
94

Journal of Disability Research
2023 | Volume 2 | Issue 3 | Pages: 94–104
DOI: 10.57197/JDR-2023-0040

Sand Cat Swarm Optimizer with Deep Wavelet 
Autoencoder-based Sign Language Recognition 
for Hearing- and Speech-impaired Persons
Mashael M. Asiri1,2,* , Abdelwahed Motwakel3 and Suhanda Drar4

1Department of Computer Science, College of Science and Arts at Mahayil, King Khalid University, Abha, Saudi Arabia
2King Salman Center for Disability Research, Riyadh, Saudi Arabia
3Department of Information Systems, College of Business Administration in Hawtat Bani Tamim, Prince Sattam Bin Abdulaziz University, 
Al-Kharj, Saudi Arabia
4Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi 
Arabia

Correspondence to: 
Mashael M. Asiri*, e-mail: abusharara@kku.edu.sa

Received: May 17 2023; Revised: September 16 2023; Accepted: September 28 2023; Published Online: October 20 2023

ABSTRACT

Sign language is commonly used to interact with people who have speech and hearing disorders. Sign language was exploited for interacting with 
people having developmental impairments who have some or no communication skills. Communication using Sign language has become a fruitful 
means of interaction for speech- and hearing-impaired people. The hand gesture recognition technique is useful for dumb and deaf people by using 
convolutional neural networks (CNNs) and human–computer interface for recognizing the static indication of sign language. Therefore, this study 
presents a new Sand Cat Swarm Optimizer with Deep Wavelet Autoencoder-based Intelligent Sign Language Recognition (SCSO-DWAESLR) tech-
nique for hearing- and speech-impaired persons. In the presented SCSO-DWAESLR technique, computer vision and CNN concepts are utilized for 
identifying sign languages to aid the interaction of hearing- and speech-impaired persons. The SCSO-DWAESLR method makes use of the Inception 
v3 model for the feature map generation process. In addition, the DWAE classifier is utilized for the recognition and classification of different kinds 
of signs posed by hearing- and speech-impaired persons. Finally, the hyperparameters related to the DWAE classifier are optimally chosen by using 
the SCSO algorithm. For exhibiting the effectual recognition outcomes of the SCSO-DWAESLR technique, a detailed experimental analysis was 
performed. The comparative outcome highlights the superior recognition performance of the SCSO-DWAESLR method over existing techniques 
under several evaluation metrics.
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INTRODUCTION

Sign language was introduced for hearing- and speech-
impaired individuals to interact efficiently (Bora et al., 2023). 
A language refers to a system of interaction containing a set 
of written symbols and sounds a person utilizes. However, 
speech- and hearing-impaired persons are not able to use that 
language to interact; instead, they utilize sign language. A 
standardized global form of sign language does not exist and 
consequently, sign languages from various regions or nations 
are not mutually intelligible (Katoch et al., 2022). Deaf indi-
viduals are dependent on sign language as a means of inter-
action in day-to-day life (Novopoltsev et al., 2023). Hearing 
impairment can be categorized as severe, mild, moderate, 
or profound based on the severity of the deafness. People 
with profound or severe hearing disorders cannot attend to 

others and therefore have transmission complexity. This poor 
transmission could affect the mental health of deaf persons, 
including solitude dissatisfaction (Mannan et al., 2022). The 
deaf society communicates with the help of gesture-related 
language, termed sign language. Late detection language is 
known as sign language. Hearing-impaired persons make 
use of sign language motions to connect (Das et al., 2023). 
The hearing society does not detect some gestures that con-
stitute a transmission between a hearing and deaf individual. 
Sign language refers to a system of expression using signs. 
Mostly, hand gestures and facial expressions were utilized 
for transmission. Sign language is also a form of natural lan-
guage (Rwelli et al., 2022). Sign language has its own set of 
vocabulary and alphabets. In deaf cultures, sign languages 
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have served a crucial role in linking people related to cultural 
and ethnic similarities. Sign language relies on facial expres-
sions, hand gestures, and body movements (Duy Khuat et al., 
2021). In sign language communication, lip gestures, facial 
expressions, hands, and eyes are used to send data.

Currently, Sign Language Recognition (SLR) has grabbed 
the attention of many. Currently, DL and ML have attained 
prominent development in the fields of recognition and 
classification (Aarthi et al., 2023). The efficacy of an SLR 
mechanism relies upon how fast and accurately it tracks the 
features and orientations of the hand. There are many algo-
rithms for machine learning and FS (feature extraction). In 
the area of DL, Convolutional Neural Networks (CNNs) are 
the optimal methods leveraged in feature extraction (Herath 
and Ishanka, 2022). With the development and discovery of 
CNN approaches, it has achieved a new height of success. 
Implementing CNN methods in the automated detection of 
sign language is preferred among authors. A SLR method 
could break down the transmission barrier between hearing-
impaired persons and normal people by building a trans-
mission bridge (Grover et al., 2021). Allowing persons with 
hearing disorders to contribute to political, social, and eco-
nomic actions that could assist them become useful assets 
to society.

This study introduces a new Sand Cat Swarm Optimizer 
with Deep Wavelet Autoencoder-based Intelligent Sign 
Language Recognition (SCSO-DWAESLR) technique for 
hearing- and speech-impaired persons. In the presented 
SCSO-DWAESLR technique, computer vision (CV) and 
CNN concepts are utilized for identifying sign language to 
aid communication between hearing- and speech-impaired 
persons. The SCSO-DWAESLR method makes use of the 
Inception v3 model for the feature map generation process. 
In addition, the DWAE classifier is utilized for the recogni-
tion and classification of different kinds of signs posed by 
hearing- and speech-impaired persons. Finally, the hyperpa-
rameters related to the DWAE classifier are optimally cho-
sen by the use of the SCSO technique. For exhibiting the 
effectual recognition outcomes of the SCSO-DWAESLR 
technique, a detailed experimental analysis was performed.

LITERATURE REVIEW

In Eunice and Hemanth (2023) a deep analysis of the pre-
vailing approaches is presented to devise a powerful system, 
deliberating their merits and demerits. Moreover, depending 
on the quality outcomes from the video generation unit, the 
author evaluated the performance of these methods. The 
author explained the future scope of launching real-time 
SLP transmission approaches constructed with advanced 
DL structures for the speech- and hearing-disabled leads to 
imparting employment and education to those people. Abeje 
et al. (2022) introduced an Ethiopian sign language, a new 
SLR mechanism that translated to Amharic alphabets using 
Deep CNN and CV technology. The technique accepts sign 
language imageries as input and presents Amharic text as the 
desirable output.

Li and Meng (2022) developed a multi-view spatiotempo-
ral continuous SLR system. The network has three parts. The 

presented method has the capability of extracting the RGBs 
spatial, temporal attributes and skeleton datasets; the second 
is a sign language encoder system that depends on a trans-
former that could study long-term dependency; the last is a 
CTC expanded as a Connectionist Temporal Classification 
decoder system that can be employed for forecasting the 
meaning of the continuous sign language. In Sharma et al. 
(2021), a wider analysis of different gesture recognition 
techniques, including CNN and ML methods, was tested 
for real-time precision. Three methods: a pretrained VGG16 
with finetuning, VGG16 with transfer learning (TL) and 
a hierarchical NN are examined on a counter of trainable 
variables.

Xu et al. (2021) intended to investigate the use of tensor-
train decomposition in S2VT methods for minimalizing the 
parameter. First, the author systematically study the effect 
of variables of tensor-train factorizations on the method out-
come. Then the author adopted tensor-train decomposition 
in various layers of the S2VT method for establishing six 
tensor-train S2VT approaches for Chinese SLR. Haque et al. 
(2019) developed the SLR structure to recognize 26 gestures 
from the Bangla Sign Language with the use of PYTHON. 
The PCA has been employed to recognize images by 
abstracting the principal component, and the KNN method 
was utilized for the classification stage. The authors Sruthi 
and Lijiya (2019) modeled a signer-independent DL-oriented 
technique to construct an Indian Sign Language (ISL) static 
alphabet detection technique. The author’s analysis presents 
approaches in SLR and applies a CNN framework for recog-
nizing the ISL static alphabet from the binary silhouette of 
the signer hand region.

THE PROPOSED MODEL

In this study, a new SCOS-DWAESLR method was intro-
duced for the detection and classification of sign languages 
for hearing- and speech-impaired persons. In the presented 
SCSO-DWAESLR technique, CV and CNN concepts are 
utilized for identifying sign languages to aid the interac-
tion of hearing and speech-impaired persons. The SCSO-
DWAESLR method comprises a three-stage process such as 
Inception v3 feature extraction, DWAE classification, and 
SCSO-based hyperparameter tuning. Figure 1 illustrates the 
overall flow of the SCOS-DWAESLR system.

Feature extraction using Inception v3

In this work, the Inception v3 model is exploited for feature 
extraction. The network of Inception v3 is a DL technique. 
An effort takes place in training the model utilizing a low-
configured computer when there is no access to a PC (Jena 
et al., 2023). Thus, Inception v3 performs efficiently with TL 
and an important graph of the Inception v3 technique. The 
TensorFlow library can be utilized for retraining Inception’s 
last layer to novel types. A TL algorithm is a data-obtaining 
model which utilizes the preceding layer parameters and 
eliminates the last layer, afterwards retraining the final layer. 



96� M. M. Asiri et al.: Sand Cat Swarm Optimizer for Hearing- and Speech-impaired Persons

Journal of Disability Research  2023

The final layer of resultant nodes can be equivalent to the 
count of database categories. Thus, for the last classifier 
drives (0,1) the model loss is defined as follows:

	
( , [ ])

 
( [ ])

N
i

N
i

loss i class i
Loss

weight class i

�
�
� 	 (1)

Training CNN frequently creates outcomes in over-fitting. 
Thus, this study executed pretraining CNNs to avoid this 
issue. The most popular CNN structures were utilized as 

DenseNet and ResNet. However, an optimum CNN tech-
nique which this study utilized is the Inception v3 technique, 
which is initialization by random weighted and finetuned 
on the database for feature extraction. The Inception v3 
is a pretraining CNN technique which offers the optimum 
F1-score. This technique is the third type of inception fam-
ily CNN technique considered by many enhancements. 
This technique gives an enhanced factorized convulsion 
that decreases the parameter count and retains network 
efficacy. This method utilizes regularized label smoothing. 

Figure 1:  Overall flow of the SCOS-DWAESLR method.
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Furthermore, an auxiliary classifier is utilized to help propa-
gate label data and regularized them.

SLR using the DWAE model

The DWAE model is utilized for the detection of sign lan-
guages. AE is a kind of feedforward network where the 
input is similar to the output (Abd El Kader et  al., 2021). 
Specifically, AE tries to recreate the output from the given 
representation and compresses the input vector into low-
dimensional code. The AE includes three essential elements: 
the decoder, the encoder, and the code. Using the decoder, 
the output is reconstructed from that code.

The standard AE features a stronger inference capability, 
unsupervised feature learning capability, and robustness. 
The properties of Wavelet transform are time–frequency 
localization and focal features. Thus, it is important to com-
bine typical AE and wavelet transform to resolve the real-
time problem. This study presented a new kind of enhanced 
unsupervised NN named the “deep wavelet autoencoder” 
module. The wavelet AE exploited the wavelet function as 
an activation function, which defines different resolutions. 
Equation (2) specifies the decoding stage.

	 ) ˆ(X k Y b�� � � � 	 (2)

In Equation (2), X̂ denotes the outcome of the reconstructed 
vector, ∈ refers to an error value added to the BP model, k 
shows the kernel vector, and b′ represents the bias value.

The training process of the DWAE model is given as 
follows:
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In Equation (3), j characterizes the wavelet activation 
function.

y
1
(r = 1…2…n) represents the lth dimension input of the 

training instance.
V
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factors of wavelet activation function for ith hidden units.
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The activation function of the output layer is designated 
as a sigmoid function like typical AE. T denotes the output 
of DWAE as follows:
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Where v
ri
 represents the weight connected between hidden 

r and ŷ denotes i the reconstructed dimension output of the 
training instances.

Hyperparameter tuning using the SCSO 
algorithm

Lastly, the SCSO algorithm is employed for the hyperpa-
rameter selection of the DWAE model. SCSO technique is 
a new metaheuristic optimization approach. Sand cat (SC) 
lives in mountainous areas and barren deserts (Wang et al., 
2023). The main source of food is Hares, Gerbils, insects, 
and snakes. In appearance, SCs look like domestic cats, but 
one dissimilarity is that their hearing can be highly sensitive 
and they could hear lower frequency noise lower than 2 kHz. 
Thus, they quickly use their special skills to track and attack 
the prey. The SC’s predation is compared to the process of 
finding the optimum value, which is the main motivation of 
this proposed model.

The initialization process is performed randomly so that 
they can be uniformly distributed in the exploration region:

	 0 (0,1) ( )X lb rand ub lb� � � � 	 (7)

In Equation (7), rand shows the randomly generated 
value within [0, 1] and lb and ub denote the upper and lower 
boundaries.

The resultant initial matrix is given as follows:
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In Equation (8), x
i,j
 indicates the jth dimension at ith 

individuals, and there is an overall of N individuals and M 
parameters. However, the matrix of fitness function (FF) can 
be represented as follows:
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The minimum value is found after comparing the fitness 
value, and the individual corresponding to it is the present 
optimum one.
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The SC finds prey by applying its sharp sense of hearing 
that could identify a low-frequency noise lower than 2 kHz:

	  e M M

t
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T
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Here X(t) indicates the immediate location of the SC, and 
X(t) is any one of the populations. r

e
 symbolizes the sensitivity 

range of specific SC in the SC swarm. S
M

 = 2, S
e
 indicates the 

sensitivity range of the SCs, the value linearly declined from 2 
to 0, t shows the immediate count of the iteration, and T denotes 
the maximum amount of iterations. Especially, if S

e
 = 0, r

e
 = 0, 

then the newest location of the SC will also be allocated to 0.
Moreover, R

e
 is put forward, and R

e
 ∈ [0, 2] to ensure a 

steady state between the exploitation and exploration stages, 
and its value is shown below.

	 2  (0,1)e e eR S rand S� � � � 	 (13)

In the prior phase, the SCs attack the target as the search 
process progresses and it can be mathematically modeled as 
follows:

	 (0,1) ( )( )bestdist rand X t X t� � � 	 (14)

	 ( 1) ( )  cos( ) eX t X t dist r�� � � � � 	 (15)

Where dist denotes the distance between the better and 
the existing individuals. q shows the random angle from 0 
to 360. Figure 2 represents the steps involved in the SCSO 
algorithm as explained in Algorithm 1 below.

The transformation of SCSO from the exploration to the 
exploitation phase is related to the variable R

e
. If |R

e
|<1, then 

the SC gets in the closet and captures the target which is in 
the exploitation stage; if |R

e
|>1, it continues to search dis-

similar spaces to search for the prey position which is in the 
exploration stage:
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Algorithm 1  Pseudocode of SCSO algorithm

Initialize the population
Evaluate the FF by using the objective function
Initialization process
While (t ≤ maximal iteration)
  For all the search agents
  �  Attain a random angle by using Roulette Wheel Selection (0° 

≤ α ≤ 360°)
    If (abs(R) > 1)
      Upgrade the searching agent location by using Equation (12)
    Else
   �   Upgrade the searching agenting location by using 

Equation (14)
  End
T = t + 1
End

The SCSO technique not only derives an FF to obtain supe-
rior classification accuracy and defines a positive integer to 
characterize the best outcome of the candidate solution. The 
decline of the classification error rate is assumed as an FF.

	

( ) ( )

.    
100 

 .  
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�

� � 	 (17)

Figure 2:  Steps involved in SCSO. Abbreviation: SCSO, Sand Cat Swarm Optimizer.

Table 1:  Details on database.

Labels   Class   Labels   Class
C1   A   C19   S
C2   B   C20   T
C3   C   C21   U
C4   D   C22   V
C5   E   C23   W
C6   F   C24   X
C7   G   C25   Y
C8   H   C26   Z
C9   I   C27   0
C10   J   C28   1
C11   K   C29   2
C12   L   C30   3
C13   M   C31   4
C14   N   C32   5
C15   O   C33   6
C16   P   C34   7
C17   Q   C35   8
C18   R   C36   9
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RESULTS AND DISCUSSION

In this section, the SLR outcomes of the SCSO-DWAESLR 
method can be tested on the dataset including samples under 
36 classes as shown in Table 1.

Table 2 reports the results of the SCSO-DWAESLR tech-
nique on 70% of TRP. The results illustrated that the SCSO-
DWAESLR technique obtains improved recognition under 
36 class labels.

For instance, with class 1, the SCSO-DWAESLR tech-
nique gains accu

y
, sens

y
, spec

y
, F

score
, and MCC of 98.73, 

77.27, 99.31, 76.12, and 75.48%, respectively. Likewise, 
with class 10, the SCSO-DWAESLR method gains accu

y
, 

sens
y
, spec

y
, F

score
, and MCC of 98.97, 85, 99.43, 83.95, 

and 83.42%, correspondingly. Similarly, with class 20, the 
SCSO-DWAESLR technique gains accu

y
, sens

y
, spec

y
, F

score
, 

and MCC of 99.56, 93.15, 99.75, 92.52, and 92.29% cor-
respondingly. Finally, with class 36, the SCSO-DWAESLR 
method gains accu

y
, sens

y
, spec

y
, F

score
, and MCC of 99.05, 

80.28, 99.59, 82.61, and 82.16%, correspondingly.
Table 3 reports the results of the SCSO-DWAESLR tech-

nique on 30% of TSP. The results illustrated that the SCSO-
DWAESLR method obtains improved recognition under 36 
class labels. For instance, with class 1, the SCSO-DWAESLR 
technique gains accu

y
, sens

y
, spec

y
, F

score
, and MCC of 99.17, 

88.24, 99.52, 86.96, and 86.54%, correspondingly. Likewise, 
with class 10, the SCSO-DWAESLR technique gains accu

y
, 

sens
y
, spec

y
, F

score
, and MCC of 99.63, 95, 99.72, 90.48, 

Table 2:  Classifier outcome of the SCSO-DWAESLR sys-
tem on 70% of TRP.

Labels   Accuy   Sensy   Specy   Fscore   MCC

Training phase (70%)
  1   98.73   77.27   99.31   76.12   75.48
  2   99.09   80.88   99.59   82.71   82.26
  3   99.21   82.86   99.67   85.29   84.93
  4   99.29   91.55   99.51   87.84   87.55
  5   99.17   81.82   99.63   83.72   83.32
  6   99.29   88.00   99.63   88.00   87.63
  7   99.09   84.06   99.51   83.45   82.99
  8   99.01   79.10   99.55   80.92   80.43
  9   99.01   77.27   99.59   80.31   79.87
  10   98.97   85.00   99.43   83.95   83.42
  11   98.97   83.33   99.43   82.19   81.67
  12   99.05   81.25   99.51   81.25   80.76
  13   99.17   85.25   99.51   83.20   82.80
  14   98.89   90.00   99.14   81.82   81.61
  15   99.29   88.89   99.59   87.67   87.31
  16   99.29   86.30   99.67   87.50   87.14
  17   99.21   83.78   99.67   86.11   85.74
  18   99.09   82.86   99.55   83.45   82.99
  19   98.93   73.91   99.63   79.07   78.72
  20   99.56   93.15   99.75   92.52   92.29
  21   99.25   86.89   99.55   84.80   84.44
  22   99.09   86.30   99.47   84.56   84.11
  23   99.13   88.06   99.43   84.29   83.92
  24   99.13   85.48   99.47   82.81   82.41
  25   99.05   84.72   99.47   83.56   83.08
  26   99.13   91.18   99.35   84.93   84.69
  27   99.21   81.16   99.71   84.85   84.53
  28   99.01   80.28   99.55   82.01   81.52
  29   99.13   83.12   99.63   85.33   84.92
  30   99.29   88.57   99.59   87.32   86.97
  31   99.33   85.33   99.75   88.28   87.98
  32   99.01   78.57   99.59   81.48   81.03
  33   98.93   80.56   99.47   81.12   80.57
  34   99.29   89.33   99.59   88.16   87.80
  35   98.93   78.57   99.51   80.29   79.76
  36   99.05   80.28   99.59   82.61   82.16
  Average   99.12   84.03   99.55   83.99   83.58

Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer with 
Deep Wavelet autoencoder-based Intelligent Sign Language Reco-
gnition.

Table 3:  Classifier outcome of the SCSO-DWAESLR sys-
tem on 30% of TSP.

Labels   Accuy   Sensy   Specy   Fscore   MCC

Testing phase (30%)
  1   99.17   88.24   99.52   86.96   86.54
  2   98.80   78.12   99.43   79.37   78.76
  3   99.17   86.67   99.52   85.25   84.83
  4   99.26   93.10   99.43   87.10   86.91
  5   99.07   79.41   99.71   84.38   84.07
  6   98.80   68.00   99.53   72.34   71.88
  7   99.17   77.42   99.81   84.21   84.13
  8   98.61   78.79   99.24   77.61   76.90
  9   99.07   84.85   99.52   84.85   84.37
  10   99.63   95.00   99.72   90.48   90.39
  11   99.17   85.71   99.52   84.21   83.80
  12   98.98   83.33   99.52   84.51   83.99
  13   98.43   69.23   99.52   76.06   75.64
  14   99.07   86.67   99.43   83.87   83.44
  15   98.52   75.00   99.14   72.41   71.70
  16   98.06   62.96   98.96   61.82   60.83
  17   99.26   84.62   99.62   84.62   84.24
  18   99.07   83.33   99.52   83.33   82.86
  19   99.07   87.10   99.43   84.38   83.94
  20   99.44   88.89   99.72   88.89   88.60
  21   98.89   79.49   99.62   83.78   83.34
  22   98.89   74.07   99.53   76.92   76.41
  23   99.26   87.88   99.62   87.88   87.50
  24   99.17   86.84   99.62   88.00   87.58
  25   98.98   82.14   99.43   80.70   80.19
  26   99.44   81.25   100.00   89.66   89.88
  27   99.44   90.32   99.71   90.32   90.04
  28   98.43   79.31   98.95   73.02   72.45
  29   98.80   78.26   99.24   73.47   73.00
  30   98.98   96.67   99.05   84.06   84.31
  31   99.17   92.00   99.34   83.64   83.58
  32   98.43   66.67   99.33   70.18   69.47
  33   98.98   85.71   99.33   81.36   80.94
  34   99.35   80.00   99.81   85.11   84.96
  35   98.98   83.33   99.43   81.97   81.45
  36   99.44   82.76   99.90   88.89   88.86
  Average   99.01   82.31   99.49   82.10   81.72

Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer 
with Deep Wavelet autoencoder-based Intelligent Sign Language 
Recognition.
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and 90.39%, correspondingly. Similarly, with class 20, the 
SCSO-DWAESLR method gains accu

y
, sens

y
, spec

y
, F

score
, 

and MCC of 99.44, 88.89, 99.72, 88.89, and 88.60%, cor-
respondingly. Finally, with class 36, the SCSO-DWAESLR 
system gains accu

y
, sens

y
, spec

y
, F

score
, and MCC of 99.44, 

82.76, 99.90, 88.89, and 88.86%, correspondingly.

Figure 3 reports the average recognition results of the 
SCSO-DWAESLR technique under 70% of TRP and 30% 
of TSP. The outcomes inferred that the SCSO-DWAESLR 
method obtains enhanced values under both classes. For 
instance, with 70% of TRP, the SCSO-DWAESLR technique 
gains average accu

y
, sens

y
, spec

y
, F

score
, and MCC of 99.12, 

Figure 3:  Average outcome of the SCSO-DWAESLR method on 70:30 of TRP/TSP. Abbreviation: SCSO-DWAESLR, Sand 
Cat Swarm Optimizer with Deep Wavelet autoencoder-based Intelligent Sign Language Recognition.

Figure 4:  Accuracy curve of the SCSO-DWAESLR system. Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer with 
Deep Wavelet autoencoder-based Intelligent Sign Language Recognition.
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84.03, 99.55, 83.99, and 83.58%, respectively. Meanwhile, 
with 30% of TSP, the SCSO-DWAESLR technique gains 
average accu

y
, sens

y
, spec

y
, F

score
, and MCC of 99.01, 82.31, 

99.49, 82.10, and 81.72%, correspondingly.
Figure 4 investigates the accuracy of the SCSO-

DWAESLR method during the training and validation 
method on the test database. The figure indicates that the 
SCSO-DWAESLR technique obtains increasing accuracy 

values over increasing epochs. Additionally, the increas-
ing validation accuracy over training accuracy depicts that 
the SCSO-DWAESLR method learns efficiently on the test 
database.

The loss analysis of the SCSO-DWAESLR technique 
at the time of training and validation is illustrated on the 
test database in Figure 5. The results show that the SCSO-
DWAESLR technique reaches closer values of training and 

Figure 5:  Loss curve of the SCSO-DWAESLR system. Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer with 
Deep Wavelet autoencoder-based Intelligent Sign Language Recognition.

Figure 6:  PR curve of the SCSO-DWAESLR system. Abbreviations: PR, precision-recall; SCSO-DWAESLR, Sand Cat 
Swarm Optimizer with Deep Wavelet autoencoder-based Intelligent Sign Language Recognition.
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validation loss. The SCSO-DWAESLR method learns effi-
ciently on a test database.

A brief precision-recall (PR) curve of the SCSO-
DWAESLR technique is illustrated on the test database 
in Figure 6. The results stated that the SCSO-DWAESLR 
method results in increasing values of PR. In addition, it is 
noticeable that the SCSO-DWAESLR technique can reach 
higher PR values in all classes.

In Figure 7, a ROC study of the SCSO-DWAESLR system 
is revealed on the test database. The figure described that 
the SCSO-DWAESLR method resulted in improved ROC 
values. Besides, the SCSO-DWAESLR technique can extend 
enhanced ROC values on all classes.

To verify the improved results of the SCSO-DWAESLR 
technique, a widespread comparison study was performed 
and is shown in Table 4 and Figure 8 (Alnfiai, 2023). The 

Figure 7:  ROC curve of the SCSO-DWAESLR system. Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer with 
Deep Wavelet autoencoder-based Intelligent Sign Language Recognition.

Table 4:  Comparative outcome of the SCSO-DWAESLR 
system with other methods.

Methods   Accuy   Sensy   Specy

SCSO-DWAESLR   99.12   84.03   99.55
SSODL-ASLR   98.57   81.48   99.07
SVM model   93.28   79.45   96.07
Decision tree   89.92   76.59   93.15
KNN model   88.07   75.03   96.30
DNN model   91.52   77.72   93.23
LeNet model   92.14   74.64   92.90
MLP model   93.72   77.63   97.90

Abbreviation: SCSO-DWAESLR, Sand Cat Swarm Optimizer 
with Deep Wavelet autoencoder-based Intelligent Sign Language 
Recognition.

results demonstrate that the DT and KNN models accomplish 
the least performance. Next to that, the DNN, LeNet, MLP, 
and SVM models have managed to reach slightly improvised 
outcomes. Along with that, the SSODL-ASLR technique 
resulted in near-optimal performance with accu

y
 of 98.57%, 

sens
y
 of 81.48%, and spec

y
 of 99.07%. Nevertheless, the 

SCSO-DWAESLR technique reaches higher performance 
with maximum accu

y
 of 99.12%, sens

y
 of 84.03%, and spec

y
 

of 99.55%. These outcomes show the best performance of 
the SCSO-DWAESLR method on the detection and classifi-
cation of sign languages.

CONCLUSION

In this study, a new SCOS-DWAESLR technique is introduced 
for the identification and classification of sign languages for 
hearing- and speech-impaired persons. In the presented SCSO-
DWAESLR technique, CV and CNN concepts are utilized for 
identifying sign languages to aid the interaction of hearing- 
and speech-impaired persons. The SCSO-DWAESLR method 
comprises a three-stage process such as Inception v3 feature 
extraction, DWAE classification, and SCSO-based hyper-
parameter tuning. Here, the hyperparameters related to the 
DWAE classifier are optimally chosen by using the SCSO 
technique. For exhibiting the effectual recognition outcomes 
of the SCSO-DWAESLR technique, a detailed experimental 
analysis was performed. The comparative outcome high-
lights the improved recognition performance of the SCSO-
DWAESLR method over existing techniques under several 
evaluation metrics. In future, the computation complexity of 
the proposed model needs to be investigated.
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