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Abstract

The outbreak of the SARS-CoV-2 pandemic, caused by a previously unknown

infectious agent, posed unprecedented challenges to healthcare systems and

unmasked their vulnerability and limitations worldwide. Patients with long-

term immunomodulatory/suppressive therapies, as well as their physicians,

were and are concerned about balancing the risk of infection and effects of

disease-modifying therapy. Over the last few months, knowledge regarding

SARS-CoV-2 has been growing tremendously, and the first experiences of

infections in patients with multiple sclerosis (MS) have been reported. This

review summarizes the currently still limited knowledge about SARS-CoV-2

immunology and the commonly agreed modes of action of approved drugs in

immune-mediated diseases of the central nervous system (MS and neuromyeli-

tis optica spectrum disorder). Specifically, we discuss whether immunosuppres-

sive/immunomodulatory drugs may increase the risk of SARS-CoV-2 infection

and, conversely, may decrease the severity of a COVID-19 disease course. At

present, it can be recommended in general that none of those therapies with a

definite indication needs to be stopped per se. A possibly increased risk of

infection for most medications is accompanied by the possibility to reduce the

severity of COVID-19. Despite the knowledge gain over the last few months,

current evidence remains limited, and, thus, further clinical vigilance and sys-

tematic documentation is essential.

Introduction

In December 2019, a new viral disease, COVID-19,

initially presenting as pneumonia of unknown etiol-

ogy, emerged in Wuhan (China) and rapidly spread

worldwide. On March 11, 2020 the WHO declared the

disease a pandemic [1,2]. The causative agent was

promptly identified as a novel enveloped RNA-beta-

coronavirus, which is referred to as SARS-CoV-2 due

to its phylogenetic similarity to the SARS coronavirus

[2]. As of August 8, more than 18 902 735 COVID-19

cases have been reported worldwide, of which 709 511

were fatal [3]. The contagiosity of SARS-CoV-2 is

reflected in its basic reproduction number, R0, of 1.5

to 5.7 (for comparisons: measles R0 = 12–18; SARS

R0 = 2–5, influenza R0 = 0.9–2.1). Although most

patients have a relatively mild or even asymptomatic

disease course, several comorbidities, particularly age,

seem to determine the risk of severe disease courses,

including fatalities [4]. Therefore, the COVID-19 pan-

demic and the lack of specific therapies evoked con-

cerns among neurologists about whether patients

treated with immunomodulating/immunosuppressive

therapies for various neurological disorders are

exposed to a higher risk of COVID-19-associated

complications and, thus, how to proceed regarding

initiation, continuation, postponement or interruption

of such disease-modifying therapies. Therefore, we

aimed to provide an overview of the underlying

immunopathology of COVID-19 and the potential

interactions of the modes of action of currently used

disease-modifying drugs in multiple sclerosis (MS) and
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neuromyelitis optica spectrum disorder (NMOSD) as

prototypic neuroimmunological disorders.

COVID-19

The clinical course of COVID-19 is characterized by

three disease phases [5]. The early infection phase rep-

resents either no or only mild symptoms, such as fati-

gue, high body temperature and dry cough, but active

SARS-CoV-2 replication and possibly also lymphope-

nia. With progress of the infection, typical viral pneu-

monia evolves, which might already reflect systemic

inflammation with lymphopenia and elevated transam-

inases. Computed tomography shows bilateral pneu-

monic infiltrates, so-called ground-glass opacities. This

stage potentially advances into systemic hyper-inflam-

mation, constituting the transition into the most sev-

ere disease course. Now, inflammatory cytokines are

strongly elevated and this ‘cytokine storm’ causes viral

sepsis and disseminated intravasal coagulation, which

may both manifest with multi-organ failure and fatal

outcome [5].

Immunopathology of COVID-19

The spike protein of SARS-CoV-2 interacts with the

abundant angiotensin-converting enzyme-related car-

boxypeptidase 2 (ACE2) receptor of the host cell

using the cellular serine protease transmembrane pro-

tease serine subtype 2 (TMPRSS2) for priming [6].

Other potential entry routes have also been described,

including the interaction of viral spike protein and

CD147, which is widely expressed along with inflamed

tissue and lymphocytes [7]. Once having entered the

host cell, viral replication commences, leading to the

formation of virus-containing vesicles, which are sub-

sequently released to facilitate viral spread [8].

To date, the exact mechanism of the specific antigen

presentation and the humoral and cellular as well as

innate immune responses to SARS-CoV-2, are far from

being fully elucidated. The cytopathic properties of

SARS-CoV-2 probably trigger the innate immune sys-

tem via damage-associated molecular patterns and

pathogen-associated molecular patterns, leading

through different pathways, e.g., the nuclear factor-KB

pathway, to secretion of inflammatory cytokines, and

mounting a type I interferon (IFN) response [9,10].

The closely related SARS-CoV uses the nucleocapsid

protein to antagonize IFN-b, which is likely to be a

similar escape mechanism also in SARS-CoV-2 [11].

Indeed, a recent report suggests an impaired IFN type

I response in the case of SARS-CoV-2, which was asso-

ciated with a high viral load, while cellular responses

to stimulation were preserved [12]. In general, severely

affected patients demonstrate a rapid activation of

innate immune pathways with significantly elevated

levels of circulating cytokines. Interleukin (IL)-1b, IL-
1Ra, IL-6, IL-7, IL-10, IP-10 and tumor necrosis fac-

tor-a, in particular, have been associated with disease

progression to acute respiratory distress syndrome, with

this dysfunctional immune response known as a ‘cy-

tokine storm’ [13,14]. Increased IL-6 serum levels, espe-

cially, are correlated with poor clinical outcome [15,16].

The exact cellular source, however, still needs to be

determined. Two, not necessarily mutually exclusive,

scenarios might provide an explanation: ‘primary

hypercytokinemia’, characterized by a hyper-inflamma-

tory response to primary viral infection by monocytes

and resident macrophages, and ‘secondary hypercy-

tokinemia’, driven by hyper-activated T cells. There is

evidence supporting both hypotheses as shown by (i)

expansion of highly inflammatory monocytes as well as

monocyte-derived macrophage with concomitant loss

of tissue-resident macrophages, further associated with

disease progression and secretion of IL-6 and IL-1b
and (ii) expansion of pro-inflammatory CD4 T cells,

although the total number of circulating T cells is

reduced [17-19].

The adaptive immune system plays a fundamental

role in limiting viral infection. Typically, there is a

mild to severe lymphopenia, affecting T cells in par-

ticular, as well as natural killer cells, with an increase

in neutrophils [15,20]. The reason for the decrease in

T cells is not yet fully known; however, inflamma-

tion-related migration and activation-induced cell

death are a likely explanation. Autopsy studies of the

lung showed mononuclear inflammatory infiltrates

predominantly consisting of lymphocytes and multin-

ucleated syncytial cells, with atypical enlarged pneu-

mocytes bearing features of viral cytopathic-like

changes [21]. In this context, a recent paper described

altered phenotypes of immune cells in the peripheral

blood: decrease of central memory CD4/CD8 T cells,

low frequencies of terminally differentiated CD8 T

cells and an overall dramatic reduction of CD11a+ T

cells, which migrate to other tissues, including the

lung, pointing at least partly to an inflammatory-

related migration process [22]. In addition, single-cell

RNA sequencing analysis of bronchoalveolar fluid

showed an increase of CD8 T cells as well as their

clonal expansion [19]. By contrast, an autopsy study

examining lymphoid tissue demonstrated extensive

cell death of lymphocytes in SARS-CoV-2 infection,

implying IL-6 and FAS-FASL (indicating activation-

induced cell death) as a potential underlying

mechanism [23].

In order to control viral infections, T-cell responses

are essential. In the case of SARS-CoV-2, it has been
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demonstrated that predominantly CD4 central mem-

ory as well as CD8 effector memory cells show activ-

ity against viral SARS-CoV-2 proteins [24-26]. In

congruence, mildly diseased patients harbored an

increased expansion of clonal T cells in bronchoalveo-

lar fluid and peripheral blood compared to more

severely diseased patients [19,27]. In general, CD8 T

cells are more strongly activated compared to CD4 T

cells in SARS-CoV-2 [28].

Dysregulation of T-cell responses likely contributes

to COVID-19 severity and, in fact, patients experienc-

ing a severe disease course show lower numbers of T-

regulatory cells, thus possibly pointing to altered

immunosuppressive counter-regulation in severe cases

[15,29]. Additionally, expansion of aberrant pro-in-

flammatory GM-CSF+CD4+ and IL-6+CD4+ T cells

has been observed in critically diseased patients, again

supporting severe immune dysregulation [18]. Further,

functional studies demonstrated suppressed IFN-c
production by CD4 T cells as well as reduced multi-

functionality, while CD8 T cells in severe COVID-19

cases revealed a higher concentration of cytotoxic

components as well as subsequent exhaustion markers,

which may partly contribute to COVID-19-associated

damage. Normalization of lymphocyte counts and

cytotoxicity/exhaustion markers is then observed in

convalescent patients [30].

With regard to humoral immune responses, protec-

tive antibodies can be generated in response to SARS-

CoV-2 infection [31,32]. Seroconversion typically

occurred 7 to 14 days after onset of disease symptoms

[33,34], and convalescent plasma therapy in patients

with severe COVID-19 seemed to positively impact on

the disease outcome [35]. However, it should be borne

in mind that an increased immunoglobulin G (IgG)

response, which is reflected in high antibody titers, is

likely to be associated with a more severe disease

course [36]. This may also indicate a potential patho-

genic IgG response, as known from other virus infec-

tions, via antibody-dependent amplification, or be

explained by a delayed but highly inflammatory

response [37,38]. However, there is currently no evi-

dence in terms of antibody-dependent amplification

[39].

In summary, severely affected COVID-19 patients

exhibit features of severe immune dysregulation as

reflected by (i) hypercytokinemia due to a potentially

delayed (hyper-) inflammatory response of the innate

immune system and (ii) reduced numbers of total T

cells, of which the remaining are partly hyperactivated

and may display exhaustion. Antibody production

likely contributes to recovery and there is no evidence

to date that antibodies are involved in exacerbating

pathogenesis.

Disease-modifying therapies

In MS and NMOSD, immunomodulatory and

immunosuppressive therapies are widely used to

improve the course of the disease. The SARS-CoV-2

pandemic poses two important questions to neurolo-

gists regarding disease-modifying therapies: i) Is the

risk of infection with SARS-CoV-2 increased? and ii)

Is the risk of a severe COVID-19 course higher, or

might it even be lower? As the first question has

already been addressed extensively in the literature

and study findings have been just recently excellently

compiled [40], the present review focuses on question

ii), that is, on the potential mechanisms of action of

disease-modifying therapies and the immunopathology

of SARS-CoV-2 (Fig. 1).

Interferon b

Interferon b, belonging to type I IFNs, is a long-

established therapy in MS. Its mode of action is sug-

gested to be manifold, involving decreased levels of

co-stimulation, reduction of pro-inflammatory cyto-

kine release, inhibition of transmigration of immune

cells across the blood–brain barrier and enhancement

of T-cell regulatory function (for review see Kieseier

[41]). IFNs were originally discovered to have an abil-

ity to ‘interfere’ with viruses [42]. The IFN pathways

are triggered by pattern recognition receptors through

recognition of viral components [43]. IFN-b leads, in

an autocrine and paracrine manner, to a cascade of

signaling pathways by binding to the IFN-a/b recep-

tor (IFNAR) complex, leading to downstream cascade

via the JAK-STAT pathway and finally to the induc-

tion of IFN-stimulated genes (ISGs). To date, more

than a hundred ISGs have been identified; mostly,

they interfere with viral infection by inhibiting cell

entry and by downregulation of protein and RNA

synthesis [44]. So far, only few data are available pro-

viding mechanistic insights into the interaction of

SARS-CoV-2 and IFN-b. However, there is evidence

regarding the closely related SARS and MERS, for

which IFN-b was proposed as a possible treatment.

For both SARS and MERS, in vitro data described

IFN-b as the most potent inhibitor among IFNs

[45,46]. However, data in humans are inconsistent,

mostly due to different study designs, combination of

therapies and heterogeneous patient cohorts, and do

not permit a final conclusion on IFN-b efficacy

[47-49].

Interestingly, SARS-CoV has developed mecha-

nisms to antagonize IFN responses on multiple levels

[11,50,51]. Whether these mechanisms are conserved

in SARS-CoV-2 remains to be elucidated as well.
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Some data show suppressed IFN responses in

COVID-19 patients; other data highlight that SARS-

CoV-2 is more susceptible to treatment with IFN-b
[12,52,53]. Generally, phase III trials on IFN-b did

not reveal an elevated risk of infections [54-56]. The

MS patients with SARS-CoV-2 infection and IFN-b
treatment that have been reported to date experi-

enced a mild disease course [57]. To our knowledge,

of the published larger cohorts with a positive

SARS-CoV-2 PCR, seven patients were on IFN-b
treatment, one needed hospitalization and none

required intensive care unit (ICU) treatment or died

[58-62]. Therefore, there is no evidence to date that

IFN-b exacerbates SARS-CoV-2 infection. The MS

community might provide valuable insights, analyz-

ing susceptibility to SARS-CoV-2 and outcome in

MS patients on IFN treatment. In our view, IFN-b
possesses the potential ability to strengthen the viral

defense mechanism, thereby reducing the risk of sev-

ere infection.

Summary

1) Risk of SARS-CoV-2 infection: no increased risk,

support of viral defence appears possible.

2) Risk of aggravated COVID-19 disease course: not

to be expected.

Glatiramer acetate

Glatiramer acetate (GA) is composed of randomly

sized synthetic peptides consisting of four amino acids

(tyrosine, alanine, lysine and glutamic acid). Initially

explored to mimic myelin basic protein and, therefore,

to be used to induce experimental autoimmune

encephalomyelitis, it was later shown that GA effec-

tively reduces relapse rate in MS patients [63]. The

exact mechanism of action is still unclear, however,

altering T-cell response to myelin proteins and initiat-

ing a shift from Th1 to Th2 induction of T-regulatory

cells and modulation of B-cell responses are supposed

mechanisms of action (for review see Rommer et al.

Figure 1 Potential effects of disease-

modifying therapies on SARS-CoV-2

infection. Disease-modifying therapies

can potentially impact on SARS-CoV-2

infection in a manifold way. Dashed

lines represent questionable/putative

pathways influencing SARS-CoV-2-re-

lated replication, leukocyte recruitment

or tissue damage. Brown circles repre-

sent monocytes. DHODH, dihydrooro-

tate dehydrogenase; DMF, dimethyl

fumarate; IFN, interferon; IFNAR,

interferon-a/b receptor; IL, interleukin;

IL-6R, interleukin-6 receptor; ISG, inter-

feron-stimulated gene; KEAP, Kelch-like

ECH-associated protein, antioxidant

response element.

]
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[64]). So far, available data indicate that GA therapy

is hardly susceptible to infections [65,66]. Therefore, it

is unlikely that GA significantly influences the

immune response to SARS-CoV-2. To our knowledge,

of the published larger cohorts with a positive SARS-

CoV-2 PCR test, 13 patients were on GA treatment,

one needed hospitalization, one required ICU treat-

ment and one patient died [58-62].

Summary

1) Risk of SARS-CoV-2 infection: no increased risk.

2) Risk of aggravated COVID-19 disease course: not

to be expected.

Sphingosine-1-phosphate receptor modulator

Fingolimod resembles the sphingolipid sphingosine

1-phosphate (S1P), which exerts its effects via

G-protein-coupled receptors. At least five receptor

subtypes exist, and fingolimod binds to four of them,

while siponimod selectively binds to S1P1/5, with

S1P1 being the most implicated in exerting its

immunomodulatory effects [67]. By binding to S1PR,

fingolimod/siponimod induce internalization and

thereby inhibit the egress of lymphocytes (for review

see Chun et al. [68]). Preferentially CCR7+ naive T

cells and T central memory cells (preferably CD4 over

CD8) are retained, while T memory effector cells are

spared [69]. However, recently activated T cells might

overcome retention by downregulation of CCR7,

which is in line with evidence showing the ability to

mount an immune response against novel antigens in

fingolimod-treated patients [70,71]. Given the fact that

T memory effector cells are spared, the clearance of

infections by this T-cell subset is in general not

severely impaired [72,73]. However, phase III clinical

trials have shown that fingolimod was associated with

higher frequency of lower respiratory tract infections

and cases of herpes infections [74,75]. Furthermore,

studies revealed that antiviral activity against herpes

virus is diminished by fingolimod treatment, thereby

bearing a slightly increased risk of herpes virus reacti-

vation [76]. The reason for this impaired control

against herpes virus is still a matter of debate; how-

ever, failure of recruitment of lymphocytes from the

naive and the T-central memory subtype might be

implicated. In general, patients receiving fingolimod

treatment are able to mount an immune response in

response to vaccination, leading to seroprotection;

however, response rates are reduced compared to

placebo [77].

Interestingly, preclinical evidence exists that modu-

lating S1P during influenza virus infection ameliorated

lung pathology by reducing infiltration and activation

of inflammatory cells. Also, S1P has been shown to

enhance endothelial barrier function [78,79]. However,

reduction of lung permeability might have a dose-

dependent effect and could also worsen ventilator-in-

duced lung injury [80]. Furthermore, the fact that, in

clinical studies, a higher frequency of dyspnea and

decreased lung function in patients receiving fin-

golimod was reported should be considered, although

the underlying mechanism remains unclear [74].

To date, seven case reports of COVID-19 infection

in fingolimod-treated MS patients have been reported,

with two patients requiring ICU treatment. These

patients were rapidly stabilized and discharged. In all

but one of the seven cases, fingolimod treatment was

stopped due to concerns regarding immunosuppres-

sion. Lymphocyte counts of MS patients rapidly

increased after fingolimod treatment was discontinued.

In the most severe case, high levels of IL-6 were

reported and intubation was necessary. If discontinua-

tion of fingolimod increased the risk of acute respira-

tory distress syndrome, or if fingolimod effect per se is

attributable to this course, remains unknown [81-85].

Notably, two patients remained completely asymp-

tomatic during COVID-19 infection [86]. To our

knowledge, of the published larger cohorts with a pos-

itive SARS-CoV-2 PCR, 24 patients were on S1P-

modulating treatment, three needed hospitalization,

two required ICU treatment and one patient died

[58-62].

It remains to be seen whether the immunomodula-

tory properties and potential effects on the lung will

influence SARS-CoV-2 infections. In our view, a

potential higher risk for infection can be assumed,

and beneficial effects counter-regulating the hyperin-

flammatory response are conceivable.

Summary

1) Risk of SARS-CoV-2 infection: a higher risk is

not excluded.

2) Risk of aggravated COVID-19 disease course: the

potential beneficial effect on SARS-CoV-2-associated

hyperinflammation versus drug-related pulmonary

adverse effects remains to be clarified.

Teriflunomide

Teriflunomide has been reported to interrupt DNA

synthesis in rapidly dividing cells by a non-competitive

reversible inhibition of the mitochondrial enzyme

dihydroorotate dehydrogenase (DHODH), which is

highly expressed in lymphocytes, leading to cytostasis

(for review see Bar-Or et al. [87]. Inhibition of

DHODH interferes with pyrimidine synthesis and

thereby also with viral replication, explaining its
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potential antiviral effects [88]. In fact, in vitro experi-

ments showed that inhibiting DHODH delays SARS-

CoV-2 replication due to pyrimidine depletion [89].

T and B cells are both susceptible to DHODH inhi-

bition, although to different extents. In particular, the

interplay between the two cell types seems to be

affected the most [90,91]. Compared to dimethyl

fumarate (DMF), teriflunomide reduces lymphocyte

counts to lesser extents [92]. In phase III clinical trials,

no increased incidence of infections was observed

compared to placebo [93,94].

Similarly, vaccine responses do not seem to be sub-

stantially altered in teriflunomide-treated patients

[95,96]. All case reports, to our knowledge, on

patients with teriflunomide treatment who have

SARS-CoV-2 infection have reported that they had a

rather mild disease course [97-99]. Of the published

larger cohorts with a positive SARS-CoV-2 PCR,

eight patients were on teriflunomide treatment, one

needed hospitalization, none required ICU treatment

and one patient died [58-62].

Whether the proposed dual mechanism of antiviral

activity and mild immunomodulation will hold true in

the case of SARS-CoV-2 regarding susceptibility and

disease course remains to be seen.

Summary

1) Risk of SARS-CoV-2 infection: no increased risk

to be expected with normal lymphocyte count,

viral replication may even be restricted by mode

of action.

2) Risk of aggravated COVID-19 disease course: not

to be expected; inhibitory effects on SARS-CoV-2

viral replication and hyperinflammatory responses

in SARS to be discussed.

Dimethyl fumarate

Dimethyl fumarate is a second-generation ester of

fumarate, exerting its disease-modifying effects on

multiple levels. A prominent pathway is described for

the activation and stabilization of the nuclear factor

(erythroid-derived 2)-like 2 (Nrf2) and acting as ago-

nist on the hydroxycarboxylic acid receptor 2 (HCA₂)
[100,101]. Via this pathway, antioxidant proteins are

upregulated, leading to a cytoprotective effect of

DMF [102]. Whether these cytoprotective effects may

also play a role in acute severe lung injury in COVID-

19 patients is unknown; nevertheless, experimental evi-

dence exists that restoring the Nrf2 pathway protects

patients from lung injury by reestablishing alveolar

macrophage function and enhancement of antioxidant

gene expression [103-105]. However, DMF also

reduces the number of lymphocytes, presumably via

apoptosis, with CD8 T cells being predominantly

affected [106-108]. Within these subsets, memory T

cells seem to be more susceptible compared to regula-

tory or na€ıve subsets [109]. Given these facts and the

evidence showing reduced T-regulatory cells and pre-

dominance of the effector memory CD8 or central

memory CD4 subtype in the role of severe SARS-

CoV-2 infection, it is tempting to speculate that DMF

contributes to a balanced response to SARS-CoV-2 in

DMF-treated patients and inhibits a hyperinflamma-

tory response [24,25,110]. However, severe lymphope-

nia, although rare, could impair an antiviral response,

thereby reducing viral clearance, prolonging the infec-

tious state and ultimately leading to a more severe dis-

ease course. DMF-associated lymphopenia seems to

be dose-dependent and anecdotal progressive multifo-

cal leukoencephalopathy was reported in patients with

prolonged absolute lymphopenia [111-113]. In phase

III clinical trials, reported infections were similar

among treatment and placebo groups [114,115]. So

far, case series on COVID-19-infected MS patients

receiving DMF treatment report on rather mild dis-

ease courses and no need for intensive care treatment

[116]. Of the published larger cohorts with a positive

SARS-CoV-2 PCR, 27 patients were on DMF treat-

ment, three needed hospitalization, one required ICU

treatment and one patient died [58-62].

Similarly to T cells, circulating mature and differen-

tiated B cells are reduced on DMF treatment, and B

cell responses are altered in an anti-inflammatory

manner [117]. However, immune responses to vaccina-

tions do not seem to be significantly impacted by

DMF [118]. In our view, severe decreased lymphocyte

count might increase infectious risk, however, the

anti-inflammatory and anti-oxidative properties might

influence SARS-COV-2 infection in a beneficial way.

Summary

1) Risk of SARS-CoV-2 infection: a higher risk in

patients with lymphopenia is not excluded.

2) Risk of aggravated COVID-19 disease course:

beneficial effects on hyperinflammatory responses

due to anti-inflammatory and anti-oxidative prop-

erties of DMF to be discussed.

Cladribine

Cladribine is a prodrug, depending on phosphoryla-

tion by deoxycytidine kinase, which is imported into

cells, where it acts as purine nucleoside analogue lead-

ing to interferences with DNA synthesis, finally result-

ing in cell death [119]. The level of deoxycytidine

kinase and the counteracting cytosolic 50-nucleotidases
(5-NT) determines the relative cell-specific toxicity

© 2020 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology
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[120]. Cladribine causes a long-lasting lymphocyte

depletion, predominantly affecting B cells, particularly

memory B cells, and a moderate reduction of T cells,

particularly central and na€ıve T cells compared to

effector T cells, within the first 2 years [121-124].

Grade IV lymphopenia is rare and has been described

in a subset of patients. In those patients, an increased

rate of infection is to be assumed. The effects on the

innate immune system are less pronounced and affect

mainly neutrophil granulocytes and natural killer cells

[125]. Patients on cladribine treatment have a mildly

elevated risk of infections, and more herpes virus

infections were noticed in phase III clinical trials [126-

128]. Safety data on clinical trials and follow-up stud-

ies confirmed that most common viral infections,

except herpes zoster, were not significantly increased

compared to the placebo group [129]. To date, the

impact on vaccination response has not yet been pub-

lished. With regard to cladribine and infectious risks,

one has consider that, due to its recent approval, there

are fewer long-term data on safety in comparison to

the extensive experience with other therapeutic agents.

Summary

1) Risk of SARS-CoV-2 infection: a higher risk is

possible, especially in patients with prolonged

lymphopenia.

2) Risk of aggravated COVID-19 disease course:

may not be increased because of no impairment

of viral immunity in general.

Natalizumab

Natalizumab is a monoclonal antibody targeting a4-
integrin [130]. By blocking a4-integrin on activated T

cells, B cells and myeloid cells, adhesion to endothe-

lium via vascular cell adhesion molecule 1 (VCAM-1)

is prevented, thereby leading to a reduction of blood–
brain barrier transmigration [131-134]. Similarly, it

reduces leukocyte trafficking into the intestinal

endothelium by inhibiting a4b7-integrin interaction

with mucosal vascular addressin cell adhesion mole-

cule 1 (MAdCAM-1) [135]. In general, patients treated

with natalizumab have no increased risk of infections,

with a notable exception for progressive multifocal

leukoencephalopathy, reflecting its strong effect on

interfering with central nervous system immuno-

surveillance [65,136]. The contribution of the very late

antigen-4 (VLA-4)/VCAM-1 or a4b7/VCAM-1 axis

during viral lung infection is not fully elucidated; so

far, there is experimental evidence suggesting a poten-

tially decreased leukocyte recruitment on inhibition

[137,138]. However, it is questionable whether this

effect might play a role in SARS-CoV-2 infection. In

phase III clinical trials, a slightly elevated risk of

infections was noticed [139,140]. Assessing the vacci-

nation response to influenza, there was no difference

for patients under natalizumab treatment [141]. All in

all, there seems to be little evidence for a substantial

impact of natalizumab treatment on immune

responses during SARS-CoV-2 infection. However,

one might consider that SARS-CoV-2 potentially pos-

sesses a neuroinvasive ability, which could have dele-

terious consequences during natalizumab treatment.

So far, we are aware of just two case reports with a

mild COVID-19 infection during natalizumab treat-

ment [142,143]. Of the published larger cohorts with a

positive SARS-CoV-2 PCR, 10 patients were on natal-

izumab treatment, one needed hospitalization, one

required ICU treatment and one patient deceased [58-

62].

Summary

1) Risk of SARS-CoV-2 infection: a higher risk is

unlikely.

2) Risk of aggravated COVID-19 disease course:

appears unlikely, however, it may be speculated

that SARS-CoV-2-associated neurological

complications could be aggravated due to natal-

izumab-related decreased central nervous system

immunosurveillance.

Alemtuzumab

Alemtuzumab is a monoclonal antibody depleting

CD52+ cells by antibody-dependent cell-mediated

cytolysis and complement-dependent cytolysis.

Although CD52 is highly expressed on B and T cells,

the molecular function is poorly understood [144].

Cell depletion by alemtuzumab is profound and

affects more than 95% of CD4 T cells, at least 80%

of CD8 T cells and more than 85% of CD19 B cells

[145]. Lymphocyte recovery is slow, with B cells

repopulating after 7 months, CD8 T cells at approxi-

mately 20 months, and CD4 T cells at approximately

32 months after a single course [146].

Reportedly in phase III trials, infection rates during

alemtuzumab treatment were significantly increased

overall; they were, however, mostly mild to moderate,

including herpes virus, influenza virus and fungal

infections, as well as infections of the respiratory tract

and urinary tract [147,148]. Pooled analyses of phase

III trials and follow-up periods confirmed an

increased infection risk, especially within the first

2 years after treatment initiation [149,150]. In a pilot

study that investigated vaccination responses in MS

patients treated with alemtuzumab in general, it was

shown that the patients triggered an antibody
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response; however, a trend towards lower seroconver-

sions was observed in a study investigating vaccina-

tion responses in alemtuzumab-treated kidney

transplant patients in comparison to other immuno-

suppressant agents [151,152]. The fact that most infec-

tions do not cause life-threatening disease might be

attributable to only minor effects of alemtuzumab to

the innate as compared to the adaptive immune sys-

tem. This is also evident in a rapid repopulation of

natural killer cells, which is even faster compared to

cladribine [123,153]. In light of these profound alter-

ations within distinct immunological compartments,

anti-viral cellular immune responses are likely to be

impaired. However, to date, we are aware of six case

reports on patients who received alemtuzumab and

experienced a mild COVID-19 disease course [154-

157]. Of the published larger cohorts with a positive

SARS-CoV-2 PCR, one patient received alemtuzumab

treatment without reported complications [58-62]

Summary

1) Risk of SARS-CoV-2 infection: a high risk is pos-

sible, especially within the first 2 years.

2) Risk of aggravated COVID-19 disease course:

harmful effects cannot be excluded, however, con-

sistent with a general view on effects of immuno-

suppressants in hyperinflammatory syndrome, it

may be speculated that alemtuzumab has anti-in-

flammatory properties for this condition.

Anti-CD20 monoclonal antibodies

Anti-CD20 monoclonal antibodies deplete CD20+ B

cells via antibody-dependent cellular cytotoxicity or a

complement-dependent mechanism (for review see

Barun and Bar-Or [158]). A minor fraction of T cells

expresses CD20 as well, and they are similarly

depleted, although their exact function is incompletely

understood [159]. Anti-CD20-depleting agents also

affect non-CD20-expressing T cells and experimentally

dampen CD8 T-cell responses; however, it was shown

that myelin-specific T cells are more reduced com-

pared to influenza-specific CD8 T cells [160,161] A

nationwide cohort study found that patients with

CD20-depleting treatment have a general higher risk

of infections, while in phase III clinical trials for ocre-

lizumab there was no significant overall infection rate;

however, upper respiratory tract infections were more

common in the ocrelizumab group compared to pla-

cebo [65,162,163]. However, CD20 depletion does not

seem to increase the risk of influenza infection; never-

theless, there is experimental evidence that T-cell

responses are diminished by CD20 depletion at least

in lymphocytic choriomeningitis (LCMV) infection

[164,165]. The influence of CD20-depleting agents on

macrophages is less clear; it putatively polarization of

macrophages in a less pro-inflammatory way, and sin-

gle reports implied a beneficial effect in macrophage

activation syndrome [166,167]. It remains to be shown

if this modulated response will be beneficial or delete-

rious in the case of SARS-CoV-2. Immune responses

to vaccination are diminished in patients on CD20-

depleting agents compared to untreated or IFN-b-
treated patients, although a protective response can

still be mounted [168]. Although prolonged rituximab

treatment potentially leads to hypogammaglobuline-

mia, two patients with agammaglobulinemia and

SARS-CoV-2 infection did not experience a severe dis-

ease course. [169,170]. To date, the MS patients trea-

ted with CD20-depleting agents and with confirmed

SARS-CoV-2 infection recovered mostly without seri-

ous complications [171-175]. Of the published larger

cohorts with a positive SARS-CoV-2 PCR, 32 patients

received a CD20-depleting agent, seven needed hospi-

talization, four required ICU treatment and three died

[58-62]. Nevertheless, whether an antibody-specific

response will be mounted in CD20-treated patients or

in response to a future anti-SARS-CoV-2 vaccination

is an important matter of current debate [176].

Summary

1) Risk of SARS-CoV-2 infection: a higher risk is

not excluded.

2) Risk of aggravated COVID-19 disease course:

anti-inflammatory effects, e.g., reduced antibody

production, may decrease the severity of hyperin-

flammatory immune reactions. However, effects

on the production of protective antibodies, be

they in response to COVID-19 disease or to a

potential future anti-SARS-CoV-2 vaccination,

are as yet completely unknown.

Complement inhibition

Eculizumab is a terminal complement inhibitor. By

binding with high affinity to complement factor C5, it

compromises cleavage of C5 into C5a and C5b and

thereby inhibits complement-mediated cell lysis [177].

Besides forming the membrane attack complex via

C5b, C5a is a potent chemoattractant involved in the

recruitment of leukocytes [178].

The complement system plays a role in viral

immune defense, however, mostly in pathways prior

to terminal complex formation (for review see Stoer-

mer and Morrison [179]. Nevertheless, patients on

eculizumab treatment have been reported to have

higher rates of viral and bacterial infections, with

invasive Neisseria being the most life-threatening
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[180]. So far, the role of C5 in viral immunopathogen-

esis is poorly understood. Experimental evidence in a

model for influenza and MERS-CoV-2 infection

showed that blockade of the C5 axis leads to reduced

alveolar macrophage and neutrophil infiltration,

resulting in alleviation of tissue damage [181,182],

while knockout of C3 aggravated disease [183]. To

date, four patients with severe COVID-19 have been

treated with eculizumab and did show a marked clini-

cal improvement after infusion [184].

Furthermore, only recently, it was shown in an

experimental model that the N protein of SARS-CoV-

2 possesses the ability to bind and potentiate via

mannose-binding lectin (MBL), leading to an auto-

activation of MASP-2 (lectin pathway) and subse-

quent uncontrolled complement activation. The

authors support their suggestion by showing high

levels of C5a in the serum of patients with severe but

not mild COVID-19 and tested an anti-C5a antibody

successfully in two patients [185]. Whether this mecha-

nism is causal for high C5a in the serum has yet to be

proven; however, safe administration of anti-C5a

reveals an exciting target. In phase III clinical trials

testing eculizumab compared to placebo, the overall

infection rate was similar; however, upper respiratory

tract infections were more common in the eculizumab

treatment group [186].

It remains to be seen whether blockade of C5 by

eculizumab ameliorates rather than aggravates

COVID-19 disease by reducing inflammation and

leukocyte recruitment.

Summary

1) Risk of SARS-CoV-2 infection: data on possible

protection against infection based on experimental

studies are limited, thus, a higher risk is not to be

excluded yet.

2) Risk of aggravated COVID-19 disease course:

potentially beneficial effects have been reported in

a very few patients.

Anti-interleukin-6 receptor monoclonal antibodies

Interleukin-6 acts via the IL-6 receptor (IL-6R) and a

transmembrane protein, namely gp130. IL-6R is

expressed on hepatocytes, lymphocytes and mono-

cytes; gp130 is expressed ubiquitously. IL-6 can also

act by forming a complex with soluble IL-6 receptor,

further binding to gp130 on cells which putatively do

not express the transmembrane IL-6R (trans-signaling

pathway; for review see Kang et al. [187]. Given the

fact that anti-IL-6R antibodies are approved for cyto-

kine release syndrome and that severe COVID-19

patients show elevated IL-6 serum levels, anti-IL-6R

treatment was proposed as a possible treatment

option in COVID-19 [15,188,189]. Indeed, a recent

meta-analysis suggests a beneficial effect of anti-IL-6

treatment in severe SARS-CoV-2 infection [190]. One

question that has to be addressed is the difference

between IL-6 versus IL-6R blockade with regard to

the efficacy of SARS-CoV-2 treatment because

patients treated with anti-IL6 receptor antibody were

reported to have an increased risk of infection [191].

However, to date, we are only aware of one patient

undergoing IL-6R antibody treatment, who developed

a mild form of COVID-19 [192]. In phase III clinical

trials, infections did not differ between treatment and

placebo groups [193,194]. Vaccination studies did not

reveal an inhibited response to influenza or pneumo-

coccal vaccines [195,196].

Summary

1) Risk of SARS-CoV-2 infection: a higher risk is

not excluded.

2) Risk of aggravated COVID-19 disease course: the

approved indication for conditions with cytokine

release syndrome and promising reports of anti-

IL-6R-treated severe COVID-19 cases indicate the

likelihood of beneficial effects in SARS-CoV-2-

caused hyperinflammatory responses.

Conclusion

The outbreak of the SARS-CoV-2 pandemic not only

posed unprecedented challenges for society and the

healthcare system worldwide, but also for respective

medical disciplines. In particular, neurologists treating

patients with immunosuppressive/immunomodulatory

therapies have to balance the risk of a SARS-CoV-2

infection and its course against a possible neurological

disease progression. Although there are genetic simi-

larities, and hence overlaps with other coronaviruses,

experiences of the effects of the SARS-CoV and

MERS-CoV pandemics on neurological autoimmune

disorders are extremely limited. It is thus all the more

important to understand the immunological basis of

both the viral disease and potential interactions of the

drugs used. Although data are limited, current insights

are increasing rapidly and preliminary recommenda-

tions are available [197].

In general, it can be said that, with the current

knowledge, all approved disease-modifying therapies

should be continued unaltered. The benefits in terms

of prevention of further MS or NMOSD disease pro-

gression likely outweigh the risk of infection for

nearly all therapies. However, in the need to switch

therapies, the potentially increased risk of infection

for the now new therapy (see Table 1) must be taken
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into consideration. It should also be noted that thera-

pies such as alemtuzumab, CD20 antibodies and

cladribine are therapies with long-term efficacy due to

long-term immunosuppressive effects. Decrease or

depletion of immune cells lasts at least several

months, thus, individual benefit–risk evaluations,

weighing up the risk of further MS/NMOSD disease

activity versus potentially increased drug-related

SARS-CoV-2 infections, are of paramount impor-

tance. On the (beneficial) contrary, it seems that many

or probably most of the discussed drugs exhibit the

possibility to limit or even decrease the severity of

COVID-19 disease course due to their various anti-in-

flammatory effects. Specifically, there is a growing

number of case reports/series of patients with severe

SARS-CoV-2-associated hyperimmunity and cytokine

release syndrome that are efficiently treated with

immunosuppressive therapies that are established for

the treatment of MS, NMOSD and myasthenia

gravis.
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