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SUMMARY

Nitrogen metabolism ofMycobacterium tuberculosis
(Mtb) is crucial for the survival of this important path-
ogen in its primary human host cell, the macrophage,
but little is known about the source(s) and their
assimilation within this intracellular niche. Here, we
have developed 15N-flux spectral ratio analysis
(15N-FSRA) to explore Mtb’s nitrogen metabolism;
we demonstrate that intracellular Mtb has access to
multiple amino acids in the macrophage, including
glutamate, glutamine, aspartate, alanine, glycine,
and valine; and we identify glutamine as the pre-
dominant nitrogen donor. Each nitrogen source is
uniquely assimilated into specific amino acid pools,
indicating compartmentalized metabolism during
intracellular growth. We have discovered that serine
is not available to intracellular Mtb, and we show
that a serine auxotroph is attenuated in macro-
phages. This work provides a systems-based tool
for exploring the nitrogen metabolism of intracellular
pathogens and highlights the enzymephosphoserine
transaminase as an attractive target for the develop-
ment of novel anti-tuberculosis therapies.

INTRODUCTION

Tuberculosis (TB) is one of the top 10 causes of morbidity and

mortality in the human population, responsible for 1.6 million

deaths and 10 million new infections every year (WHO, 2018;

Flynn, 2006; Zumla et al., 2013). The causative agent of TB,

Mycobacterium tuberculosis (Mtb), primarily resides within the

hostile environment provided by the phagosome ofmacrophages

and can therefore resist stress conditions such as low pH, hypox-

ia, reactive oxygen species, reactive nitrogen species, and

nutrient starvation (Gouzy et al., 2014a; Russell, 2001; Rustad

et al., 2009). Metabolism within this restricted niche is key to

the survival and pathogenesis of Mtb (Beste et al., 2011; Ehrt

and Rhee, 2013; Eoh et al., 2017; Warner, 2014). Understanding
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Mtb’s metabolism within the macrophage has therefore become

an important focus for research, with the aim of identifying vulner-

able metabolic pathways that could be targeted with drugs. Car-

bon metabolism in Mtb has been intensively investigated, and

host-derived lipids, cholesterol, and CO2 have been identified

as essential nutrients for intracellular growth and survival of TB

in animalmodels (Beste et al., 2011, 2013; Ehrt et al., 2018; Eisen-

reich et al., 2010; Gouzy et al., 2014b; McKinney et al., 2000; Nie-

derweis, 2008; Schnappinger et al., 2003). Our 13C-flux spectral

analysis (13C-FSA) approach, applied to the intracellular carbon

metabolism of Mtb, also demonstrated that several nonessential

amino acids are acquired byMtb frommacrophages, highlighting

their availability as potential nitrogen sources within the human

host. However, the identity of the primary nitrogen sources for

intracellular Mtb remains uncertain. Amino acid acquisition and

metabolism is important for the pathogenesis of several intracel-

lular bacterial pathogens, including Mtb (Das et al., 2010; Eylert

et al., 2008; Gouzy et al., 2013, 2014c; Kloosterman and Kuipers,

2011). For example, Salmonella enterica, Serovar typhimurium,

and Streptococcus pneumoniae require arginine for intracellular

survival and virulence (Das et al., 2010; Kloosterman and Kuipers,

2011), demonstrating that this amino acid is a nitrogen source.

Listeria monocytogenes has been shown to acquire aspartate,

alanine, and glutamate from the host macrophages for de novo

amino acid synthesis (Eylert et al., 2008). Isotopologue profiling

studies also identified the amino acid serine as a carbon and en-

ergy source for the growth and replication of Legionella pneumo-

philia (Eylert et al., 2010).

In vitro, Mtb can utilize a wide range of carbon sources but was

only able to utilize 13 out of 95 tested compounds as nitrogen

sources (Lofthouse et al., 2013). These included mainly the

following amino acids: alanine, asparagine, aspartate, valine,

glutamate, glutamine, ornithine, and serine. Agapova et al.

(2019) recently extended this list to include arginine, isoleucine,

and proline, and urea has previously been shown to be utilized

as a nitrogen source in vitro (Lin et al., 2012). The work by

Agapova et al. (2019) also demonstrated that growth rates and

yields are higher when Mtb grows with amino acids, as

compared with ammonium as nitrogen sources, and that

like carbon sources, Mtb can co-metabolize two amino acids

simultaneously in vitro. However, a comprehensive study to
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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identify the nitrogen sources for intracellular Mtb growing within

the host macrophage has never been performed.

The Mtb genome encodes several transporters for both inor-

ganic and organic nitrogen compounds (e.g., ammonium chlo-

ride [Amt] and nitrate [NarK2]), as well as ATP-binding cassette

(ABC) amino acid transporters (Cole et al., 1998). Aspartate

and asparagine have been detected in the Mtb phagosome,

highlighting these amino acids as potential intracellular nitrogen

sources. However, while the gene directing the transport of

aspartate (AnsP1) was essential for the synthesis of nitrogen-

containing compounds in a murine model of TB, this gene was

dispensable for intracellular survival, suggesting that aspartate

is not the primary nitrogen donor for Mtb growing within macro-

phages. Conversely, a study by the same group demonstrated

that the asparagine transporter (AnsP2) was required for surviv-

ing intra-phagosomal acid stress but was dispensable for in vivo

survival (Gouzy et al., 2013, 2014a). Glutamate dehydrogenase

(GDH), the enzyme that catalyzes the production of glutamate

from 2-oxoglutarate, is also essential for the intracellular survival

of Mtb (Cowley et al., 2004; Gallant et al., 2016; Viljoen et al.,

2013). However, GDH is also required for resistance to acidic

and nitrosative stress in Mycobacterium bovis (BCG); therefore,

the role of glutamate as a nitrogen source is uncertain. Mtb auxo-

trophic mutants of leucine, proline, tryptophan, and glutamine

have previously been shown to be severely attenuated in vivo

(Hondalus et al., 2000; Lee et al., 2006; Smith et al., 2001), indi-

cating that biosynthesis of these amino acids is required by Mtb

growing in the intracellular environment. Several other auxotro-

phic mutants (e.g., methionine, isoleucine, or valine) can, howev-

er, successfully proliferate in macrophages, indicating that these

amino acids can be acquired from the macrophage milieu

(Awasthy et al., 2009; McAdam et al., 1995). Mutagenesis

studies are useful in identifying Mtb genes required for nitrogen

uptake or metabolism during intracellular or in vivo survival; how-

ever, none of these studies have directly measured the uptake

and assimilation of nitrogen by intracellular Mtb.

Isotopic tracer studies, combined with direct interpretation of

the labeling patterns in metabolites, have emerged as a powerful

strategy to study the intracellular metabolism of important

pathogens (Buescher et al., 2015; Eylert et al., 2010). We previ-

ously used 13C isotopomer analysis and developed 13C-FSA to

identify the intracellular carbon sources for Mtb (Beste et al.,

2013). However, this approach was unsuitable for the current

study because of the lack of backbone rearrangements in the

metabolic network, as compared to carbon, and limited mass

isotopomer information from single nitrogen atoms. To over-

come these limitations, here we developed 15N-FSRA, a compu-

tational platform for analysis of the uptake of all potential amino

acids as nitrogen sources. Specifically, to counteract the limited

measurement information, an array of 15N labeling experiments

was conducted under equal conditions, which was simulta-

neously evaluated in an integrative system-based approach.

This work showed that Mtb uptakes and co-metabolizes multiple

intracellular sources of nitrogen when replicating within its hu-

man host macrophage. These results identify amino acid meta-

bolism as a target for TB therapeutics while also providing a

systems-based tool that can be applied to study the nitrogen

metabolism of other intracellular organisms.
RESULTS

Mtb Co-assimilates Multiple Nitrogen Sources during
Intracellular Growth
To measure the uptake and assimilation of nitrogen during the

intracellular growth of Mtb, THP-1 humanmacrophages were in-

fected with Mtb in the presence of a 15N tracer—aspartate (Asp),

glutamate (Glu), glutamine (Gln), leucine (Leu), alanine (Ala), or

glycine (Gly)—for 48 h, the isotopic steady-state labeling period

established in our previous work (Beste et al., 2013). Asparagine

was not tested, as it had previously been shown to be a nitrogen

source for intracellular Mtb (Gouzy et al., 2014a). Proteinogenic

amino acids were used for isotopomer analysis because they

acquire the labeling pattern of their central metabolic precursors

and are abundant and stable (Beste et al., 2013) (Figure S1, I).

Using an identical method to that developed by Beste et al.

(2013), macrophage and Mtb fractions were separated, and
15N incorporation into proteinogenic amino acids from infected

macrophages and intracellular Mtb was measured using gas

chromatography-mass spectrometry (GC-MS). Amino acid pairs

of glutamate, glutamine and aspartate, asparagine (Asn) cannot

be distinguished using GC-MS due to acid hydrolysis, so the 15N

enrichments for these amino acid pairs are combined as gluta-

mate/glutamine (Glu/n) and aspartate/asparagine (Asp/n),

respectively. Experimental controls of uninfected THP-1 macro-

phages and in-vitro-grown Mtb were cultivated in Roswell Park

Memorial Institute (RPMI) containing each of the tracers for

48 h. These experiments established that the 15N labeling profile

of proteinogenic amino acids from intracellular Mtb was distinct

from that of Mtb in RPMI (Figures 1C and S1, II). For example, the

labeled nitrogen from 15N1-Leu was incorporated predominantly

into Leu when Mtb was tested in RPMI, but it was widely

dispersed into other amino acids for Mtb growing intracellularly

(Figure S1, IID). Similarly, for Mtb in RPMI, the label from 15N1-

Asp, 15N1-Glu, and 15N2-Gln was incorporated into Asp/n and

Glu/n. However, during intracellular growth, labeled nitrogen

from 15N1-Asp was incorporated into almost all measured amino

acids, including Asp/n and Glu/n (Figures S1, IIA–IIC). The

distinct 15N labeling profiles of intracellular Mtb versus in-vitro-

grown Mtb in RPMI demonstrated that there was negligible

cross-contamination from extracellular Mtb in these experi-

ments. Moreover, there was no cross-contamination during

the separation of the macrophage and the intracellular Mtb, as

evidenced by the unique labeling profile of proteinogenic amino

acids from these two fractions (Figures 1A and 1C). The labeling

profiles of proteinogenic amino acids from infected and unin-

fected macrophages were virtually identical, indicating that

Mtb infection does not significantly perturb the nitrogen meta-

bolism of macrophages (Figures 1A and 1B).

In accordance with expectations, most of the amino acids

derived from macrophages remained unlabeled, reflecting their

direct uptake from unlabeled nitrogen sources in the tissue

culture media rather than from any transamination from the

tracer (Figure 1A). This is not the case for intracellular Mtb.

For example, labeled nitrogen from 15N1-Asp,
15N1-Glu, or

15N2-Gln was incorporated predominantly into Asp/n, Glu/n,

and isoleucine (Ile) in the macrophage, but labeling was

measured in nearly all amino acids derived from intracellular
Cell Reports 29, 3580–3591, December 10, 2019 3581



Figure 1. Assimilation Pattern of Different Nitrogen Sources

(A–D) Heatmaps are shown for amino acids derived from Mtb-infected macrophages (A), uninfected macrophages (B), intracellular Mtb (C), and in-vitro-grown

Mtb in rosins minimal media (D). Assimilation patterns are shown for six tracers: 15N1-Asp,
15N1-Glu, 15N2-Gln, 15N1-Leu,

15N1-Ala, and
15N1 Gly. Essential amino

acids for macrophages are highlighted in blue. Heatmaps were produced using enrichment (%) of amino acids recorded for each of the individual tracer ex-

periments in Data S1. Themaximum andminimum enrichments for each heatmap are described using color keys. Enrichments are shown for the following amino

acids: alanine (Ala), m/z 260; glycine (Gly), m/z 246; valine (Val), m/z 288; leucine (Leu), m/z 274; isoleucine (Ile), m/z 274; methionine (Met), m/z 320; serine (Ser),

m/z 390; threonine (Thr), m/z 404; proline (Pro), m/z 258; phenylalanine (Phe), m/z 336; aspartate/asparagine (Asp/n), m/z 418; glutamate/glutamine (Glu/n), m/z

432; lysine (Lys), m/z 431; arginine (Arg), m/z 442; and tyrosine (Tyr), m/z 466, measured using GC-MS.
Mtb (Figures 1A and 1C). These data also reveal potential

directions of transamination in Mtb. For example, nitrogen from
15N2-Gln was assimilated into six amino acids—Asp/n, Glu/n,

Ile, Leu, valine (Val), or Ala in infected macrophages (Fig-

ure 1A)—whereas in Mtb, eight additional amino acids were

labeled (Figure 1C). As the label fromGln has already been trans-

aminated into several amino acids in the macrophage, any of

those macrophage’s amino acids could be the source of the

Mtb’s labeled nitrogen.

NitrogenMetabolism Is CompartmentalizedwhenMtb Is
Growing Intracellularly
Our results demonstrate that nitrogen was assimilated differ-

ently, depending on the original amino acid source in intracel-

lular Mtb. We use the term ‘‘compartmentalization’’ to refer to

the selective transfer of nitrogen from the tracers to other

amino acids (Figure 1C). For example, nitrogen from 15N1-

Asp, 15N1-Glu, 15N2-Gln, and 15N1-Leu was incorporated into
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many additional amino acids, but nitrogen from 15N1-Ala and
15N1-Gly was incorporated predominantly into only Ala, Gly,

and serine (Ser) pools, respectively. The enrichment profiles

for amino acids obtained from the tracers were also distinct.

For example, more than 50% of 15N from 15N1-Asp was trans-

ferred to Glu/n: 15N1-Glu to six amino acids, 15N2-Gln to eight

amino acids, and 15N1-Leu to Ile (Figures 1C and 2A). Also,

some amino acids were preferentially labeled by particular

tracers. For example, the labeling of tyrosine (Tyr) indicates

that the nitrogen is transferred from 15N1-Glu/15N2-Gln but not

from 15N1-Asp or any other tracers used. Similarly, nitrogen in

arginine (Arg) can be donated by 15N1-Asp, but not from any

other tested amino acid (Figure 1C). To investigate whether

the compartmentalized nitrogen distribution is restricted to

intracellular growth of Mtb, we performed similar 15N tracer ex-

periments with Mtb grown in Roisin’s minimal media, with glyc-

erol and ammonium chloride as the carbon and nitrogen

source, respectively, with the addition of 15N labeled tracers.



Figure 2. Nitrogen Assimilation is Compartmentalized in Mtb

(A) Distinct enrichment of amino acids from each of the tracers in intracellular Mtb.

(B) 15N assimilation from the tracers into the amino acids in in-vitro-grown Mtb.

(C) Comparison of 15N enrichment from the tracers 15N1-Glu and 15N2-Gln in an infected macrophage.

(D) Comparison of 15N enrichment from the tracers 15N1-Glu and 15N2-Gln in intracellular Mtb.

Values are mean ± SEM from 3–4 biological replicates. Statistically significant differences were calculated using Holm-Sidak multiple t tests; *p < 0.001.
As can be seen, the results demonstrated compartmentalized

distribution of 15N from Asp, Glu, Gln, Leu, Ala, and Gly in to

the amino acid pools (Figures 2B and S2), extending the finding

of Agapova et al. (2019), who demonstrated the compartmen-

talized distribution of nitrogen from Gln and Asn during

in vitro growth of Mtb. It is noteworthy that the promiscuous

pattern of distribution of nitrogen from both 15N1-Ala and
15N1-Gly in vitro is very different from the restricted distribution

found for intracellular Mtb (Figures 1C, 2B, S3E, and S3F). To

check whether this promiscuous label distribution in in-vitro-

grown Mtb was biased by the experimental method, we har-

vested amino acids from in-vitro-grown Mtb using the same

method as described for intracellular Mtb. We found no differ-

ence in label distribution from 15N1-Ala and 15N1-Gly in in-vitro-

grown Mtb using the two methods, which confirmed that the

non-promiscuous pattern of these tracers in intracellular Mtb

was not experimentally biased (Figure S2, II). The non-promis-

cuous pattern for these two tracers in intracellular Mtb sug-

gests that these amino acids are scarce, in comparison to other

amino acids such as Gln within the Mtb phagosome, and are

therefore incorporated directly into biomass by Mtb, rather

than being used as nitrogen donors.
Out of all the nitrogen sources tested, nitrogen from 15N2-Gln

was most widely distributed to other amino acids in intracellular

Mtb, suggesting that Gln is the principal nitrogen donor for Mtb

during intracellular growth (Figures 1C and 2A). The comparison

of enrichment profiles between 15N1-Glu and 15N2-Gln demon-

strated that both tracers gave similar 15N distribution patterns

in amino acids derived from an uninfected macrophage and an

infectedmacrophage (Figures 1A and 1B), but 15N2-Gln provided

significantly higher enrichments than15N1-Glu for the majority of

the intracellular Mtb amino acids (Figure 1C). Direct comparison

of 15N1-Glu and 15N2-Gln demonstrated that therewere no signif-

icant differences in enrichments between 15N1-Glu and 15N2-Gln

in the macrophage (Figure 2C). But in the case of intracellular

Mtb, using the tracer 15N2-Gln resulted in significant enrichments

for the majority of amino acids (Figure 2D).

Uptake versus De Novo Synthesis of Amino Acids in
Intracellular Mtb
To further evaluate the role of each macrophage amino acid pool

in the provision of nitrogen to intracellular Mtb, we calculated the

nitrogen incorporation ratio (NIR) between 15N enrichment of

amino acids in intracellular Mtb and the same amino acid in
Cell Reports 29, 3580–3591, December 10, 2019 3583



Figure 3. Uptake versus De Novo Synthesis of Amino Acids in Intracellular Mtb

(A–H) The NIR of 15N enrichment (%) in intracellular Mtb to infectedmacrophages is shown for Asp/n, m/z 418 (A), Glu/n, m/z 432 (B), Leu, m/z 274 (C), Ile, m/z 274

(D), Val, m/z 288 (E), Ala, m/z 260 (F), Gly, m/z 246 (G), and Ser, m/z 390 (H). An NIR of 1 indicates that the particular amino acid in Mtb was acquired directly from

the macrophage. NIRs were calculated from the enrichments measured from 3–8 individual macrophage infection experiments using the tracers 15N1-Asp,
15N1-

Glu, 15N2-Gln, 15N1-Leu,
15N1-Ala, and

15N1-Gly. Ratios that were not determined for Gly (G) and Ser (H) are indicated by ND, and the asterisk indicates maximum
15N detected in Mtb from 15N2-Gln.
the host macrophage. Amino acids acquired directly from the

host that are not subject to any additional synthesis or meta-

bolism will have similar 15N enrichment as the macrophage

amino acids and an NIR of 1. De novo synthesis or additional

metabolic processes, such as transamination reactions, will be

revealed by different levels of 15N enrichment of amino acids in

Mtb, compared with that of macrophage amino acids. Figures

3A–3G show the ratio of 15N enrichment for seven amino acids

derived from intracellular Mtb compared with amino acids

derived from infected macrophages. Amino acids Val, Ile, and

Ala had an NIR of 1 for more than one tracer tested as the source

of label, suggesting the uptake of these amino acids is directly

from the macrophage by Mtb (Figures 3D–3F). Also, the NIR
3584 Cell Reports 29, 3580–3591, December 10, 2019
was >1 when 15N2-Gln was used as the tracer, suggesting the

biosynthesis of these amino acids in addition to the uptake.

Further clues as to the level of uptake versus biosynthesis can

be gleaned from closer inspection of the data. For example,

when 15N1-Asp was used as the label for the Asp/n pool, the

NIR was <1 (Figure 3A), indicating that any Mtb Asp/n imported

from the macrophage was being diluted with nitrogen from a

source that was less labeled than the macrophage Asp/n pool.

However, when 15N2-Gln was used as the tracer, the ratio for

the Asp/n pools was >4, indicating that any Mtb Asp/n imported

from the macrophage was being diluted with nitrogen from a

source that was at least 43 more labeled than Asp/n pools

from the macrophage. The same was not true when 15N1-Glu



was the source of the label. The obvious conclusion is that the

Asp’s nitrogen in Mtb is largely derived from the macrophage

Gln. Overall, using the tracer 15N2-Gln resulted in the highest

levels of labeling for the majority of the amino acids analyzed,

confirming our previous conclusion that Gln is the predominant

nitrogen donor for intracellular Mtb.

NIR analysis also revealed the exclusivity of nitrogen distribu-

tion in the Gly and Ser pools of intracellular Mtb (Figures 3G and

3H). Nitrogen from Gly is not promiscuous, as the label from
15N1-Gly remained with the Gly and Ser pools. Therefore, Gly

is not a nitrogen donor for Mtb. For Gly, a homologous labeling

with 15N1-Gly gave an NIR less than 1, indicating that Mtb’s

Gly pool is being diluted by a less labeled nitrogen source, but

not any of the tested amino acids, since none of them gave

significant levels of incorporation into Gly (Figure 3G). None of

the tracers tested provided nitrogen to Ser, except for Gly. The

NIR of Ser was 1 for the label from 15N1-Gly, indicating the

biosynthesis of Ser, in which imported Gly is converted to Ser

in intracellular Mtb (Figure 3H).

Development of 15N-FSRA to Probe the Uptake of
Nitrogen Sources from the Host by Mtb
Qualitative conclusions about the uptake of nitrogen sources

can be drawn from simple labeling patterns generated by
15N1-Ala and 15N1-Gly (Figures S3, I and II); however, the Fig-

ure S3 NIR does not account for the intracellular redistribution

of nitrogen. Here, we can use neither the traditional 13C

Metabolic Flux Analysis (MFA), since wewant to infer the uptake,

nor our former 13C-FSA tool, since we have to take too

many possible uptakes into account. We therefore developed
15N-FSRA to model the nitrogen source uptake by intracellular

Mtb. This approach inputs data from the 15N tracer experiments

into an in silicomodel of central nitrogen metabolism in Mtb, but

without making a prior assumption on the number or combina-

tion of potential nitrogen sources. The method calculates the

range of potential explanations in terms of nitrogen uptake flux

relative to biomass contribution, which is consistent with the

available labeling datasets simultaneously. We call this the flux

spectral range (FSR). The FSR of an amino acid gives an unbi-

ased possibilistic measure, reflecting the possible nitrogen

flows.

A 15N metabolic model was constructed for Mtb including ni-

trogen atom transitions and reaction reversibilities (Data S2; Fig-

ure S4). The model was able to analyze the amino acid pairs

Glu/Gln and Asp/Asn as separate pools and was solely con-

strained by the biomass equation taken from our previous

work (Beste et al., 2011). The uptake of 15N labeled amino acids

by Mtb was modeled by using the macrophage-derived amino

acid mass isotopomer distributions as potential intracellular ni-

trogen sources. The measurements of all six tracer experiments

were incorporated into the model. From the labeling data mea-

surements, histidine (His), Arg, cysteine (Cys), and tryptophan

(Trp) were excluded due to the low levels detected. The relative

FSRs (minimum ratio, median, andmaximum ratio) of amino acid

nitrogen uptake flux to the nitrogen content of each amino acid in

biomass were deduced (Data S3). For this analysis, amino acids

with minimum/maximum FSR of �1 indicated that this amino

acid is available in the macrophage and fully incorporated into
Mtb’s biomass, whereas a minimum/maximum FSR of 0 indi-

cates that the amino acid is unavailable and must be completely

synthesized de novo byMtb. Aminimum ormaximum FSR >1 in-

dicates that the uptake of the amino acid is greater than the

biomass requirements; therefore, this amino acid is a likely nitro-

gen donor. It should be noted that amino acids with FSRs be-

tween 0 and 1 may still be nitrogen donors, but the deficit in their

uptake compared to biomass requirement must be made up by

de novo synthesis with an alternative nitrogen source.
15N-FSRA identified 14 amino acids (minimum ratio > 0) that

are available and taken up by intracellular Mtb from the macro-

phage (Table 1). Nine amino acids had FSRs between 0 and 1,

and the biomass nitrogen requirement was met by de novo

synthesis. The narrow FSR of 1 for Ala confirmed our previous

analysis that this amino acid was taken up by Mtb from the

macrophage and incorporated directly into the biomass. The

analysis showed that Gln and Val are both used as nitrogen

donors for the synthesis of other amino acids with high certainty

(minimum FSR > 1). For Asp and Gly, the minimum FSR was >0

and the maximum >1, and they are synthesized de novo but

could also be taken up by Mtb and used as nitrogen donors.

Furthermore, our results revealed that nine amino acids (Asn,

Ile, Leu, methionine [Met], Lys, Tyr, phenylalanine [Phe], proline

[Pro], and threonine [Thr]) are synthetized de novo to suffice

biomass requirements for growth in varying proportions, as

seen from the narrow ratio ranges. The roles of Ser and Glu as

nitrogen donors could not be resolved computationally, as the

minimum FSR was 0 (not taken up from the macrophage) and

maximum FSR > 1 (taken up in excess).

Serine Biosynthesis Is Essential for the Intracellular
Survival of Mtb
15N-FSRA predicted the minimum FSR of Ser to be 0, indicating

that therewas no uptake of this amino acid from themacrophage

and that its biosynthesis is essential for Mtb’s survival inside

the host. To test this prediction, we constructed a serine

auxotroph of Mtb and tested its survival in macropgaes. Ser is

biosynthesized in a multistep reaction using 3-phosphoglyceric

acid (PGA) as the precursor produced during glycolysis. Phos-

phoserine transaminase serC (Rv0884c) catalyzes the addition

of nitrogen to the carbon backbone of pyruvate to form Ser (Fig-

ure 4A; Bai et al., 2011). In addition to being a proteinogenic

amino acid, Ser provides the nitrogen backbone for the synthesis

of Gly and Cys and also replenishes the pyruvate pool in central

carbon metabolism (Figure 4A). Phosphoserine transaminase

serC, the enzyme that aminated pyruvate to form Ser, was pre-

dicted to be essential for the growth of Mtb in vitro (DeJesus

et al., 2017). Here, we successfully generated the DserC

H37Rv Mtb strain. The DserC strain failed to grow without Ser

supplementation, compared to the wild-type (WT) and the com-

plemented strain, DserC::serC (Figure 4B), confirming serine

auxotrophy. Unlike other nitrogen sources that were promiscu-

ous when tested in in vitro (Figure 1D), Ser was not a widely

assimilated in vitro nitrogen source; nitrogen from 15N1-Ser

was distributed predominantly to Gly (Figure 4C). This result

demonstrates the distinct nitrogen distribution between Ser

and Gly via serine hydroxymethyltransferase glyA1, glyA2

(Figure 4A) and was in concord with our earlier analyses in
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Table 1. Flux Spectral Ranges Determined with 15N FSRA

Category

Nitrogen

Source

Flux Spectral Range

Minimum Ratio Maximum Ratio Median

Y Asn 0.06 0.19 0.13

Y Pro 0.31 0.38 0.34

Y Thr 0.37 0.49 0.43

Y Ile 0.52 0.64 0.55

Y Tyr 0.57 0.63 0.60

Y Leu 0.58 0.96 0.61

Y Met 0.64 0.77 0.68

Y Phe 0.63 0.75 0.69

Y Lys 0.78 0.82 0.81

/ Ala 0.98 1 1

0/B Glu 0 1.63 0.02

0/B Ser 0 3.59 1.31

B Gly 0.51 3.17 0.67

B Asp 0.61 12.46 2.11

[ Gln 1.50 11.85 2.47

[ Val 1.82 13.45 2.88

Minimum and maximum FSRs for all computationally accessible amino

acids and the median of their distributions (Data S3). Amino acids are

grouped into five categories: Y, spectral ranges in the interval [0,1) indi-

cate that the biomass nitrogen need has to be fulfilled by de novo synthe-

sis of the amino acid;/, spectral range is essentially 1, nitrogen biomass

requirement is balanced with uptake, and no nitrogen is shared; 0, the

amino acid is not taken up; B, spectral range is inconclusive, as the

amino acid might be synthesized de novo, but may also be a nitrogen

donor; [, spectral ranges are larger then 1, indicating that this amino

acid is available as a nitrogen donor.
Figures 1C and 3H. Furthermore, DserCwas strongly attenuated

for intracellular survival in THP-1 macrophages, as compared

with WT H37Rv and the complemented strain (Figures 4D and

4E). These data validate the 15N-FRSA predictions and confirm

that serine biosynthesis is essential for the intracellular survival

of Mtb.

DISCUSSION

We and others have shown that Mtb co-metabolizes multiple

carbon sources during intracellular growth in the human host

cell (Beste et al., 2013; Ehrt et al., 2018; McKinney et al.,

2000). Here, we demonstrate that this is also the case for nitro-

gen. Using 15N isotopomer profiling and 15N-FSRA systems-

based inference tool, we describe the first nitrogen metabolic

phenotype of Mtb inside human macrophages (Figure 5). With

the 15N-FSRA tool, we predicted that Mtb has access to most

amino acids within the macrophage (Table 1), and this uptake

was insufficient tomeet the biomass requirement for most tested

amino acids and therefore must be complemented with de novo

synthesis from nitrogen donors. This analysis identified the

amino acids Asp, Glu, Gln, Val, Leu, Ala, and Gly as the intracel-

lular nitrogen sources utilized by Mtb in human macrophages.

Further analysis of the data demonstrated that, like carbon

metabolism in Mtb (de Carvalho et al., 2010), nitrogen meta-
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bolism is compartmentalized (Figures 1C and 1D). Our in vitro

results (Figure 1D) are consistent with the results of Agapova

et al. (2019), who demonstrated that Mtb does not show a pref-

erence for any amino acids as nitrogen sources when grown

in vitro. However, in this study, we demonstrate that this is

clearly not the case for Mtb growing inside macrophages.

Instead, the principal nitrogen source for intracellular Mtb ap-

pears to be Gln, but there is a clear pattern of compartmentaliza-

tion of distribution of nitrogen with some sources: Gln is a highly

promiscuous nitrogen donor, whereas other amino acids, such

as Gly and Ala, have a restrictive pattern of nitrogen distribution.

Metabolism has been shown to be compartmentalized in other

bacteria with microcompartments, such as carboxysomes and

metabolosomes, serving to compartmentalize enzymes involved

in particular pathways and to restrict the exposure of toxic inter-

mediates to the rest of the cell (Frank et al., 2013). For example,

in Salmonella enterica, activity of the metabolosome was

required to alleviate acetaldehyde toxicity during ethanolamine

catabolism (Brinsmade et al., 2005). In the case of intracellular

Mtb, different nitrogen sources might be assimilated using en-

zymes that are similarly localized. For example, enzymes gluta-

mine synthetase and asparaginase are demonstrated to function

extracellularly for the catabolism of Gln and Asn, respectively, in

Mtb (Harth et al., 1994; Gouzy et al., 2014a) as a strategy to resist

acidic stress inside the phagosome.

Earlier studies demonstrated that Asp is an intracellular nitro-

gen source for Mtb, and the pathways for Asp/n assimilation

were recently described (Gouzy et al., 2013, 2014a). However,

although our results confirm that Asp is indeed a nitrogen source,

they also demonstrate that, of the tested amino acids, Gln is the

principal source of nitrogen for intracellular Mtb and is the

amino acid whose nitrogen is most widely assimilated (Fig-

ure 1C). Gln is the major fuel for a variety of mammalian cells

including macrophages (Zhang et al., 2017), and THP-1 macro-

phages have previously been shown to assimilate Gln into Glu

(Amorim Franco et al., 2017; Zhao et al., 2013; Choi and Park,

2018). Our previous study demonstrated that carbon from both

Glu and Gln was available to Mtb inside the macrophage (Beste

et al., 2013). Here, we additionally show that Gln, and not Glu, is

the predominant nitrogen donor for intracellular Mtb. Once in

Mtb, Gln can be converted to Glu by glutamate synthase (GltB)

(Lee et al., 2018), and the nitrogen is transferred to other amino

acids by various transaminases (Figure 5). Our results are

thereby consistent with previous studies that have demonstrated

that Glu/n biosynthesis is essential for the intracellular growth

and survival of Mtb (Harper et al., 2008; Gallant et al., 2016; Ven-

tura et al., 2013; Tullius et al., 2003). In addition to being the ni-

trogen donor for other amino acids, Glu/n is also involved in

cell wall synthesis and resisting acid and nitrosative stress (Harth

and Horwitz, 2003; Wietzerbin-Falszpan et al., 1973; Read et al.,

2007). These studies, together with our results, establish Glu/n

as the hub of nitrogen metabolism in intracellular Mtb. Gln was

involved in modulating host cellular immune responses (Dos

Santos et al., 2017), and Mtb infection increased macrophage’s

metabolic dependency on Gln (Cumming et al., 2018). We found

no significant changes in macrophage’s 15N2-Gln assimilation

profile upon infection by Mtb (Figure 1A), but there could be

an increase in the pool sizes of Gln and its related pathway



Figure 4. Serine Biosynthesis Is Essential for the Intracellular Survival of Mtb

(A) Metabolic role of serC in Mtb. serC catalyzes the production of serine from pyruvate. Gly, Cys, and pyruvate are synthesized from Ser.

(B) Growth of wild-type (WT), DserCmutant, and complement DserC::SERC in 7H9 medium supplemented with 10% oleic acid, albumin, dextrose, and catalase

(OADC) tested with and without the addition of Ser. Data are the average of three biological replicates ± SD.

(C) Assimilation of 15N1-SER by WT, DserC, and DserC::SERC in Rosin’s minimal medium with glycerol and NH4Cl. Data are the average of three biological

replicates ± SD.

(D) Growth of WT, DserC, and DserC::SERC in THP-1 macrophages. CFUs (colony forming units) of the three strains were recorded for 0 (before infection), 1, 3,

and 7 days post-infection.

(E) Fold change in CFUs of the three strains over the period of infection.

Data are the average of six independent infection experiments, each with three technical replicates for WT and DserC and one for infection with four technical

replicates for DserC::SERC ± SD. Statistically significant reduction in CFU counts and fold change in CFUs for DserC as compared to the WT and complement

was calculated using Student’s t test. *p < 0.05; ***p < 0.0005. PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; 3P-HPyr, 3-phosphonoox-

ypyruvate; 3P-Ser, 3-Phosphoserine; Cys, cysteine; PGA, 3-phosphoglyceric acid; PYR, pyruvate; PEP, phosphoenolpyruvate; GAP, glyceraldehyde 3phos-

phate; DHAP, dihydroxyacetone phosphate; G6P, glucose-6-phosphate; F6P, fructose 6-phosphate; FBP, fructose bisphosphate; PG6, phosphoglucono-

lactone; RU5P, riboluse 5-phosphate; R5P, ribose 5-phosphate; E4P, erythrose 4-phosphate; S7P, sedoheptoluse 7-phsophate; X5P, xylulose 5-phosphate;

ACCCOA, AcetylCoA; OAA, oxaloacetic acid; MAL, malate; FUM, fumarate; SUC, succinate; SUCCOA, succinyl CoA; OXG, 2-oxoglutarate; ICIT, isocitrate; CIT,

citrate.
intermediates. This leads to an intriguing hypothesis that Mtb

may facilitate its own intracellular survival by metabolizing Gln

in the host, and targeting Glu/n transport and metabolism there-

fore represents a promising avenue for the development of anti-

TB drugs.

Biosynthesis of branched chain amino acids is also essential

for the intracellular survival of Mtb (Awasthy et al., 2009). Here,

we show that the branched chain amino acid Val is acquired

directly by intracellular Mtb and is utilized as a nitrogen donor

in addition to Gln (Figure 3; Table 1). Val was not directly

tested as a tracer for the 15N experiments in the macrophage
and intracellular Mtb, but the Val pool was 15N labeled from all

of the amino acid tracers (except for 15N1-Ala and 15N1-Gly),

suggesting that nitrogen was shared between Val and other

amino acids. A Val auxotroph of Mtb was able to survive in

macrophages (Awasthy et al., 2009); this is consistent with

our FSRA predictions that intracellular Mtb acquired Val from

the host. Nitrogen from Val is reversibly transaminated to

Glu, Ile, and Leu by ilvE, the branched chain transaminase

that is required for mycobacterial survival during infection in

the mice model (Grandoni et al., 1998; Sassetti and Rubin,

2003; Tremblay and Blanchard, 2009). The demonstration by
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Figure 5. Schematic Representation of Ni-

trogen Metabolism (Acquisition and Assimi-

lation) in Intracellular Mtb

Macrophages acquires nitrogen sources Asp

(aspartate), Glu (glutamate), Gln (glutamine), Leu

(leucine), Ala (alanine), and Gly (glycine) directly

from the growth media. Glu/Gln is taken from the

host via yet-unidentified transporter. Asp is

accessible to intraphagosomal Mtb, which it up-

takes from the host macrophages via AnsP1

(Gouzy et al., 2014a). Leu, Ile (isoleucine), and Val

(valine) are acquired from the host macrophages

via yet-unindentified branched chain amino acid,

probably an ABC-type transporter. Ala, Gly, and

Ser are possibly acquired via CycA transport sys-

tem. Gln, Val, and Asp were potential nitrogen

donors for cellular protein synthesis, with Gln as

the principal nitrogen donor in intracellular Mtb

(indicated by asterisk). Nitrogen from Gln was

transaminated primarily to Glu and Asp for the

synthesis of other amino acids. Ala and Gly are

assimilated mainly into Ala, Gly, and Ser pools.

Limited transamination of nitrogen from Ala and

Gly to other amino acids suggests direct assimi-

lation of these two amino acids for biomass-cell

wall synthesis.
Zimmermann et al. (2017) that the biosynthetic genes for

branched chain amino acids were downregulated when Mtb

was growing intracellularly in macrophages is consistent with

our evidence that these amino acids are also available in the

phagosome. Our finding that nitrogen from Leu is assimilated

by intracellular Mtb is surprising, since a DleuD auxotroph of

Mtb was shown to be severely attenuated for growth and viru-

lence in murine bone-marrow-derived macrophages and in

mice, suggesting that Leu was unavailable to Mtb growing

within its host (Chen et al., 2012; Hondalus et al., 2000; Samp-

son et al., 2004). The 15N-FSRA showed that Leu uptake is

insufficient for Mtb’s biomass requirements, indicating that

the uptake must be supplemented by de novo synthesis,

consistent with the auxotrophic results.

Our previous work showed that the carbon backbone of Ala

was acquired from the host and directly incorporated into

Mtb’s biomass (Beste et al., 2013). Here, we show that Ala

was not a nitrogen donor for intracellular Mtb (Figure 1C; Table

1). Gly was also a nitrogen source for intracellular Mtb, but

its nitrogen was similarly not widely assimilated. Both Ala

and Gly are components of the mycobacterial cell wall (Alder-

wick et al., 2015; Mahapatra et al., 2005; Wietzerbin-Falszpan

et al., 1973), so it seems likely that these amino acids acquired

from the host are directly incorporated into cell wall synthesis

(Beste et al., 2013). 15N-FSRA predicted zero uptake of Ser,

suggesting that its biosynthesis may be essential for the intra-

cellular replication of Mtb and thereby a potential drug target.

To test this hypothesis, we constructed a Ser auxotroph of

Mtb and demonstrated that it is severely attenuated for growth

in the macrophage. Our findings validate our systems-based
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approach and highlight Ser biosynthesis, and particularly the

transaminase serC, as a potential drug target.

In addition to biosynthesis, the transport systems of nitrogen

sources are potential targets for anti-TB drug development.

However, there is only limited knowledge of the amino acid

transport systems inMtb (Cook et al., 2009). The Asp transporter

AnsP1 is essential for the virulence of Mtb in murine models

(Gouzy et al., 2013). Although Glu and branched chain amino

transport systems are yet to be identified, the Streptococcus

mutans and Lactococcus lactis glnQHMP system is known to

transport Glu (Krastel et al., 2010; Fulyani et al., 2015), and

Mtb encodes GlnQ and GlnP homologs that could function as

Glu/n transporters (Cole et al., 1998; Braibant et al., 2000). The

common transporter for Ala, Gly, and Ser, cycA, also remains un-

studied (Awasthy et al., 2012; Chen et al., 2012; Cole et al., 1998).

Further investigations are required to define these amino acid

transporters of Mtb.

In summary, we describe the first nitrogen metabolic pheno-

type of intracellular Mtb and the development and application

of a novel computational systems-based tool, 15N-FSRA, to

investigate nitrogen uptake and assimilation of not only Mtb,

but also any intracellular pathogen, in complement with direct

isotopic labeling interpretation. In conclusion, we have identi-

fied that multiple nitrogen sources are acquired and assimi-

lated by Mtb inside the host macrophages, and Gln is the

principal intracellular nitrogen donor. The biosynthetic and

transport systems of these identified nitrogen sources—and

in particular, phosphoserine transaminase—involved in Ser

biosynthesis are a target for the development of innovative

anti-TB therapies.
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design of fluxml: a universal modeling language for 13Cmetabolic flux analysis.

Front. Microbiol. 10, 1022.

Braibant, M., Gilot, P., and Content, J. (2000). The ATP binding cassette (ABC)

transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24,

449–467.

Brinsmade, S.R., Paldon, T., and Escalante-Semerena, J.C. (2005). Minimal

functions and physiological conditions required for growth of salmonella enter-

ica on ethanolamine in the absence of the metabolosome. J. Bacteriol. 187,

8039–8046.

Buescher, J.M., Antoniewicz, M.R., Boros, L.G., Burgess, S.C., Brunengraber,

H., Clish, C.B., DeBerardinis, R.J., Feron, O., Frezza, C., Ghesquiere, B., et al.

(2015). A roadmap for interpreting (13)C metabolite labeling patterns from cells.

Curr. Opin. Biotechnol. 34, 189–201.

Chen, J.M., Uplekar, S., Gordon, S.V., and Cole, S.T. (2012). A point mutation

in cycA partially contributes to the D-cycloserine resistance trait of Mycobac-

terium bovis BCG vaccine strains. PLoS ONE 7, e43467.

Choi, Y.K., and Park, K.G. (2018). Targeting glutamine metabolism for cancer

treatment. Biomol. Ther. (Seoul) 26, 19–28.

Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon,

S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd., et al. (1998). Deciphering the

biology ofMycobacterium tuberculosis from the complete genome sequence.

Nature 393, 537–544.

Cook, G.M., Berney, M., Gebhard, S., Heinemann, M., Cox, R.A., Danilchanka,

O., and Niederweis, M. (2009). Physiology of mycobacteria. Adv. Microb.

Physiol. 55, 81–182, 318–319.

Cowley, S., Ko, M., Pick, N., Chow, R., Downing, K.J., Gordhan, B.G., Betts,

J.C., Mizrahi, V., Smith, D.A., Stokes, R.W., and Av-Gay, Y. (2004). TheMyco-

bacterium tuberculosis protein serine/threonine kinase PknG is linked to

cellular glutamate/glutamine levels and is important for growth in vivo. Mol.

Microbiol. 52, 1691–1702.
Cell Reports 29, 3580–3591, December 10, 2019 3589

https://doi.org/10.1016/j.celrep.2019.11.037
https://doi.org/10.1016/j.celrep.2019.11.037
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref1
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref1
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref1
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref2
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref2
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref2
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref3
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref3
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref3
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref3
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref4
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref4
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref4
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref4
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref5
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref5
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref5
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref5
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref6
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref6
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref6
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref7
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref7
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref7
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref7
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref7
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref9
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref10
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref11
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref11
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref11
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref11
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref12
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref12
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref12
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref13
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref13
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref13
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref13
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref14
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref14
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref14
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref14
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref14
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref15
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref15
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref15
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref16
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref16
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref17
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref17
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref17
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref17
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref18
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref18
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref18
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref19
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref19
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref19
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref19
http://refhub.elsevier.com/S2211-1247(19)31519-0/sref19


Cumming, B.M., Addicott, K.W., Adamson, J.H., and Steyn, A.J. (2018). Myco-

bacterium tuberculosis induces decelerated bioenergetic metabolism in hu-

man macrophages. eLife 7, e39169. https://doi.org/10.7554/eLife.39169.

Das, P., Lahiri, A., Lahiri, A., Sen, M., Iyer, N., Kapoor, N., Balaji, K.N., and

Chakravortty, D. (2010). Cationic amino acid transporters and Salmonella Ty-

phimurium ArgT collectively regulate arginine availability towards intracellular

Salmonella growth. PLoS ONE 5, e15466.

de Carvalho, L.P., Fischer, S.M., Marrero, J., Nathan, C., Ehrt, S., and Rhee,

K.Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compart-

mentalized co-catabolism of carbon substrates. Chem. Biol. 17, 1122–1131.

DeJesus, M.A., Gerrick, E.R., Xu, W., Park, S.W., Long, J.E., Boutte, C.C., Ru-

bin, E.J., Schnappinger, D., Ehrt, S., Fortune, S.M., et al. (2017). Comprehen-

sive Essentiality Analysis of theMycobacterium tuberculosisGenome via Satu-

rating Transposon Mutagenesis. MBio 8, e02133-16.

Dos Santos, G.G., Hastreiter, A.A., Sartori, T., Borelli, P., and Fock, R.A. (2017).

L-Glutamine in vitro Modulates some Immunomodulatory Properties of Bone

Marrow Mesenchymal Stem Cells. Stem Cell Rev. Rep. 13, 482–490.

Ehrt, S., and Rhee, K. (2013). Mycobacterium tuberculosis metabolism and

host interaction: mysteries and paradoxes. Curr. Top. Microbiol. Immunol.

374, 163–188.

Ehrt, S., Schnappinger, D., and Rhee, K.Y. (2018). Metabolic principles of

persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Mi-

crobiol. 16, 496–507.

Eylert, E., Herrmann, V., Jules, M., Gillmaier, N., Lautner, M., Buchrieser, C.,

Eisenreich, W., and Heuner, K. (2010). Isotopologue profiling of Legionella

pneumophila: role of serine and glucose as carbon substrates. J. Biol.

Chem. 285, 22232–22243. https://doi.org/10.1074/jbc.M110.128678.

Eisenreich, W., Dandekar, T., Heesemann, J., and Goebel, W. (2010). Carbon

metabolism of intracellular bacterial pathogens and possible links to virulence.

Nat. Rev. Microbiol. 8, 401–412.

Eoh, H., Wang, Z., Layre, E., Rath, P., Morris, R., BranchMoody, D., and Rhee,

K.Y. (2017). Metabolic anticipation inMycobacterium tuberculosis. Nat. Micro-

biol. 2, 17084.

Eylert, E., Schär, J., Mertins, S., Stoll, R., Bacher, A., Goebel, W., and Eisen-

reich,W. (2008). Carbonmetabolism of Listeriamonocytogenes growing inside

macrophages. Mol. Microbiol. 69, 1008–1017.

Flynn, J.L. (2006). Lessons from experimentalMycobacterium tuberculosis in-

fections. Microbes Infect. 8, 1179–1188.

Frank, S., Lawrence, A.D., Prentice, M.B., and Warren, M.J. (2013). Bacterial

microcompartments moving into a synthetic biological world. J. Biotechnol.

163, 273–279.

Fulyani, F., Schuurman-Wolters, G.K., Slotboom, D.J., and Poolman, B.

(2015). Relative rates of amino acid import via the ABC transporter GlnPQ

determine the growth performance of Lactococcus lactis. J. Bacteriol. 198,

477–485.

Gallant, J.L., Viljoen, A.J., van Helden, P.D., and Wiid, I.J. (2016). Glutamate

dehydrogenase is required by Mycobacterium bovis BCG for resistance to

cellular Stress. PLoS ONE 11, e0147706.

Gouzy, A., Larrouy-Maumus, G., Wu, T.D., Peixoto, A., Levillain, F., Lugo-Vil-

larino, G., Guerquin-Kern, J.L., de Carvalho, L.P., Poquet, Y., and Neyrolles,

O. (2013). Mycobacterium tuberculosis nitrogen assimilation and host coloni-

zation require aspartate. Nat. Chem. Biol. 9, 674–676.

Gouzy, A., Larrouy-Maumus, G., Bottai, D., Levillain, F., Dumas, A., Wallach,

J.B., Caire-Brandli, I., de Chastellier, C., Wu, T.D., Poincloux, R., et al.

(2014a). Mycobacterium tuberculosis exploits asparagine to assimilate nitro-

gen and resist acid stress during infection. PLoS Pathog. 10, e1003928.

Gouzy, A., Poquet, Y., and Neyrolles, O. (2014b). Amino acid capture and uti-

lization within the Mycobacterium tuberculosis phagosome. Future Microbiol.

9, 631–637.

Gouzy, A., Poquet, Y., and Neyrolles, O. (2014c). Nitrogen metabolism in

Mycobacterium tuberculosis physiology and virulence. Nat. Rev. Microbiol.

12, 729–737.
3590 Cell Reports 29, 3580–3591, December 10, 2019
Grandoni, J.A., Marta, P.T., and Schloss, J.V. (1998). Inhibitors of branched-

chain amino acid biosynthesis as potential antituberculosis agents.

J. Antimicrob. Chemother. 42, 475–482.

Harper, C., Hayward, D., Wiid, I., and van Helden, P. (2008). Regulation of ni-

trogen metabolism in Mycobacterium tuberculosis: a comparison with mech-

anisms in Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB

Life 60, 643–650.

Harth, G., and Horwitz, M.A. (2003). Inhibition of Mycobacterium tuberculosis

glutamine synthetase as a novel antibiotic strategy against tuberculosis:

demonstration of efficacy in vivo. Infect. Immun. 71, 456–464.

Harth, G., Clemens, D.L., and Horwitz, M.A. (1994). Glutamine synthetase of

Mycobacterium tuberculosis: extracellular release and characterization of its

enzymatic activity. Proc. Natl. Acad. Sci. USA 91, 9342–9346.

Hondalus, M.K., Bardarov, S., Russell, R., Chan, J., Jacobs, W.R., Jr., and

Bloom, B.R. (2000). Attenuation of and protection induced by a leucine auxo-

troph of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898.

Kloosterman, T.G., and Kuipers, O.P. (2011). Regulation of arginine acquisition

and virulence gene expression in the human pathogen Streptococcus pneu-

moniae by transcription regulators ArgR1 and AhrC. J. Biol. Chem. 286,

44594–44605.

Krastel, K., Senadheera, D.B., Mair, R., Downey, J.S., Goodman, S.D., and

Cvitkovitch, D.G. (2010). Characterization of a glutamate transporter operon,

glnQHMP, in Streptococcus mutans and its role in acid tolerance.

J. Bacteriol. 192, 984–993.

Lee, S., Jeon, B.Y., Bardarov, S., Chen, M., Morris, S.L., and Jacobs, W.R., Jr.

(2006). Protection elicited by two glutamine auxotrophs of Mycobacterium

tuberculosis and in vivo growth phenotypes of the four unique glutamine syn-

thetase mutants in a murine model. Infect. Immun. 74, 6491–6495.

Lee, J.J., Lim, J., Gao, S., Lawson, C.P., Odell, M., Raheem, S., Woo, J., Kang,

S.H., Kang, S.S., Jeon, B.Y., and Eoh, H. (2018). Glutamate mediated meta-

bolic neutralization mitigates propionate toxicity in intracellular Mycobacte-

rium tuberculosis. Sci. Rep. 8, 8506.

Leighty, R.W., and Antoniewicz, M.R. (2013). COMPLETE-MFA: complemen-

tary parallel labeling experiments technique for metabolic flux analysis. Metab.

Eng. 20, 49–55.

Lin, W., Mathys, V., Ang, E.L.Y., Koh, V.H.Q., Martı́nez Gómez, J.M., Ang,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial Strains

Mycobacterium tuberculosis H37Rv Beste et al., 2013 N/A

Mycobacterium tuberculosis DserC H37Rv This work N/A

Mycobacterium tuberculosis DserC::SERC This work N/A

Escherichia coli DH5a Beste et al., 2011 N/A

Experimental Models: Cell Lines

THP-1 human monocytic cell line Beste et al., 2013 ATCC TIB-202

Chemicals, Peptides and Recombinant Proteins

Middle brook7H11 agar Sigma-Aldrich M0428-500G

Middlebrook 7H9 Sigma-Aldrich M0178-500G

Oleic acid-albumin-dextrose-catalase enrichment

supplement-500ml

Becton Dickenson 212351 (4312351)

Rosins minimal media Beste et al., 2011 N/A

Luria-Bertani (LB) medium Sigma-Aldrich L3027-250G

Glycerol Sigma-Aldrich G7893-1L

Tyloxapol Sigma-Aldrich T8761-50G

Fetal calf serum Sigma-Aldrich F9665-500ML

RPMI medium 1640 Sigma-Aldrich R0883
15N1 aspartic acid Sigma-Aldrich 332135-100MG
15N1 leucine Sigma-Aldrich 340960-500MG
15N1 glycine Sigma-Aldrich 299294-250MG
15N2 glutamine Sigma-Aldrich 490032-250MG
15N1 glutamic acid Sigma-Aldrich 332143-100MG
15N1 alanine Sigma-Aldrich 332127-500MG

L-glutamine Sigma-Aldrich G7513-100ML

Hydrochloric acid Sigma-Aldrich 258148-500ML

Phorbol 12-myristate 13-acetate Sigma-Aldrich P8139-1MG

Phosphate buffer saline (PBS) Sigma-Aldrich D8537-500ML

NH4Cl Sigma-Aldrich 299251-20G

tert-butyldimethyl silyl chloride (TBDMSCl) Sigma-Aldrich 00942-10ML

Gigapack III Plus Packaging Extract Agilent Technologies 200204

L-Serine Sigma-Aldrich S4500

Q5 High-Fidelity 2X Master Mix New England Biolabs M0492S
15N1-serine Sigma-Aldrich 609005-500MG

Software and Algorithms

Isotopomer Network Compartmental Analysis (INCA) Young, 2014 N/A

Metalign Lommen, 2009 N/A

13CFLUX2 Weitzel et al., 2013 N/A

Omix Omix Vizualization GmbH & Co. KG

Chemstation Agilent Technologies N/A

Integrative Genomics Viewer University of California N/A

Snap Gene viewer GSL Biotech LLC N/A

Graph Pad Prism 8.0 GraphPad Software N/A

MATLAB The MathWorks, Inc N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

NCBI Primer Blast NIH N/A

Other

Plasmid sequencing Source Biosciences, UK N/A

Whole genome sequencing MicrobesNG, UK N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources should be directed to and will be fulfilled by the Lead Contact, Johnjoe McFadden

(j.mcfadden@surrey.ac.uk). Plasmids and strains generated in this study are available from the Lead Contact with a completed

Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sources of Mycobacterium tuberculosis, E. coli and cell lines used for this study are reported in the Key Resources Table.

METHOD DETAILS

Mycobacterium tuberculosis (Mtb) cultivation
Mtb, H37Rv was cultivated on Middle brook7H11 agar and Middlebrook 7H9 broth with 5% (v/v) oleic acid-albumin-dextrose-cata-

lase enrichment supplement and 0.5% (v/v) glycerol. Roisins minimal media was prepared with the composition described in Beste

et al. (2011) and supplemented with 0.5% glycerol (v/v) as the carbon source and 10mM NH4Cl as nitrogen source, 0.1% tyloxapol

(v/v) at 37�C with agitation (150 rpm).

THP-1 macrophage cultivation
The human monocytic THP-1 cell line was grown in RPMI 1640 medium supplemented with 10% heat inactivated fetal calf serum at

37�C, 5%CO2 and 95%humidity. For 15N labeling experiments, modified RPMI supplemented with 0.2mM L-glutamine was used for

testing 15N1 aspartic acid and 15N1 glutamic acid.RPMI without L-glutamine was used for testing 15N2 glutamine (sigma). RPMI-1640

with 200 mM L-glutamine was used for testing 15N1 leucine,
15N1 ala and 15N1 glycine.

15N isotopic labeling during infection of macrophages with Mtb
For infection, THP-1 cells andMtb cultures were prepared as described in Beste et al., 2013. THP-1 cells (3 X 107) were differentiated

into macrophages for 3 days using 50 nM Phorbol 12-myristate 13-acetate in a 175 cm2 tissue culture flasks. Macrophages were

washed with warm PBS supplemented with 0.49 mM Mg2+ and 0.68 mM Ca2+ (PBS+) and 30 mL of RPMI media was added. Mtb

was grown in 7H9 broth for a week to an optical density of 1 (13 108 colony forming units per ml). Mtb cultures were washed 3 times

with PBS and resuspended in RPMI media and added to the macrophages at a multiplicity of infection- 5. Each amino acid tracer

except for 15N2 glutamine was then added to the Mtb-infected macrophages at 3 times the concentration of that unlabelled amino

acid present in the RPMI. For 15N2 glutamine experiment, RPMI without unlabelled glutamine was used, because a large amount of

unlabelled glutamine was present in RPMI as compared to other amino acids. To reduce the costs of the 15N2 glutamine labeling

experiment, the only glutamine in this RPMI was the tracer itself, added at 1 mM concentration which previously demonstrated

by Tullius et al., 2003 and also confirmed in this study to have no detrimental effect on the macrophages (data not shown). The final

concentration of tracers added during infection were- 0.6 mM 15N1 aspartic acid, 0.53 mM 15N1 glutamic acid, 0.8 mM 15N1 leucine,

0.3mM 15N1 alanine, 1mM 15N2 glutamine and 0.4mM 15N1 glycine. Mtb infectedmacrophages were incubated for 3-4 h at 37�C, 5%
CO2 and 95% humidity. After incubation, macrophages were washed 3 times with PBS, tracers were added and left for 48 h at 37�C,
5% CO2 and 95% humidity. After incubation for 48 h, macrophages were washed with cold PBS and Mtb cultures were harvested

from macrophages using differential centrifugation (Beste et al., 2013). Amino acid hydrolysates were prepared from macrophage

and Mtb using 6 M hydrochloric acid and incubation at 100�C for 24 h. The validity of the method for labeled amino acid extraction

from intracellular Mtb was confirmed by comparing the nitrogen assimilation pattern obtained in RPMI grown labeled Mtb (control)

(Figure S1, II). The control was set up bywashingMtb cultures with PBS and resuspending in RPMI for 48 hwith equal amounts of 15N

isotope tracers that was previously used for infection assays. After 48 h, Mtb in RPMI were harvested followed preparation of amino

acid hydrolysate.
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In vitro 15N isotopic labeling
Mtbwas grown in Roisinsminimal spikedwith 15N isotope tracers and left for 48 h at 37�Cand cultures were agitated at 150 rpm. After

48 h, Mtb cultures were washed with triton, PBS and RIPA buffer. Cultures were harvested and amino acid hydrolysate was prepared

by boiling Mtb in 6M hydrochloric acid for 24 h.

Gas-chromatography mass spectrometry (GC-MS) and 15N mass isotopomer analysis
Amino acid hydrolysates were dried and derivatized using pyridine and tert-butyldimethyl silyl chloride (TBDMSCl) (sigma) (Rossi

et al., 2017; Masakapalli et al., 2013). Amino acids were analyzed using a VF-5ms inert 5% phenyl-methyl column (Agilent Technol-

ogies) on a GC-MS system.MS data were extracted using chemstation GC-MS software andwere baseline corrected usingMetalign

(Lommen, 2009). Mass data were corrected for natural isotope effects using Isotopomer network compartmental analysis (INCA)

platform (Young, 2014). Average 15N in an amino acid was calculated from the fractional abundance of the mass isotopomer in

the entire fragment. For this study measurements > 1% were considered to be significantly enriched by the 15N tracers.

Nitrogen network model (of Mtb)
A nitrogen transition model was set up for Mtb using information available in databases (KEGG, BioCyc, Tuberculist) and literature.

The network model comprises the amino acid biosynthesis pathways of all 20 proteinogenic amino acids, as well as a simplified

nucleotide biosynthesis formulation. Reaction reversibilities and requirements for growth were taken from Beste et al. (2011). For

20 protein-derived amino acids unidirectional uptake reactions were formulated while it was assumed that no backflow of nitrogen

from Mtb to the phagosome exists. The mass isotopomers observed in the macrophage were deconvolved into distributions of

isotopomer species and modeled by additional reactions (Figure S4). For comparability of the inference results across different ni-

trogen uptake constellations, flux values were formulated relative to the biomass synthesis rate. In total, the model has 98 indepen-

dent fluxes, from which 50 are intracellular (40 net, 10 exchange) and 48 nuisance fluxes for modeling the deconvolution of the

substrate species. This nitrogen transition template model was then duplicated per dataset to give rise to a sextuple model (Beyß

et al., 2019), where each sub-model shared flux values, biomass requirements, and growth rate. Eventually, the sextuple model

had 338 free fluxes (50 intracellular and 288 nuisance fluxes) that had to be inferred from 264 independent labeling measurements

(15 measurement groups for Mtb and the host, respectively (Data S2; Figure S4).

15N Flux Spectral Range Analysis (15N-FSRA)
15N-FSRA borrows the concept of parallel data integration from COMPLETE-MFA (Leighty and Antoniewicz, 2013) which, however,

was reformulated resigning the knowledge of the experimentally inaccessible specific amino acid uptake rates and amending the

traditional least-squares fitting approach by a tailored regularization approach to punish model complexity. In short, a penalty

term was added to the weighted least-squares functional

min
v
kymeas � ysimk2S + l1kvk1 + l2kvk22 (1)

where v are the (independent) fluxes, ymeas; ysim the measured/simulated data,S the measurement covariance matrix, and li ; i = 1; 2

regularization parameters punishing non-zero flux values (l1 = 10:0 and l2 = 0:1).

Amulti-start optimization strategy was applied to safeguard against local minimawhile solving Equation (1). The flux fitting proced-

ure was performed with the high-performance simulator 13CFLUX2 (Weitzel et al., 2013) using the multifitfluxes module with 1,000

randomly sampled starting points and the NAG C optimization library (Version 6.23, Oxford, UK) with a maximum number of 250 it-

erations. From the 1,000 runs, those with residuals less than a cut-off of 203.5 were accepted (the overall optimal residual value was

182.01, corresponding to a c2 value > 99.99%, Data S3 and S4). This resulted in 800 accepted fits. From these accepted estimated

flux distributions, FSRs (minimum, maximum, median) for each flux were derived (Table 1). Histograms of all FSRs are available in

supplemental data file S4.

Construction of serC (Rv0884c) knockout strain of H37Rv
The knockout (KO) strainDserCwas constructed using the bacteriophagemediated transduction of wild-type H37Rv (Bardarov et al.,

2002). The strains and plasmid and primers used for this work are listed in Table S1A, B. Briefly, the allelic exchange vector was con-

structed by cloning upstream and downstream flanking regions of serC gene into the cosmid vector pYUB854with res sites flanking

the hygromycin resistance (HYGR) gene. The recombinant cosmid with the allelic exchange substrates was cloned into the PacI site

of the temperature sensitive shuttle phasmid phAEB159 using an in vitro l-packaging reaction (GIGA PackII). The mycobacterio-

phage containing the recombinant pYUB854 was used for transduction of H37Rv. Bacterial cultures were grown up to exponential

phase and washed with pre-warmed 7H9 no tween at 37�C. Phage was added at an m.o.i of 10 and incubated at 37�C for 4 h. After

infection, cells were spun and plated onto 7H11 agar plates containing 100 mg ml-1 hygromycin and 50 mg ml-1 L-serine. Plates were

incubated for 3 weeks and single colonies were picked for mutant screening. The knockout strain was confirmed by whole genome

sequencing analysis where serC gene was deleted in H37Rv (Figure S6A, S6B; Data S5).
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Construction of the complement strain DserC::SERC H37Rv
The complement strain was constructed using the integrating shuttle plasmid pMV361 with hsp60 promoter E. coli origin of replica-

tion (oriE), the attP and int genes of mycobacteriophage L5 (for integration in themycobacterial chromosome) and a kanamycin resis-

tance gene (Kanr) (Stover et al., 1991). serC was amplified using wild-type H437Rv genomic DNA as the template and primers with

EcoRI and HindIII restriction site (Table S1). The amplified fragment was cloned into pMV361 EcoRI and HindIII sites downstream of

the hsp60 promoter. The recombinant plasmid was transformed intoE. coliDH5a competent cells and plated onto LB agar containing

50 mg ml-1 kanamycin. Transformants were confirmed by digestion of the pMV361serC construct with EcoRI and HindIII. The

construct was electroporated into the KO strain DserC and plated onto 7H11 agar plates containing 100 mg ml-1 hygromycin and

25 mgml-1 kanamycin. Plates were incubated for 3 weeks and single colonies were picked for complement strain screening. Genomic

DNA of the complement strain was isolated and the fragment containing hsp60 promoter and serC gene was amplified. The comple-

ment strain had a PCR product of size 923 kb, identical to that of the construct pMV361serC confirming the complementation of the

KO strain Figure S7B.

Growth of DserC and DserC::SERC H37Rv strains
For cultivation in agar plates, strains were grown in 7H11 agar supplemented with OADC. For DserC L-serine was added to the

7H11 + OADC plates at a concentration of 5mM and hygromycin at 100 mg ml-1. For DserC::SERC H37Rv, kanamycin was added

at 25 mg ml-1 to the 7H11 + OADC plates. For liquid cultures, strains were grown in 7H9 medium with OADC. To test for auxotrophy,

DserCwas grown in 7H9 with and without 5mM L-serine. WT and complement was grown in parallel in 7H9mediumwith and without

serine for comparison with the mutant.

Macrophage infections with WT, DserC and DserC::SERC H37Rv strains
THP-1macrophages were cultivated as described in Beste et al. (2013) and 5 X 105 cells were seeded for each infection. WT, mutant

and complement strains were added to the macrophages at an m.o.i of 0.1 for 4 h. After 4 h macrophages were washed and fresh

RPMI mediumwith 10% FBSwas added. Macrophage survivability upon infection with the strains wasmonitored using crystal violet

assays during the period of infection (data not shown). For bacterial survivability test, macrophages were lysed with 0.1% Triton

X-100 at specific time points- 0 (inoculum before infection of macrophage), day 1, day 3 and day 7, and plated on 7H11 agar plates

with OADC. 7H11 plates for DserC strain were supplemented with 5mM serine and hygromycin was added at 100 mg ml-1, and for

DserC::SERC strain, kanamycin was added at 25 mg ml-1. Plates were incubated for 3 weeks at 37�C and colony forming unit ml-1

were recorded for the three strains.

15N1-serine isotopic labeling
Starter cultures of WT, mutant and complement strains were cultivated in 7H9 medium with OADC, 5mM L-serine and respective

antibiotics for 4-5 days. For labeling experiments, starter cultures were spun and re-suspended Roisin’s minimal medium containing

glycerol and ammonium chloride as carbon and nitrogen sources respectively, and with 50 mg ml-1 15N1-serine. Cultures were incu-

bated for 48 h at 37�C. After incubation, cultures were spun and amino acid hydrolysates were prepared as described previously. 15N

enrichment of amino acids was performed with GC-MS as described previously.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Student’s t test and significant differences were calculated using Holm Sidak method in

graph pad prism 8.0. The details of number and type of replicate measurements used for calculating mean and standard error of the

mean (SEM) are included in figure legends. Residual values for FSRA predictions (minimum, maximum, median) were calculated in

13CFLUX2 software and are described in details in the methods section.

DATA AND CODE AVAILABILITY

Data generated in this study are available in the supplemental items
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Figure S1 

 

Figure S1 (I) Relative abundance of free and proteinogenic amino acids in Mtb, Related STAR 

Methods.  Amino acids- free and proteinogenic were harvested by quenching Mtb cells in 

methanol:chloroform (2:1), followed by polar/non-polar biphasic separation of free (FAA) amino acids 

and proteinogenic amino acids (PAA). Free amino acids in the polar phase were dried for GC-MS 

analysis and proteinogenic amino acids in the non-polar phase were isolated by centrifugation and 

hydrolysed in 6M HCl, followed by GC-MS analysis. Values are mean ± SEM from 2 technical 

replicates. Statistical significance, * P < 0.05; **, p < 0.005; *** P < 0.0005. (II) 
15

N enrichment of 

amino acids measured in intracellular Mtb and RPMI grown Mtb (control), Related to Figure 1, 

STAR Methods. Measurements for intracellular Mtb and RPMI grown Mtb were obtained from 

experiments using tracers- 
15

N1-Asp (A), 
15

N1-Glu (B), 
15

N2-Gln (C), 
15

N1-Leu (D), 
15

N1-Ala (E) and 



15
N1-Gly (F). Enrichments were measured ((normalized for each 1mM tracer) in the protein-derived 

amino acids of intracellular Mtb and RPMI grown Mtb following incubation with the tracers for 48 h. 

Values are mean ± SEM from 3-8 biological replicates for intracellular Mtb and from 3 biological 

replicates for RPMI grown Mtb respectively. 

 

Figure S2 

 

Figure S2. (I) 
15

N enrichment of amino acids measured in intracellular Mtb and in vitro-grown 

Mtb, Related to Fig. 1. Data is shown for intracellular Mtb and in vitro-grown Mtb in Roisins minimal 

media following 48 h incubation with each of the tracers 
15

N1-Asp (A), 
15

N1-Glu (B), 
15

N2-Gln (C), 
15

N1-

Leu (D), 
15

N1-Ala (E) and 
15

N1-Gly (F). After incubation, enrichments were measured (normalized for 



each 1mM tracer) in the protein-derived amino acids of intracellular Mtb isolated from the macrophage 

and from Mtb incubated in RPMI. Values are mean ± SEM from 3-8 biological replicates for 

intracellular Mtb and from 3 biological replicates for in vitro-grown Mtb respectively. (II) Comparison 

of amino acid extraction methods M1 vs M2 from in vitro-grown Mtb, Related to Figure 1, STAR 

Methods. M1- the original method used in the manuscript to obtain measurements in Fig. 1D and M2 

is the method followed exactly like for the amino acid harvest from intracellular Mtb (Fig. 1A) with 

extensive washing. We performed quantitative comparisons of M1, M2 with the intracellular data (Fig. 

1A). Fractional labelling was compared for the two amino acid tracers 
15

N1-ALA (A) and 
15

N1-GLY (B). 

The enrichments were normalized to the parent amino acid labels for quantitative comparisons across 

the three methods used for in vitro and intracellular Mtb. Students t-test and Holm-Sidak statistical 

analysis found no significant differences between the enrichment profiles measured with M1 and M2. 

Values are mean ± SEM from 3-8 biological replicates for intracellular Mtb and from 3 biological 

replicates for in vitro-grown Mtb respectively. 

 

Figure S3 

 

Figure S3. Qualitative 
15

N Labelling patterns of intracellular Mtb, infected macrophages and 

growth medium, Related to STAR Methods. The pattern is shown for the tracers- 
15

N1-Ala (I), 
15

N1-

Gly (II) and 
15

N2-Gln (III). Labelled amino acids are filled in black and the unlabelled amino acids in 

white. Amino acids acquired directly from the medium by infected macrophage are indicated by 

arrows. The uncertainty of direct or indirect uptake of amino acids by Mtb from the macrophage is 

indicated by ?. Abbreviations for amino acids- AL (alanine), AR (arginine), AN (asparagine), AS 

(aspartate), AS/N (aspartate/asparagine), GU (glutamate), GN (glutamine), GU/N 



(glutamate/glutamine), GL (glycine), PR (proline), IL (isoleucine), Le (leucine), LY (lysine), ME 

(methionine), PH (phenylalanine), SE (serine), TH (threonine), TY (tyrosine) and VA (valine). 

 

Figure S4 

 

Figure S4. 
15

N FSRA metabolic network of Mtb, Related to Figure 5 and Table 1. Network model 

of nitrogen metabolism. On the right, the input pool deconvolution is shown for GLN (glutamine). 

Biomass pools are coloured in green. ASP/ASN and GLN/GLU pairs occur several times in the 

network and are coloured in red and blue, respectively. Grey coloured metabolites indicate 

intermediate pools. White boxes inside the MTB box code for de novo synthesized amino acids. The 

following abbreviations are used: CITR (citrulline), HSER (homoserine), IND (indole) and ORN 

(ornithine). 

Figure S5 
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Figure S5. (I) Residual values, Related to Table 1 and STAR Methods. Residual values of 1,000 

flux estimations sorted by size. Fits with residual values below the red line (cut-off=182.01) were 

accepted and used for interpretation. (II) Histogram showing the total number of amino acids 

taken up from the macrophage, Related to Table 1 and STAR methods.   

Figure S6 

 

Figure S6. Confirmation of ΔserC mutant and complement ΔserC::SERC strains, Related to 

STAR methods.  (A) Sequence comparisons between the wild type and ΔserC H37Rv strains using 

Artemis. The comparisons show a gap in serC (Rv0884c) gene in the mutant strain confirming the 

deletion of the gene (Data file S5). (B) PCR analysis to confirm the complement ΔserC::SERC. 923kb 

PCR product of hsp60 promoter and serC gene was amplified from the pMV361serC construct (lane 

2) and ΔserC::SERC genomic DNA (gDNA) (lane 5) confirming the complement to have the 

integrated construct pMV361serC. Marker-M, 1- water control, 2- pMV361serC plasmid, 3- WT H37Rv 

gDNA , 4- ΔserC H37Rv gDNA and 5- ΔserC::SERC H37Rv gDNA. 

 

 

 

 

 

 



Table S1. A- Strains and plasmids used for construction of ΔserC mutant and complement 

ΔserC::SERC strains, Related to STAR Methods. B- Primers used for construction of ΔserC 

mutant and complement ΔserC::SERC strains, Related to STAR methods. 

A 

Strain Genotype and relevant characteristics Reference or 

source 

Escherichia coli DH5α Competent cells Beste et al., 2013 

E. coli HB101 F–, thi-1, hsdS20 (rB–, mB–), supE44, recA13, ara-14, leuB6, 
proA2, lacY1, galK2, rpsL20 (strr), xyl-5, mtl-1 

Invitrogen 

E. TOP10 Competent cells, HYG
R
 Thermo Fisher 

Scientific 
E. coli DH5α-
pMV361serC 

Strain harbouring pMV361serC construct, KAN
R
 This work 

M. smegmatis mc
2
155 Easily transformable strain, used for phage preparation Baradov et al., 

2002 
Plasmid 

pYUB854 Cosmid vector, with res sites flanking the HYG
R
 

 gene 

Bardarov et al. 2
002 

pYUB854_LF pYUB854 +  716 bp left flanking sequence of serC (Rv0884c) This work 

pYUB854_RF pYUB854 +  787 bp right flanking sequence of serC 

(Rv0884c) 

This work 

pYUB854_LFRF-AES pYUB854 +  left and right flanking sequence of serC 

(Rv0884c) 

This work 

pMV361 E. coli-Mycobacteria shuttle vector, groEL2 
(hsp60) promoter, KAN

R
, OriM 

Stover et al., 1991 

pMV361serC pMV361 containing serC (Rv0884c) gene, KAN
R
 This work 

Phage 

phAE159 Mycobacterial phage Bardarov et al. 2
002 

phAE159:ΔserC phAE159 + pYUB854_LFRF-AES, HYG
R
 This work 

 

B 

Primer Sequences  

Gene/loci Forward primer (5’-3’) Reverse primer (5’-3’) 

serC (Rv0884c) 
upstream (left 
flanking region), 
allelic exchange 

 
GGTGGTCTTAAGATGATCGGATGCA
GCGACTT 

 
GGTGGTTCTAGACTGGTGGCTGGGTCATAGTG 

 
serC (Rv0884c) 

downstream (right 
flanking region), 
allelic exchange 

 
GGTGGTAAGCTTTAGAGTGCGCACG
TAACAGG 

 
GGTGGTACTAGTCACATCTTCCCAGGCAGGTA 

 
serC (Rv0884c) 

PCR to construct 
pMV361serC 

 
GGTGGTGAATTCATGGCCGACCAGC
TCAC 

 
GGTGGTAAGCTTCTAAAGCCGCTCGACCACC 

 
ΔserC::SERC 

confirmation PCR 

 
ACATACTCACCCGGATCGGA 

 
CGAAGTAGTAGGCGTCGGTC 
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