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Electroencephalography (EEG) is a widely used technique for the detection of epileptic seizures. It can be recorded in a
noninvasive manner to present the electrical activity of the brain. Te visual inspection of nonlinear and highly complex EEG
signals is both costly and time-consuming. Terefore, an efective automatic detection system is needed to assist in the long-term
evaluation and treatment of patients. Traditional approaches based on machine learning require feature extraction, while deep
learning approaches are time-consuming and require more layers for efective feature learning and processing of complex EEG
waveforms. Deep learning-based approaches also have weak generalization ability. Tis paper proposes a solution based on the
combination of convolution neural networks (CNN) and machine learning classifers. It preprocesses the EEG signal using the
Butterworth flter and performs feature extraction using CNN. From the extracted set of features, the approach selects only the
relevant features using mutual information-based estimators to reduce the curse of dimensionality and improve classifcation
accuracy. Te selected features are then passed as input to diferent machine learning classifers. Te suggested solution is
evaluated on the University of Bonn dataset and CHB-MIT datasets. Our model efectively predicts 2, 3, 4, and 5 classes with
accuracy of 100%, 99%, 94.6%, and 94%, respectively, for the Bonn dataset and 98% for CHB-MIT datasets.

1. Introduction

Epilepsy is a prevalent chronic neural disorder caused by
irregular electrical discharges, which are known as seizures.
Tese seizures can result in abnormal activity of the brain,
unconsciousness, recurrent convulsions, serious injuries,
and in some cases even death. About 50 million people
worldwide are diagnosed with epilepsy with the biggest
impact on children and adults aged 65–70 years [1]. Eighty
percent of epileptic seizures can be controlled if they are
correctly and timely diagnosed [2]. Electroencephalography
(EEG) is a widely used technique for epileptic seizure de-
tection. Te visual analysis of these highly complex EEG
signals is a hectic and time-consuming procedure [3]. It can
also lead to diagnostic errors due to fatigue or the physician’s

lack of concentration. In addition to recording brain activity,
the EEG signals include a signifcant amount of random
noise which can afect the performance of the model [4].
Terefore, it is important to have an efective, accurate, and
timely diagnosis of epileptic seizures in order to initiate
medication and antiepileptic drug therapy to minimize the
risk of potential seizures [3, 5]. Tese challenges inspired
many researchers to fnd an efective and automated solution
for the real-time detection of epileptic seizures.

Given the EEG waveforms, feature extraction and
classifer training are the two fundamental processes for
automatic seizure detection. Researchers have experimented
with diferent combinations of signal preprocessing, feature
extraction, and feature selection methods coupled with
diferent classifcation algorithms. For instance, in [6],
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Martis et al. used empirical mode decomposition (EMD) to
obtain eight intrinsic mode function (IMF). From these
IMF’s, 32 features were extracted and ranked using analysis
of variance (ANOVA). Tey were able to classify normal,
interictal, and ictal classes with 93.55% accuracy using a
classifcation and regression tree (CART). Another study in
[7] used recurrence quantifcation analysis (RQA) as a
feature extraction algorithm in combination with an SVM
classifer. Ein Shoka et al. [8] extracted statistical features.
Tey selected three channels from the multichannel CHB-
MIT database based on the variance.

Wavelet transforms have been considered efcient fea-
ture extractors and are therefore a widely used feature ex-
tractor for interpretation of transient signals.Te work in [9]
has used cross-information potential (CIP) methods along
with tunable-Q wavelet transform (TQWT) for mining
features which are then fed to random forest (RF) classifer.
Alickovic et al. [10] used multiscale principle component
analysis (MPCA) for signal denoising. For feature extraction,
wavelet packet decomposition (WPD) has been used.
Others, such as in [1], used Chebyshev IIR flter for noise
removal and discrete wavelet transform (DWT), which
decomposes the fltered signals into fve sub-bands. Tey
have used only delta sub-band for feature extraction and
applied thresholding to determine the noisy part of the
signal. In the fnal stage of classifcation, they have used an
artifcial neural network (ANN) and a support vector ma-
chine (SVM) [11] and also used DWT to extract temporal
and spectral features, which were then sent to temporal and
fuzzy classifers.

ML-based classifcation models require large a number
of samples for feature extraction. Manual extraction of these
features requires domain knowledge and often results in the
loss of some important details. Deep learning-based tech-
niques, especially CNN, have been widely used for epilepsy
classifcation. Tey overcome the limitations of ML-based
methods and do not require feature extraction and selection.
Tey have the ability that they can automatically perform
feature extraction by learning the internal representation of
the data, but these deeper networks can be difcult to
converge. Like in [4], Acharya et al. trained a 13-layered deep
CNN for a 3-class problem i.e., normal, interictal, and ictal.
Tey obtained accuracy, specifcity, and sensitivity of 88.7%,
90%, and 95% on the University of Bonn Dataset. Ullah et al.
[12] proposed an ensemble-based technique that consists of
one-dimensional pyramidal CNN models and predict the
class label based on consensus. Data augmentation schemes
have been used to overcome the limitations of small dataset.
Te performance of the proposed architecture is evaluated
on University of Bonn datasets. In [13], authors proposed a
new feature fusion CNN model for the classifcation of
normal, preictal, and seizure states. Tis model is based on a
dilated convolution kernel and is an improved version of
conventional CNN. Teir main focus was on reducing the
parameters. Tis model is also tested on three classes of the
Bonn University dataset. Another study in [14] used all fve
classes of the Bonn dataset. Tey obtained two-dimensional
frequency-time scalograms from raw EEG signals using
continuous wavelet transform (CWT) and then trained

CNN on these scalograms. A study conducted in [3] pro-
posed a novel one-dimensional deep neural network con-
sisting of a series of convolutional layers, a batch
normalization layer, a dropout layer, and a max-pooling
layer for robust detection of epileptic seizures.Te authors in
[15] also worked on a 3-class problem. Tey implemented a
hybrid model of CNN and the long short-term memory
(LSTM) network. In [16], Srinath et al. used EMD to de-
compose signal into six IMFs. Te intrinsic features were
computed from these sub-bands. Tese features along with
IMF sub-bands were fed to CNN for classifcation in order to
achieve higher classifcation accuracy. Tis method is tested
on the 2-class problem of the CHB-MIT dataset.

Another study conducted in [17] decomposed the EEG
signals into frequency bands using Fast Fourier Transform
(FFT).Te spectral power andmean spectrum amplitude are
computed for all bands and fed to the LSTM for binary
classifcation. Hu et al. [18] used local mean decomposition
to extract features and then passed them to Bi-LSTM for
classifcation. A research study in [19] presented a network
that employs contrastive supervised learning and replaces
the multiplication with the addition operation in traditional
convolutional networks. Te presented model was tested on
the CHB-MITdataset and obtained an AUC (area under the
curve) score of 94.2%. Tis score represents the capability of
the model to distinguish between the classes accurately.

From the literature, it is observed that deep learning-
based models consisting of approximately 10 or sometimes
even more than that number of layers is required for ac-
curate classifcation. For multiclass problem, deeper archi-
tectures are designed using multiple dense layers, which
results in thousands of parameters. Te research study in [4]
used 13-layers for classifying three classes of epileptic sei-
zures. Such models are computationally and spatially ex-
pensive. On the other hand, machine learning-based models
are easier to learn and give competitive accuracies with the
right features. However, the feature extraction and selection
require domain knowledge and may need to be tuned for
diferent datasets. An appropriate selection of features for
model training is one of the most crucial steps. Deep
learning models can do this step automatically.

1.1.Main Contribution. In the literature, most of the related
studies have reported variable classifcation results for dif-
ferent noninvasive EEG epileptic seizure datasets. Te DWT
was found to be an efective decomposition approach for the
seizures detection. However, diferent researchers employed
a variety of algorithms to extract features from the ap-
proximate and detailed coefcients, obtained through the
DWT. Tere is no general feature extraction algorithm
presented that can work for a variety of EEG datasets. Tese
limitations in the literature motivated us to propose a
method that can work for multiclass, multisubjects, and
multichannel EEG datasets.

Te main contributions of this paper are as follows:

(i) Tis paper proposes a model which uses the au-
tomatic feature extraction capability of neural
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networks and machine learning algorithms for the
prediction of seizures.

(ii) An efective method is suggested for classifcation of
multiclass, multisubjects, and multichannel EEG
signals by using the Butterworth flter, DWT, and
CNN for noise removal and feature extraction.
Approximate and detailed coefcients are extracted
from Butterworth fltered EEG signals using Dau-
bechies order 4 discrete wavelets transform to
remove the redundant information. Te hand
crafted extraction of features from sub-bands in
replaced by the automatic feature extraction capa-
bility of CNN.

(iii) From these extracted features, the features which
have high information gain are selected using the
mutual information. Te selected features are fed to
diferent machine learning classifers for training
and accuracy was reported on two, three, four, and
fve classes.

Te model works by (i) Acquiring EEG signals from
human brain which are preprocessed using Butterworth
flter to flter out noise. (ii) Tese preprocessed and fltered
EEG signals are decomposed into 5 sub-bands using Dau-
bechies order 4 discrete wavelet transform. (iii) Te result is
then fed to the convolutional network layer for feature
extraction. (iv) Mutual information (MI) estimator is used
for selecting the most relevant features among these learned
features of CNN, and (v) Te result is then passed to dif-
ferent machine learning classifers. Te performance of
proposed model is evaluated on the Bonn Dataset and CHB-
MIT dataset. It permits to evaluate the suggested method
performance for the case of for multiclass, multisubjects, and
multichannel EEG datasets. Multiple evaluation metrics are
used for model evaluation such as precision, recall, and F1-
score.

2. Materials and Methods

Te block diagram in Figure 1 describes the approach fol-
lowed in this paper. Te model’s performance is then
evaluated on two, three, four, and fve classes.

In the above fgures, A and D represent the approximate
and detailed coefcients. DWT decomposes the pre-
processed signals into approximate and detailed coefcients
from which features are extracted.

2.1. Dataset Description

2.1.1. University of Bonn Dataset. Te dataset used in this
research is of EEG segments obtained from Bonn University,
Germany [20]. Tese signals are recorded from a 128-
channel amplifer system in a noninvasive manner and using
12-bit analog to digital converter. Each set has a total of 100
single-channel EEG signals with 4097 sample points per
channel. Every signal has duration of 23.6 seconds and a
sampling frequency of 173.61Hz. Te dataset consists of fve
sets of EEG signals: Z, O, N, F, and S which are denoted as A,
B, C, D, and E in this paper.Te recordings in ‘A’ and ‘B’ sets

are obtained from heathy patients with eyes open and closed
whereas the remaining three records contain waveform of
epileptic patients. Record ‘C’ and ‘D’ are interictal signals
that are recorded using seizure-free intervals. EEG signals in
set C are recorded from a region opposite to epileptogenic
zone, whereas set D is constructed by recording EEG signals
from the epileptogenic zone. On the other hand, set E
contains true seizures waveforms. Figure 2 shows the frst
1000 sample points of a randomly chosen EEG waveform
from each set.

In this study, we have used all the fve sets. Each set
indicates one class, and each class consists of 100 instances
with each instance having 4097 sampling points. In this
research paper, we have studied 2, 3, 4, and 5 class problems.
Te details of dataset are given in Table 1. In 2-class problem,
total instances used are 200 whereas for 3, 4, and 5 classes,
500 instances are considered.

2.1.2. Te CHB-MIT Dataset. Another database used to
validate the efectiveness of the proposed model is CHB-MIT
[21]. It is also an open-source EEG database constructed by
Children’s Hospital Boston and theMassachusetts Institute of
Technology (MIT). It contains EEG noninvasive recordings
from 23 pediatric patients, including male patients between
the ages of [3, 22] years and female patients with an age range
of [1.5, 19] years. Tese EEG recordings were recorded using
the International 10–20 system at a sampling rate of 256Hz
and with 16-bit resolution [19]. Te binary classifcation
problem is studied. In total, 1600 instances are considered,
800 for each category. Each instance has a length of 5.0
seconds and contains 1280 sampling points per channel.
Figure 3 shows the frst 1000 sampling points of the randomly
chosen preictal and ictal, signals from the CHB-MITdatabase.

2.2. Preprocessing. Te raw EEG signals obtained from the
dataset are contaminated with noise, which can infuence the
EEG signal’s low-frequency spectrum and can cause loss of
some useful information. Te frequency range of EEG re-
cordings in the Bonn database is 0–86.8Hz. Frequencies
higher than 50Hz are considered as noise. Terefore, pre-
processing of a signal is required to remove the redundant
frequency. For this, all the fve sets of raw EEG signals
obtained from the Bonn dataset are passed through a zero-
phase band-pass Butterworth flter of order 2. Te Butter-
worth flter is a signal processing flter, which is used for
noise removal. Te EEG recordings from both datasets are
passed through the Butterworth flter, which flters out slow-
frequency components, high frequency noise, and limit the
frequency content of the signal to a range of [0.5, 50] Hz.

2.3. DiscreteWavelet Transform. EEG time-series signals are
nonstationary because of electromagnetic interference be-
tween high-frequency oscillators and low-frequency signals
generated due to eye blinks and muscle stretching while
recording [22].We can directly use CNN on raw EEG signals
to extract features but the noise generated during recording
would afect the classifcation accuracy. Also, the results vary
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for diferent datasets. It is quite challenging to capture
frequency information during brain activity [23]. From the
literature review, we observed that wavelet transform (WT)
based methods capture the transient information accurately
by providing both time-domain and frequency domain
information of a signal [24]. Two of the most commonly
used WTmethods include CWTand DWT. CWTprovides a
high level of redundancy, thus, generating a lot of unused
information and calculations [25, 26]. DWT addresses the
weakness of CWT and provide multiscale representation of
EEG signals as shown in Figure 4. Te input signal x[n] is
passed through a series of high-pass (HPF) and low-pass
flters (LPF) and generates approximate and detailed coef-
fcients at every level. D1, D2, D3, and D4 represent detailed
coefcients, whereas A4 is an approximate coefcient.

After the preprocessing step, the Butterworth-fltered
signal is fed to the discrete wavelet transform as an input.
Discrete wavelet transform decomposes signal into sub-
bands. In this paper, we have used the fourth order Dau-
bechies (db4) wavelet as it is the most suitable for epileptic
seizure detection and is known for its orthogonality property
and its smoothing features [27, 28].

2.4. Features Extraction. Previous studies used diferent
feature extraction algorithms to extract features. Some al-
gorithms worked on one dataset, but the features extracted
on other dataset classifed the instances with lower accuracy.
Terefore, instead of manually extracting features, we used
the feature extraction part of CNN to extract features. CNNs
are the deep neural networks that are specialized to auto-
matically learn the internal representations of the data. Tey
use kernels or flters which are convolved over the entire data
to produce feature maps. As mentioned previously we have
performed 2-class, 3-class, 4-class, and 5-class classifcation
for the Bonn dataset, and binary classifcation is performed
for the CHB-MITdataset. One-dimensional CNN is trained
using diferent combinations of kernel numbers and sizes.
Te parameters on whichmaximum accuracy is obtained are
selected. Te learning rate is varied from 0.01 to 0.0001 and
the efect is observed. In case of Bonn dataset, we have used
only one convolution layer and pooling layer to extract
features in a 2-class problem i.e., A vs. E and B vs. E. Tese
features were then fattened to a 1D feature vector, which
was then sent to diferent classifers for classifcation. Our
main focus is to achieve maximum accuracy with a smaller
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Figure 2: Typical EEG waveforms in Bonn dataset.

Table 1: Construction of dataset based on the classifcation
problem.

Classifcation problems Sets combination

2-Class A vs. E
B vs. E

3-Class AB vs. CD vs. E
4-Class AB vs. C vs. 9D vs. E
5-Class A vs. B vs. C vs. D vs. E
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number of layers. Figure 5 shows the CNN architecture
chosen for the 2-class problem in the Bonn dataset.

For the multiclass problem of the Bonn dataset and the
binary classifcation of CHB-MITdataset, we have trained 2-
layered, 4-layered, and 6-layered CNNs. We observed that
the 4-layered CNN architecture performed better in terms of
classifcation accuracy. Te general architecture of CNN is
the same for all the problems, with a slight variation in the
number of kernels used, and is shown in Figure 6.

Tere are two convolution layers followed by maximum
pooling layers. Te input layer is convolved with a kernel of

convolution layer and generates output known as featuremaps.
To introduce nonlinearity in the network and faster learning,
the ReLU activation function is used. It allows the model to
learn faster and overcomes the vanishing gradient problem.
After that, a maximum pooling layer is applied to every feature
map, which reduces the spatial size of featuremaps. Now, CNN
has learned the features, but they are in the form of two-di-
mensional feature maps. After passing through a series of these
layers, the feature maps reach the fatten layer, which fattens
the feature maps into a one-dimensional feature vector so that
they can be fed as an input to the classifers. For classifcation,
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these features are sent to the dense layers of CNN and to ML
classifers. In the classifcation part of CNN, there are three
dense layers. Te number of neurons in the frst two dense
layers is fxed to 50 and 20. Te number of neurons in the last
dense layer is equal to the number of classes. For example, in a
3-class problem, there are 3 neurons in the last layer.

Table 2 shows the parameters selected for 3, 4, and 5 class
problems. Here, K, Ks, and S denotes number of kernels,
kernel size and Stride. Similarly, in maximum pooling layer,

Ps and S represent pooling size and stride. Te feature maps
generated as a result of multiple convolution and pooling
layers are converted to a 1-dimensional array which rep-
resents the total number of features learnt and is represented
by F. N indicates the number of neurons in each dense layer.
Te details of how these parameters are adjusted are given in
Section 3. Te learning rate, epochs and batch-size is set to
0.001, 100, and 12. Te k-fold cross-validation strategy is
employed for CNN training where k is set to 10.

Input
Layer

Conv. Layer
Filters=4, Size= 1×3

Max. Pool
Pool Size=2, Stride= 2 Flatten Layer

50
Neurons

20
Neurons

Fully Connected Layers

2
Neurons

Figure 5: CNN architecture for 2-class problem of Bonn dataset.

Input
Layer Convolution Layer Maximum Pooling

Layer
Maximum Pooling

LayerConvolution Layer Flatten Layer Dense
Layer

Dense
Layer

Dense
Layer

Figure 6: CNN architecture for multiclass problem and binary classifcation for Bonn and CHB-MIT dataset.
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2.5. Feature Selection. Te CNN model learns the features
from every training sample. But some of the features are
redundant or of less importance. Te presence of these ir-
relevant or redundant features can afect the performance
of a network and also increase the data dimensionality [29].
Terefore, we have employed a mutual information (MI)
estimator to reduce the curse of dimensionality and pro-
cessing time by selecting fewer and more relevant features.
It is one of the most widely used estimators for feature
selection due to its ability to detect nonlinear relationships
between the features and the target variable [29]. It mea-
sures the amount of information one can obtain from a
discrete random variable A when a discrete random var-
iable B is given.Tis mutual information is calculated in the
following equation:

I(A; B) � 􏽘
b∈B

􏽘
a∈A

p(A,B)(a, b)log
p(A,B)(a, b)

PA(a)PB(b)
􏼠 􏼡, (1)

where p(A,B) is the joint probability mass function of the
discrete random variables A and B. pA(a) andpB(b) rep-
resents the marginal probability mass functions of A and B
variables. If the mutual information is 0, then the two
variables are strictly independent. Te estimator works by
computing the MI score of all features with respect to the
target variable and selecting the features by comparing their
score against some threshold. In this way, MI minimizes the
redundancy of the selected features [30]. Diferent number
of features such as 50, 100, 150, 200, and 1000 with maxi-
mum information scores have been selected, and their efect
is observed on the model’s performance.

2.6. Classifcation. Te last step is the classifcation of EEG
signals. After feature extraction, feature selection has further
reduced the size of data matrix. Now, the features extracted
by convolution and pooling layers are passed to fully con-
nected layers. Tey can also be extracted and sent to other
ML classifers. Te brief detail of classifers used for clas-
sifcation in the following.

Artifcial neural network (ANN) [31, 32] is widely used
for processing biomedical signals such as EEG signals
[33]. Most of the studies have used ANN for epilepsy
detection using EEG signals [34–36]. Tey are simple
neural networks in which each neuron in a hidden layer

is connected with all the neurons of the previous layer.
We have used a three-layered ANN for feature clas-
sifcation. Te frst two layers consist of 50 and 20
neurons. In the last layer, the number of neurons is
equal to the number of class labels.
Logistic regression (LR) [37] is another powerful ML
algorithm which is used to model dichotomous target
variables. Te hyperparameters are tuned using “Grid
Search CV” library of Python.
Random forest (RF) [35] is an ensemble-based ML
algorithm which uses a multitude of decision trees in
which each tree behaves as a classifer and a certain
weight is given to the output of all trees. We have
chosen 100 decision trees using 10-fold cross-valida-
tion. Tey predict a particular class based on the input
features. After prediction, a consensus is carried out
among all the outputs to predict a class label.
Support vector machine (SVM) [38] uses a kernel trick
which takes a low dimensional input space and
transforms it into a higher dimensional space and then
classifes this data using a linear decision boundary. In
our study, we have used radial basis function (RBF)
kernel.Te classifer is trained on the training examples
and outputs an optimal hyperplane which is able to
classify new unseen examples. In our study, the reg-
ularization parameter (C) is set to 100 and gamma value
is set to 0.0001.
Gradient boosting classifer (GB) [39] is also an en-
semble technique that is based on the assumption that
many weak learners, when combined generate a
stronger learning model. Rather than ftting a predictor
to the data at each iteration, it fts a new predictor to the
residual errors of the previous prediction. We have
used 400 estimators, and the learning rate is set to 0.001.
k-nearest neighbors (k-NN) [40, 41] is a nonparametric
supervised algorithm. It saves all training data and then
makes future predictions based on the similarities
between each input sample and each training example.
Te algorithm takes a fxed positive integer k as an
input. It then classifes a new data point x0 by frst
defning the k points in the training set that are closest
to this new data point and then computes theminimum
distance between the neighboring k points and x0 for
very class label [19]. Te most frequent label among the

Table 2: CNN hyperparameters for 3, 4, and 5-classes problems.

Bonn datasets CHB-MIT datasets
Layers 2-class 3-class 4-class 5-class 2-class
Conv. K� 4, Ks� 3, S� 1 K� 10, Ks � 4, S� 1 K� 11, Ks � 5, S� 1 K� 11, Ks � 5, S � 1 K� 11, Ks � 3, S� 1
Max. Pooling Ps� 4, S� 4 Ps � 4, S� 4 Ps � 4, S� 4 Ps � 4, S� 4 Ps � 4, S� 4
Conv. — K� 5, Ks � 5, S� 1 K� 9, Ks � 5, S� 1 K� 7, Ks � 5, S � 1 K � 7, Ks � 11, S � 1
Max. Pooling — Ps � 4, S� 4 Ps � 4, S� 4 Ps � 4, S � 4 Ps � 4, S � 4
Flatten F� 7720 F� 2405 F� 4329 F� 3367 F � 1043
Dense N � 50 N � 50 N � 50 N � 50 N � 50
Dense N � 20 N � 20 N � 20 N � 20 N � 20
Dense N � 2 N � 3 N � 4 N � 5 N � 2
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labels of k points will be assigned to x0. In this case, we
have used k� 3 and Manhattan distance as a distance
metric.
Stochastic gradient descent (SGD) [42] implements
stochastic gradient descent (SGD) learning to train a
linear model. In machine learning, the learning process
produces the function by processing the training set’s
samples. Tis function maps input values to one of the
classes. SGD is an optimization technique that seeks to
discover the coefcient of this function under a con-
dition that minimizes the cost margin. Te hyper-
parameters of SGD are chosen using GridsearchCV and
10-fold cross-validation. After training data on dif-
ferent combinations of parameters, the parameter se-
lected by GridsearchCV are given in Table 3.
Stacking ensemble classifer [43] is an ensemble
learning technique that builds a new model using
predictions from multiple weak classifers known as
base learners or base models. Tese weak classifers are
trained in parallel, and their predictions are used to
train a meta learner that predicts the fnal output class.
In our study, we have used SVM and k-NN classifers as
base learners and logistic regression as a meta learner.
Tenfold cross-validation is employed for model
training.

2.7. Evaluation Metrics. Following evaluation metrics are
calculated to evaluate the performance of model. Accuracy is
a ratio of correctly predicted labels to the total predicted
labels and is given by the following equation:

Accuracy �
(TP + TN)

TP + FP + FN + TN
, (2)

where TP represents true positives and are correctly pre-
dicted positive labels, TN represents true negatives and are
correctly identifed negative examples. On the other hand,
FP and FN represents false positives or misclassifed positive
labels and false negatives or misclassifed negative labels,
respectively.

Precision is the ratio of true positives (TP) to the sum of
true positives (TP) and true negatives (TN). It indicates how
confdent our model is when it classifes a label as positive.
Mathematically,

Precision �
TP

TP + FP
. (3)

Precision measures how many predicted positive ex-
amples are actually positive. Higher the precision, more
confdent is our model.

Recall is another evaluation metric used to identify how
correctly or model has identifed actual positive labels. Recall
is the ratio of correctly predicted positive classes to all
observations in actual class and is given by the following
equation:

Recall �
TP

TP + FP
. (4)

Higher the recall, more accurate will be our model.
F1-score is defned as the weighted average of both recall

and precision. It is calculated by using the following
equation:

F1 Score �
2 ×(Precision × Recall)

(Precision + Recall)
, (5)

F1-score with value near to 1 indicates that themodel has
low false positives and false negatives. F1-score with 0 value
represents worst model.

3. Experiments and Results

Te performance of the proposed model is assessed on the
Bonn University and CHB-MIT dataset.

3.1. Hyperparameter Tuning of CNN Architecture. In this
study, we have used the feature extractor part of CNN for
extracting features. Te architecture of CNN is selected by
varying the number of layers, number of kernels, kernel
sizes, and so on. With a 2-layered architecture in the binary
classifcation problem for Bonn dataset, we obtained more
than 95% accuracy. But, for multiclass problems, we ob-
tained below 90% accuracy by using only 2-layers.Terefore,
we tried 4-layered and 6-layered architecture. Te results
were almost the same for both architectures, but the 6-
layered architecture required more layers which in turn
increases the number of parameters. Similarly, hyper-
parameters are adjusted by observing their efect on clas-
sifcation accuracy. Diferent activation functions are tried in
all layers, and the learning rate is varied. Ten the efect of
increasing the numbers of kernels in all layers is studied.
Figure 7 shows the efect of diferent number of kernels in
the convolution layers on the classifcation accuracy. Te
SGD optimizer is used with a learning rate of 0.001. For a
binary problem, binary cross-entropy is used for measuring
training loss and categorical cross-entropy for a multiclass
problem.

After selecting the number of kernels, we changed the
kernel size in all layers and observed the efect on accuracy.
Te results obtained are shown in Figure 8. Te x-axis
represents the number of kernels in layer 2 and y-axis
represents the number of kernels in layer 1, whereas z-axis
represents the accuracy obtained. Te last dense layer uses
softmax activation function which predicts the probabilities
of all classes.

In the above fgure, the x-axis or layer 1 represents the
size of kernels in convolution layer 1, whereas y-axis or layer
2 indicates the size of kernels in convolution layer 2. Te

Table 3: SGD hyperparameters.

Parameters Bonn datasets CHB-MIT datasets
Alpha 0.001 0.01
Eta0 100 1
Learning rate Optimal Adaptive
Loss function Modifed_huber Hinge
Penalty Elastic net Elastic net
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pooling size and stride in maximum pooling layer is set to 2.
When it is changed to 4, the accuracy almost remained same
but the number of features learnt by CNN is reduced.Tis, in
turn, reduces the time needed to classify these features and
number of parameters in dense layer. Te adjusted pa-
rameters are given in Table 2.

3.2. Experimental Results. First of all, 2-class problem is
studied. In case of Bonn dataset, a total of 500 EEG instances
with 4097 sampling points are considered. Typical EEG
waveforms of the considered classes are shown in Figure 5.
Te EEG waveforms are frst preprocessed using the But-
terworth flter of order 2 in a range of 0.5–50Hz. Te same
process is repeated with the EEG signals obtained from the
CHB-MITdatabase. DWT is a widely used feature extractor
for the analysis of time-series data as confrmed by diferent
studies in the literature. It makes the hidden features of data
more apparent. Terefore, we applied DWT to the Butter-
worth-fltered signals. Te preprocessed signals were then
decomposed into approximate and detailed coefcients
using Daubechies (db4) discrete wavelet transform. In the
relevant literature, diferent feature extraction algorithms
have been used to extract features from these coefcients.
But, we have replaced the manual feature extraction process
by CNN. CNN process this data and extract features which

were then fattened to pass them dense layers for epileptic
seizures classifcation. Instead of passing these feature maps
to the dense layer, we extracted them and passed them
directly to the machine learning classifers for classifcation.
Te 10-fold cross-validation is employed in this study for
accurate tunning of hyperparameters. Table 4 shows the
results obtained by directly passing the feature maps to ML
classifers.

It can be seen from the above table the proposed ar-
chitecture classifed 2-classes of Bonn dataset with 99.5 and
99% accuracies. As the number of classes increases, the
accuracy decreases but remains comparable to the accuracy
achieved in previous studies.

Some features are of less importance or are redundant. In
mobile healthcare applications, these features are sent to the
cloud or a server for further processing. Te greater the
number of features, the more power and bandwidth will be
consumed. Te increase in the number of features also
increases the training time and increases the risk of model
overftting. Terefore, the redundant features should be
discarded to increase the processing speed of classifers,
reduce memory storage, and power consumption. We
studied the efect of number of features on the performance
of the model. Diferent numbers of features are selected
using the mutual information (MI) score and fed to machine
learning classifers and their accuracies are reported. Mutual

4
7 10

13
16

93
94
95
96
97
98

4
7

10
13

16
Layer 1

AC
CU

RA
CY

Layer 2

(a)

4
7 10

13
16

88

90

92

94

96

4
7

10
13

16
Layer 1

AC
CU

RA
CY

Layer 2

(b)

4
7 10

13
16

80

85

90

95

4
7

10
13

16
Layer 1

AC
CU

RA
CY

Layer 2

(c)

4
7 10

13
16

80

85

90

95

4
7

10
13

16
Layer 1

AC
CU

RA
CY

Layer 2

(d)

Figure 7: Efect of number of kernels on the classifcation accuracy for (a) 3-class, (b) 4-class, and (c) 5-class problem of Bonn dataset and
(d) 2-class of CHB-MIT dataset.
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Figure 8: Efect of kernel size on the classifcation accuracy for (a) 3-class, (b) 4-class, and (c) 5-class problem.
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Figure 9: Continued.

Table 4: Summary of results obtained using diferent machine learning classifers.

Datasets No. of classes Classes names ANN LR RF SVM GB k-NN SGD Ensembles

Bonn dataset

2 A–E 97.5 99.5 99.5 96.5 97 92 99.5 97
B–E 97 99 99 95 95 91.5 99 96

3 AB–CD–E 98 97.4 95 97.8 97.4 98.2 97.6 97.8
4 AB–C–D–E 89.6 94.6 92 93.2 93.8 93.2 94.4 92.8
5 A–B–C–D–E 87 92.4 89.4 93.2 88.8 89 89 92.2

CHB-MIT dataset 2 Ictal–Preictal 94.4 91.7 92.4 95.7 94.6 96.8 87 97
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Figure 9: Continued.
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information gain selects k best features based on the in-
formation gain score. In case of A and E classifcation, all ML
classifers have 100% predicting accuracy. Te results for
other combinations are shown in Figures 9(a)–9(f).

It can be seen from the graph that even at 50 features, the
model achieved 100% accuracy on 2-class problem for Bonn
dataset and 97.2% for CHB-MIT data. Table 5 shows the
maximum accuracy reported along with minimum number
of features and other evaluation metrics for multiclass
problems. k-NN predicted the three classes i.e., normal,
interictal and ictal with 97.8% accuracy. But when bagging
k-NN is used, the accuracy increased to 99%. Bagging k-NN
ft k-NN to random subsets of the original dataset and then
aggregate their individual predictions (either by voting or
average) to generate a fnal prediction.

4. Discussion

From the results provided in the previous section, it can be
seen that the proposed solution efciently detected fve
classes. Table 6 illustrates the comparison of previous studies
with the proposed approach. Many previous works have
been carried out to detect epileptic seizures with time-series
signals such as EEG signals.

EEG signals have the ability to measure the electrical
activity of the brain efciently, but they have poor spatial
resolution and often get contaminated with noise and
artefacts during signal acquisition. Te approach proposed
in [1] used the Chebyshev IIR flter for preprocessing. Te
study conducted in [6] used empirical mode decomposition
(EMD) and intrinsic mode function (IMF) for pre-
processing. Te solution presented in this paper used the
Butterworth flter to remove noise from the signals. Later,
discrete wavelet transform is applied to obtain a time-
frequency representation of an EEG signal. Te training of
traditional machine learning-based approaches requires
feature extraction, for which various methods have been
proposed in the literature [1, 6, 7, 9, 10]. Tese handcrafted
features require the expert knowledge of the data and take
time to choose the best features for good classifcation
performance.

As compared to the previous studies [1, 9, 10, 14], which
extracted features using wavelet analysis of EEG waveforms,
the proposed approach uses CNN for feature learning.
Studies conducted in [3, 12–14] used CNN to automatically
learn the feature by passing the training data through
multiple convolutions and subsampling operations. How-
ever, the feature extraction using CNN is a time taking
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Figure 9: Efect of features reduction on the accuracy of ML classifers for (a) A–E set, (b) B–E set, (c) AB–CD–E, (d) AB–C–D–E, (e)
A–B–C–D–E, and (f) CHB-MIT.
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process and requires a large number of training samples for
appropriate tunning of hyperparameters. Similarly, recur-
rent neural networks (RNN) and long short-term memory
(LSTM) networks have been used in the literature for the
analysis of time-series signals. RNN have a gradient van-
ishing problem and are unable to learn long-term depen-
dencies. LSTM overcomes the shortcomings of the RNN
network and is used in the literature for epileptic seizures
classifcation [17, 18]. Hu et al. [18] extracted statistical
features using local mean decomposition and trained a Bi-
LSTM on these features. Teir model achieved 93%

sensitivity on the CHB-MIT dataset, whereas we have 97%
sensitivity. More training samples can also lead to overftting
of the model.

Many machine learning algorithms have been found to
have good generalization ability and can even solve the
problems having small training samples [47]. Moreover, the
performance of the CNN classifer can be greatly enhanced
by the appropriate selection of hyperparameters such as
number of flters, flter size, kernel size, pooling size, learning
rate, epochs, activation function, optimizer, and batch size.
Although the setting of these parameters is difcult, our

Table 5: Evaluation metrics result obtained on prediction of multiclass problems.

Classes Number of features Classifer Accuracy (%) Precision Recall F1-score
A–E 50 RF 100 1.0 1.0 1.0
B–E 100 RF 100 1.0 1.0 1.0
AB–CD–E 700 Bagged k-NN 99 0.99 0.99 0.99
AB–C–D–E 1000 LR 94.4 0.95 0.94 0.94
A–B–C–D–E 3367 SVM 93.6 0.94 0.94 0.94
Ictal vs. Preictal 500 Ensemble 97.1 0.97 0.97 0.97

Table 6: Comparison of previous studies conducted for epilepsy detection.

Study Features extraction Classifcation method Datasets Classes Accuracy (%)

[1] Chebyshev IIR flter, discrete wavelet
transform

SVM Bonn 2 96
ANN 98

[3] None CNN Bonn
2 99.52
3 96.97
5 93.55

[4] None CNN Bonn 3 88.67

[6] Empirical mode decomposition (EMD),
intrinsic mode function (IMF)

Classifcation and regression
tree (CART) Bonn 3 93.55

[7] Recurrence quantifcation analysis
(RQA) SVM Bonn 3 95.60

[8] Channel selection and statistical feature
extraction Ensemble CHB-MIT 2 89.02%

[9] Tunable-Q wavelet transform (TQWT) Random Forest (RF) Bonn 3 99

[10] Multiscale PCA, wavelet packet
decomposition SVM Bonn 3 99.70

[11] Discrete wavelet transform, temporal
and spectral features

Fuzzy rough CHB-MIT 2 92.79%Nearest neighbor
[12] None 1D-pyramidal CNN Bonn 3 99.1
[13] None 1D-feature fusion CNN Bonn 3 98.67

[14] CWT CNN Bonn

2 100
3 99
4 91.50
5 93.60

[44] Time-frequency analysis (TFA) ANN Bonn 2 100
5 89

[45] Symplectic geometry eigenvalues SVM CHB-MIT 2 99.62

[46] Adaptive-rate FIR fltering and
DWT+MI-based feature selection

Ensemble of MLP, k-NN,
SVM, BG, and RF

Bonn

2 100

—
3 99.50
4 96
5 92

CHB-MIT 2 99.38

Our approach CNN ML classifers Bonn

2 100
3 99.33
4 96
5 94

— — CHB-MIT 2 97.1
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approach uses CNN combined with diferent machine
learning classifers to detect epileptic seizures and has im-
proved the classifcation accuracy along with the general-
ization ability of the classifer. Te binary classifcation
problem involves classifcation of A and B sets from the E set.
Our model is able to achieve 100% accuracy on the binary
classifcation problem.

Jiang et al. proposed a feature extraction technique
using symplectic geometry decomposition with 100% and
99% accuracy on the 2-class problem of both datasets and
99% accuracy on the 3-class problem. But they have not
tried 4-class and 5-class problem. For multiclass problem,
we achieved state-of-the-art accuracy. Te presented
model achieved an accuracy of up to 99.33% on 3-class
problem, which is obviously better than the models in
[3, 4], which are based on CNN only. On the other hand,
5-class problem is more complicated as compared to 2-
class and 3-class problems. Deep learning-based archi-
tectures proposed in the literature extracts large number
of features for classifcation. As discussed previously,
these features require more memory, time, and band-
width for the processing of highly dimensional data
matrix. Some of the features are redundant or irrelevant
or noisy and can negatively impact the performance of a
network. Terefore, appropriate feature selection is es-
sential. One of the widely used feature selection esti-
mators used in machine learning applications is mutual
information gain (MI) [48]. Te model selected diferent
number of features from 50 to 1000 using MI estimator
and observed their efect on the accuracy. Te proposed
model achieved an accuracy of 94% and 93% on 4- and 5-
class problem. Tis accuracy is very close to the results of
the 5-class problem in [3] and [13].

5. Conclusions

Te CNN-based model is presented in this paper, which
along with the combination of diferent machine learning
algorithms predicts epileptic seizures. Te EEG waveforms
are fltered using the Butterworth flter and passed to CNN
for feature learning. Te transfer learning approach is used
in which the dense layers are replaced by the machine
learning classifers such as support vector machine (SVM),
random forest (RF), gradient boosting classifer (GB), lo-
gistic regression (LR), and so on. In addition, it uses MI-
based feature selection estimator which selects only relevant
features and passes them to the classifcation model. Feature
selection helps to avoid the curse of dimensionality. In
contrast to the conventional equivalents, it replaces the
manual feature extraction process and improves the gen-
eralization ability of the classifer. Te proposed approach
achieved highest accuracy of 100% and 97% on 2-class
problem of the Bonn dataset and the CHB-MIT dataset,
whereas for the 3-class problem, bagged k-NN performed
very well with 99% accuracy. SVM and ensemble classifers
predicted 4- and 5-classes with 94.4% and 93.6% accuracies,
respectively. Te solution presented in this paper is able to
achieve accuracy close to the accuracy reported in previous
studies.

In future studies, other potential EEG datasets will be
considered for confrming the robustness of the proposed
methodology. Additionally, the feasibility of incorporating
the other decomposition techniques, like empirical mode
decomposition and tunable Q-factor wavelet transform, in
the suggested method will also be investigated.
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