <u>1.41)</u>	<u>0.79 (0.54 –</u> <u>1.14)</u> 0.96 (0.68 1.45)
BMI (kg/m²)	Normal (<25)	<u>2.7</u> 3.4	-	-	1	1
	Overweight (25-30)	<u>5.5</u> 6.8	-	0,-	<u>1.14 (0.86 –</u> <u>1.51)1.43 (1.15 – 1.78)**</u>	<u>1.12 (0.85 –</u> <u>1.49)</u> 1.36 (1.09 1.70) **
	Obese (>30)	<u>7.2</u> 8.6	-	-/0	<u>1.31 (0.96 –</u> <u>1.80)1.78 (1.40 – 2.25)**</u>	<u>1.25 (0.91 –</u> <u>1.72)</u> 1.72 (1.27 2.04) **
HDL Cholesterol	Continuous	=	-	-	<u>0.40 (0.29 –</u> <u>0.56)**0.49 (0.37 –</u> <u>0.66)**</u>	<u>0.40 (0.29 – 0.57)**</u> 0.49 (0.3) 0.65)**
Total Cholesterol	Continuous	-	-	-	<u>0.93 (0.84 –</u> <u>1.04)^{0.95} (0.89 –</u> 1.03)	<u>0.94 (0.86 –</u> <u>1.04)</u> 0.97 (0.90 1.04)
	No	5.0 6.0	-	-	1	1
Doctor diagnosed Diabetes	Yes	<u>16.3</u> 18.4	-	-	<u>1.55 (0.96 –</u> <u>2.48)1.59 (1.02 – 2.48)*</u>	<u>1.46 (0.91 –</u> 2.35)1.49 (0.96 2.33)
	No	<u>3.1</u> 3.8	-	-	-	1
Doctor diagnosed Hypertension	Yes	<u>12.3</u> 14.5	-	-	-	<u>1.33 (1.05 –</u> <u>1.67)**¹.40 (1.1-</u> 4 72)**

BMJ Open

²Adjusted for age and sex

³Adjusted for age, sex, ethnicity, tenure and education

⁴Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol and doctor diagnosed diabetes

⁵ Adjusted for age, sex, ethnicity, tenure, education, smoking, BMI, HDL cholesterol, total cholesterol, doctor diagnosed diabetes and doctor diagnosed or beer review only hypertension

* p<0.05 **p<0.01

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	55	of	61
------	----	----	----

Appendix 1: M	edication use) in key subgro l	ups who reported	yes to taking do	cto	r prescribed medica	ation	
			2003				2009-10	
Group	Drug type	Number	Yes (%)	No (%)		Number	Yes (%)	No (%)
Any Doctor-	Diuretics	2118	523 (24.7%)	1595 (75.3%)		1501	378 (25.2%)	1123 (74.8%)
diagnosed	ß_		419 (19.8%)	1699 (80.2%)			249 (16.6%)	1252 (83.4%)
hypertension	Blockers							
	Calcium		324 (15.3%)	1794 (84.7%)			357 (23.8%)	1144 (76.2%)
	channel							
	blockers							
	RAS		1027 (48.5%)	1091 (52.5%)			932 (62.1%)	569 (37.9%)
	inhibitors				_			
Any Doctor-	RAS	305	172 (56.4%)	133 (43.6%)		322	199 (61.8%)	123 (38.2%)
diagnosed	inhibitors							
diabetes								
eGFR	RAS	751	386 (51.4%)	365 (48.6%)		349	205 (58.7%)	144 (41.3%)
<60ml/min/1.7	inhibitors							
3m ² -MDRD								
eGFR	RAS	594	351(59.1%)	243 (40.9%)		303	199 (65.7%)	104 (34.3%)
<60ml/min/1.7	inhibitors							
3m ² CKDEPI								

7326 (93.8%)

770 (13.3%)

5786

5016 (86.7%)

1/

All

Lipid

lowering

484 (6.2%)

Figure 1. Distribution of serum creatinine (µmol/L) for 2003 and 2009/10 survey data. Serum creatinine categories are grouped in bands of 5 µmol/L from 40µmol/L to 130µmol/L. Serum creatinine values <40 µmol/L and those >130µmol/L are grouped together.

156x93mm (300 x 300 DPI)

Figure 2. Comparison of low eGFR (<60ml/min/1.73m2) prevalence difference for MDRD and CKDEPI equations between the 2003 and 2009/10 HSE for each age group by gender 159x179mm (300 x 300 DPI)

BMJ Open

		2003 2009			2009-10		
Group	Drug type	Number	Yes (%)	No (%)	Number	Yes (%)	No (%)
Any Doctor-	Diuretics		523 (24.7%)	1595 (75.3%)		378 (25.2%)	1123 (74.8%)
diagnosed	ß-Blockers		419 (19.8%)	1699 (80.2%)		249 (16.6%)	1252 (83.4%)
hypertension	Calcium channel blockers	2118	324 (15.3%)	1794 (84.7%)	1501	357 (23.8%)	1144 (76.2%)
	RAS inhibitors		1027 (48.5%)	1091 (52.5%)		932 (62.1%)	569 (37.9%)
Any Doctor- diagnosed diabetes	RAS inhibitors	305	172 (56.4%)	133 (43.6%)	322	199 (61.8%)	123 (38.2%)
eGFR <60ml/min/1.7 3m ² MDRD	RAS inhibitors	521	279 (53.6%)	242 (46.4%)	349	205 (58.7%)	144 (41.3%)
eGFR <60ml/min/1.7 3m ² CKDEPI	RAS inhibitors	444	273 (61.5%)	171 (38.5%)	303	199 (65.7%)	104 (34.3%)
All	Lipid lowering	7810	484 (6.2%)	7326 (93.8%)	5786	770 (13.3%)	5016 (86.7%)
					~)	4	

Appendix 1: Medication use in key subgroups who reported yes to taking doctor prescribed medication

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4,5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4,5
Bias	9	Describe any efforts to address potential sources of bias	4,5
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4,5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(d) If applicable, describe analytical methods taking account of sampling strategy	5
		(e) Describe any sensitivity analyses	5
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	6
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6, 16
		(b) Indicate number of participants with missing data for each variable of interest	16
Outcome data	15*	Report numbers of outcome events or summary measures	16
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	21,22,23
		(b) Report category boundaries when continuous variables were categorized	16,17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	n/a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	6
Discussion			
Key results	18	Summarise key results with reference to study objectives	7
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	7
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	7,8
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml