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It is currently accepted that the neural transduction pathways of gastrointestinal (GI) visceral pain include the peripheral and
central pathways. Existing research on the neurological mechanism of electroacupuncture (EA) in the treatment of GI visceral
pain has primarily been concerned with the regulation of relevant transduction pathways. The generation of pain involves a series
of processes, including energy transduction of stimulatory signals in the sensory nerve endings (signal transduction), subsequent
conduction in primary afferent nerve fibers of dorsal root ganglia, and transmission to spinal dorsal horn neurons, the ascending
transmission of sensory signals in the central nervous system, and the processing of sensory signals in the cerebral cortex.Numerous
peripheral neurotransmitters, neuropeptides, and cytokines participate in the analgesic process of EA in visceral pain. Although
EA has excellent efficacy in the treatment of GI visceral pain, the pathogenesis of the disease and the analgesic mechanism of the
treatment have not been elucidated. In recent years, research has examined the pathogenesis of GI visceral pain and its influencing
factors and has explored the neural transduction pathways of this disease.

1. Introduction

According to the International Association for the Study of
Pain (IASP), “pain is an unpleasant sensory and emotional
experience associatedwith actual or potential tissue damage.”
A thorough understanding of pain has not been clearly
elucidated in the medical field. Research on somatic pain and
neuropathic pain tends to be improved and perfect. However,
the pathogenesis of visceral pain has not yet been clearly
elucidated despite significant progress of relevant research.
Visceral pain occurs in the interior organs (chest, abdomen,
and pelvis) and is commonly observed in celiac diseases,
such as gastrointestinal (GI) disorders, in the clinic. The
manifestation of visceral pain is most typical in irritable
bowel syndrome (IBS), and this disease is themost commonly
used animal model in experimental studies of visceral pain.
Visceral pain refers to pain from noxious stimuli such as
painful swelling, ischemia, and inflammation that act on vis-
ceral organs via peripheral and central pathways [1].There is a
clear and unambiguous distinction between visceral pain and

somatic and neuropathic pain. The characteristics of visceral
pain include the following: (1) there is a vague sensation with
an unclear position; (2) there is frequent accompaniment of
referred pain in other areas such as the skin and muscle; (3)
the generation of pain sensation is associated with motion
and/or autonomic reflexes; and (4) persistent visceral pain
can produce hyperalgesia in skin and deep tissues [2, 3].
Currently, the pathogenesis and influencing factors of GI
visceral pain include visceral hypersensitivity, GI motility
disorders, brain-gut axis abnormalities, intestinal infections,
immune function changes, hereditary factors, and psychoso-
cial factors.

Visceral pain is themost common symptom of functional
bowel disorders and inflammatory bowel disease in the
clinic. It is chronic in most cases and can be persistent or
intermittent, which seriously affects the patient’s life andwork
and costs substantial resources. Despite the excellent efficacy
of EA in the treatment of GI visceral pain, the pathogenesis
of this disease and the treatment mechanism of EA have not
been investigated clearly.Over the past few years, research has
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examined the pathogenesis of GI visceral pain and its influ-
encing factors and explored the neural transduction pathways
of this disease. Visceral pain in IBS is a digestive disease
commonly observed in clinical practice [4], but its etiology
and pathogenesis have not been clarified. Epidemiological
data from 2014 revealed that the worldwide prevalence rate
of IBS was 3–22% [5]; this prevalence rate in China was
0.82–5.67% [6]. The clinical features of IBS cause significant
inconvenience in the daily lives and work of patients and also
reduce their quality of life. Therefore, the treatment methods
and their efficacy for IBS are particularly critical. Modern
medical treatment of GI visceral pain primarily consists of
medication therapy. Despite its efficacy, long-term medica-
tion use is associated with side effects. Traditional Chinese
medicine, particularly acupuncture andmoxibustion therapy,
has a long history and has demonstrated significant effects in
pain treatment. Because it has good long-term effects without
toxic side effects or recurrence, EA has been approved and
recommended by the World Health Organization (WHO) as
the main method of pain relief [7, 8]. According to existing
studies, the possible analgesic mechanisms of EA treatment
for GI visceral pain can be summarized in two aspects: the
peripheral and central nervous pathways.

The neurobiological mechanism is one of the most
important analgesic mechanisms of acupuncture [9]. EA
stimulation of a surface acupoint activates the enteric nervous
system (ENS), leading to the release of varying levels of
neurochemical signaling molecules from the brain-gut axis,
such as 5-HT, norepinephrine, bradykinin, histamine, and
encephalin [10, 11] (Figure 1). Furthermore, these molecules
inhibit inflammatory reactions or promote damage repair,
interfere with the afferent peripheral sensory nerve impulses,
and break the vicious noxious stimuli-pain cycle, eventually
relieving the pain. In recent years, numerous scholars have
made significant progress in research and discussion with
respect to the mechanism of EA treatment for GI visceral
pain. This paper summarizes the recent knowledge on the
neurobiological mechanism of EA for relieving GI visceral
pain and further discusses the new advances and directions
in EA treatment of visceral pain.

2. Transduction Pathways of GI Visceral Pain

It has been accepted that the neural transduction pathways
of GI visceral pain are divided into peripheral and central
pathways. Existing research on the neurological mechanism
of EA treatment for GI visceral pain has primarily focused
on the regulation of these transduction pathways. (1) The
peripheral pathway: noxious stimuli act on the receptors in
the GI mucosa and are transmitted from primary afferent
nerve fibers to primary sensory neurons in the dorsal root
ganglia (DRG). Primary afferent nerve fibers include extrinsic
and intrinsic afferent fibers that govern the GI tract. Extrinsic
nerves refer to sympathetic and parasympathetic nerves, and
sympathetic afferent fibers transmit signals to the spinal
DRG. Parasympathetic afferent fibers include two pathways
through the vagus and pelvic nerves, respectively.The afferent
information from the vagus nerve is mainly relayed through
the nucleus tractus solitarius (NTS) in the central nerves; the

afferent information from the pelvic organs is mainly relayed
through the sacral dorsal commissural nucleus (DCN) in
the central nerves. Intrinsic nerves refer to the ENS, which
mainly includes the submucosal plexus and the myenteric
plexus. These nerves belong to vagal afferent fibers that
directly transmit signals into the NTS of the medulla [12,
13] (Figure 1). (2) The central pathway: (1) information is
transduced in the primary sensory neurons of the spinal
DRG and then transmitted to the spinal dorsal horn neurons
(DHN), wherein nociceptive information is subject to pri-
mary central integration, followed by ascending transmission
in the spinal cord through the spinothalamic tract, the
spinoreticular tract, and the spinomesencephalic tract to the
thalamus, the reticular formation, and the midbrain; further,
the information is projected to the cerebral somatosensory
cortex, the anterior cingulate cortex (ACC), and the insular
cortex, resulting in visceral pain [14]. (2) NTS conduction of
information: more afferent information is transmitted from
the visceral portion of the NTS (caudal medial part) to
the nucleus parabrachialis and then to the ventral posterior
nucleus and the parvicellular part in the thalamus, finally
reaching the insular cortex and constituting themain visceral
afferent central pathway; part of the afferent information is
transmitted along the NTS to the DCN and then to the
hypothalamus and amygdala pathways, which are primar-
ily responsible for emotional changes because of visceral
sensation [15]. (3) The cingulate gyrus, amygdala, midbrain
periaqueductal graymatter, and rostral ventromedialmedulla
(RVM) constitute the descending pathway; central signals
from the nerve fibers of the RVM are projected through the
ventrolateral funiculus and dorsal lateral funiculus to the
spinal cord and aremainly terminated in the spinal DHN [16]
(Figure 1).

3. Neurological Mechanisms of EA
for Relieving GI Visceral Pain

EA analgesia has been applied in traditional Chinese
medicine for thousands of years. It is now extensively used
in clinical practice [18], and increasing attention has been
received from clinicians and researchers in many countries.
The range of treatment includes pain and inflammatory
diseases. Body surface stimulation can suppress painful
feelings in visceral pain. In traditional Chinese medicine,
AP, moxibustion, and massage achieve this purpose by
stimulating surface acupoints. These phenomena involve
complex neurobiologicalmechanisms. It is difficult to explain
them by the traditional lower center convergence-projection
theory of referred pain and the classical pain transduction
pathway. EA therapy and other surface physical stimulation
therapies in modern medicine (e.g., lumbosacral magnetic
stimulation, transcranial magnetic stimulation, and tran-
scutaneous electrical nerve stimulation) have been applied
and have been widely used in the clinic worldwide; these
methods are safe and effective [18, 19]. Since the 1980s, the
neurological mechanism of EA treatment for GI visceral pain
began to receive sustained attention worldwide. Although the
neurological mechanism of EA for relieving GI visceral pain
has been partially revealed, specific transduction pathways in
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Figure 1: Ascending and descending pathways of the endogenous pain modulation systemmediating visceral pain sensation in the brain-gut
axis. Picture quoted from Zhang et al., Anesthesiology (2014) [11] andMoloney et al., Front Psychiatry (2015) [17]. RVM: rostral ventromedial
medulla; MD: mediodorsal thalamic nucleus; PFC: prefrontal cortex; ACC: anterior cingulate cortex; DR: dorsal raphe nucleus; DMH:
dorsomedial hypothalamic nucleus; AVP: arginine vasopressin; CNF: corticotropin releasing factor; GFAP: glial fibrillary acidic protein;
WDR: wide dynamic range neurons; BK: bradykinin; PG: prostaglandins; 𝛽-EP: 𝛽-endorphin; (−): inhibition of cell discharge; NTS: nucleus
of the solitary tract; TNF-𝛼: tumor necrosis factor-𝛼; NK1R: neuropeptide K 1R; SP: substance P; ENK: enkephalin.

EA treatment have not been found and must be determined
in further study (Figure 1).

3.1. Peripheral Neurological Mechanism of EA for Relieving
GI Visceral Pain. Recent studies show that visceral hyper-
sensitivity is one of the main pathophysiological bases of
GI visceral pain. As described earlier, the pathogenesis of
GI visceral pain includes the peripheral and central mecha-
nisms. Previous research on the peripheral mechanism has
primarily been concerned with how noxious stimulation
acts on the receptors in the GI mucosa and activates mast
cells to secrete various inflammatory mediators, such as 5-
HT, prostaglandins, and bradykinin; these factors act on the
corresponding receptors on the sensory nerve endings [20],
thus transmitting nociceptive information to the spinal dorsal
root. Research on the peripheral neurological mechanism of

EA for relieving GI visceral pain has primarily focused on
neurons and associated neurotransmitters and afferent fibers.

3.1.1. Enteric Nervous System (ENS). Over the past few years,
numerous studies have found that the brain-gut axis plays a
critical role in the development and progression of visceral
pain.The brain-gut axis refers to the physiological and patho-
logical phenomenon in which the central nervous system
(CNS) and the GI tract mutually affect and regulate one
another through neurotransmitters and chemical or electrical
signals. It has a role in various functionality-, motility-, and
immune-related GI disorders [21] (Figure 1). Meanwhile,
the brain-gut axis forms the physiological basis of AP for
regulating the GI function. The peripheral pathway of GI
visceral pain mainly refers to the primary sensory neuron
stage of signal transmission through primary afferent nerve
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fibers to the spinal DRG after noxious stimulation acting
on the receptors in the GI mucosa. Presently, it is widely
accepted that noxious visceral afferent nerve fibers comprise
thin myelinated A𝛿 fibers (30–40%) and unmyelinated C
fibers (60–70%) [12, 22]. During pain treatment with AP,
needling sensation is a prerequisite for an analgesic effect.
Electrophysiological studies found that needling sensation
impulses are mainly governed by A𝛿 fibers (class III) and C
fibers (class IV), which transmit the needling sensation to the
upper spinal center, thus achieving the analgesic effect [23].
However, once AP excites afferent nerve fibers deep in the
acupoint area, the pain threshold value will be increased. At
the same level of nerve segment, AP in the Hegu acupoint
can increase the pain threshold value deep in the acupoint
itself. Such AP can achieve an obvious analgesic effect as long
as it excites class II and a small amount of class III fibers
deep in the acupoint area. For the distal segment, the AP
analgesic effect requires the participation of C fibers. From
these studies [24–26], it can be shown that the convergence of
AP signals and visceral noxious afferent neurons in the spinal
cord and the upper center is the neurobiological basis of AP
for relieving visceral pain. AP can produce certain analgesic
effects as long as it activates A𝛿 (class III) or C (class IV)
fibers.

In the peripheral pathway of GI visceral pain, the ENS
functions independently of the CNS and is also known as
the “gut cerebellum.” In the ENS, cholinergic neurons of
the submucosal nervous plexus and the intestinal myenteric
plexus can release an important neurotransmitter called
acetylcholine (AchE). AchE is considered to be the primary
neurotransmitter used to regulate GI motility [27] and to
participate in the primary afferents of analgesic information
of AP [28]. Early animal studies found that cholinergic nerves
are involved in the transmission of noxious visceral pain
sensation in the rat intestinal tract with acute inflammation.
Electroacupuncture (EA) can reduce the AchE that has
increased during inflammatory reactions to relieve visceral
pain [29].TheEA stimulation (50Hz) of rats with IBS visceral
pain at acupoints ST25 and ST36 significantly reduced the
visceral hypersensitivity that was induced by mechanical
colorectal distension (CRD).Meanwhile, it was found that EA
could downregulate the amount of mast cells, SP, vasoactive
intestinal polypeptides (VIPs), neurokinin-1 receptors, and
VIP receptors [30, 31] and CRH [32], NGF, and NGFR
expression [33] in the descending part of the colon in the
target organ, making the AWR score lower.

5-HT, as a brain-gut peptide, is widely present in the
CNS and GI tract and functions as an important neuro-
transmitter to regulate functions of the digestive tract [34].
5-HT
3
receptors are massively distributed in the myenteric

nerve plexus (primary afferent neurons) and participate in
the regulation of abdominal discomfort symptoms in IBS
VP [35, 36]. Clinical studies showed that 5-HT and 5-HT

3

expression levels were markedly increased in the intestinal
mucosa among patients with IBS; the application of a 5-
HT3 receptor antagonist improved the threshold value of
colonic CRD [37, 38]. EA stipulation of acupoint ST36 at
100Hz downregulated colonic levels of 5-HT and 5-HT

3

expression in the brain-gut axis [39–41], further reducing

pain symptoms. Moreover, it was found that EA could
regulate serum levels of 5-HT in patients with visceral
hyperalgesia in clinical treatment. SP, 5-HT, and histamine
released frommast cells mediated the sensitization of visceral
afferent fibers [42]. Patients with irregular abdominal pain
exhibited higher expression levels of colonic VIP, NK1R, and
TNF-𝛼mRNA than normal controls [43, 44].Thus, it appears
that EA downregulates peripheral chemicals to reduce the
sensitivity of the splanchnic nerves, thereby achieving the
effect of relieving visceral pain. However, there are no experi-
mental designs available concerning specific antagonists and
gene knockouts. Moreover, animal studies revealed that 20-
Hz prestimulation of acupoint Jiaji markedly reduced the
behavior response of visceral pain hyperalgesia as induced by
the intestinal injection of formalin.Meanwhile, it reduced the
phosphorylation of colonic mucosa P38 and downregulated
fos expression but upregulated𝛽-endorphin expression. Such
effects were not observed in normal rats [45].

In the body, the epithelial cells of tubular and saclike
organs (e.g., the intestines, ureter, and bladder) release
ATP upon mechanical distention stimulation. P2X3 and
P2X2/3 receptors act on the submucous nerve plexus in
the epithelium and induce pain signals to be transmitted
towards the center [46, 47]. P2X receptors (particularly the
P2X2 and P2X3 subtypes) participate in the conduction and
modulation of visceral nociceptive information in the periph-
eral and central nervous systems and are highly selectively
expressed in sensory neurons [48]. Behavior, morphology,
andmolecular biology experiments revealed that P2X3 recep-
tors mediate the pathogenesis of visceral pain in peripheral
and central neurons in IBS rats. Fibers of P2X3 receptor-
positive immunoreactive neurons are projected to spinal
dorsal horn (SDH) II with the expression in these afferent
nerve endings [49] being significantly positively regulated by
EA [50, 51].

3.2. Spinal Neurobiological Mechanism of EA for Relieving GI
Visceral Pain. Themain pathogenetic mechanism of visceral
pain is visceral hypersensitivity, and the pathogenesis of
visceral hypersensitivity includes the peripheral and central
mechanisms. However, central sensitization has been found
to be a key factor in the development and progression of
visceral hypersensitivity. If central sensitization is inhibited,
then chronic visceral pain can be effectively relieved [52]
(Figure 1). Central sensitization is a complex process that
involves various neurons, nerve nuclei or nuclei, and neu-
rotransmitters involved in nerves. In research on the central
nervous mechanism of EA for alleviating GI visceral pain,
part of the mechanism was identified by functional magnetic
resonance imaging [53], which may be consistent with its
central conduction pathway. However, further research is
still required to fully reveal the central mechanism of EA
analgesia.

3.2.1. Dorsal Root Ganglion (DRG). In the central transduc-
tion pathway of visceral pain, the spinal cord is the first
level in the integration center of pain signals after entry to
the central nerves. It is the relay station of afferent pain
information, and it directly modulates the pain sensation
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and also receives the descending regulatory signals of the
upper spinal center; thus, the spinal cord is regarded as a
key part in the regulation of pain stimulation [54]. The DRG,
as the first level of neurons for afferent sensory information,
has an extremely important role in transmitting information
between peripheral and central nerves [55]. During the
treatment of visceral pain, EA may inhibit the excited DRG
neurons and the expression of related neurotransmitters and
receptors through afferent impulses at the acupoint, thereby
achieving an analgesic effect. The majority of experimental
studies in rats with visceral hyperalgesia have found that
the model rats presented with significant hyperalgesia to
CRD, with markedly higher excitability of DRG neurons.
EA stimulation of acupoint Zusanli was able to reduce the
excitability of the DRG neurons and the expression of related
neurotransmitters and receptors, thus remarkably relieving
the symptoms of visceral hyperalgesia [56, 57]. This effect of
EA was blocked by an intraperitoneal injection of naloxone.
Moreover, DRG neurons can convey sensory impulses from
the peripheral to the central nerves and then to the SDH,
completing the transmission of primary sensory information.
It was postulated that, after reducing the excitability of DRG
neurons, APmay block the pathway of pain signals to a higher
degree. Moreover, P2X3 receptors of DRG sensory neurons
have an important role in ATP-mediated pain in IBS rats with
visceral hypersensitivity [58]. The upregulated expression of
P2X3 receptorswas implicated in theDRGneurons of visceral
pain model rats prepared by CRD, and EA was able to reduce
the expression of P2X3 receptors inDRGcells [50].The role of
P2X3 receptors in the activation of nociceptors in IBS rats was
further explored at the gene level by a real-time PCR analysis.
Experimental evidence demonstrated that EA could relieve
visceral hyperalgesia in rats with visceral pain by reducing
the expression of P2X2 and P2X3 receptors in the colon and
spinal cord [59] and P2Y1 receptors in DRG cells. Thus, the
spinal cord and upper spinal centers have a critical role in the
EA treatment of visceral pain.

3.2.2. Spinal Dorsal Horn (SDH). The SDH plays an impor-
tant role in the transmission and regulation of visceral
nociceptive information. It converges visceral afferent nerves
from the periphery, descending projection nerves from the
senior center, and SDHneurons, thus forming a complex neu-
ral network. The SDH contains abundant neurotransmitters
and associated receptors, neuromodulators, and ion channels,
which not only receive and transmit nociceptive information
but also preliminarily process nociceptive information [54,
60, 61]. Research of the visceral pain model in rats has
found that CRD can activate the response of wide dynamic
range (WDR) SDH neurons, whereas the AP stimulation
of acupoints can inhibit the neuronal response activated by
visceral nociceptive afferents and thus alleviate visceral pain
[62]. However, SDH neurons participate in the descending
transduction pathway of visceral pain.The information of AP
can be conveyed through SDH neurons to the upper spinal
center, thus activating the descending regulation system of
pain; this mechanism contributes to the expression of SDH
receptors, such as 5-HT, and further achieves an analgesic
effect [63]. As stated earlier, the EA prestimulation (20Hz) of

acupoint Jiaji markedly reduced the phosphorylation of P38,
downregulated fos expression, and upregulated 𝛽-endorphin
expression in colonicmucosa; a similar effect of EAwas found
in the SDH [45]. As described, EA can inhibit the release
of algogenic neurotransmitters by regulating the activity
of endogenous opioid peptides in the spinal cord and the
DRG, thereby achieving the purpose of alleviating visceral
pain [64]. The spinal cord of the central level has provided
an important neurobiological basis for the effect of EA in
alleviating visceral pain. Meanwhile, it has a critical role
in regulating inflammatory and pathological pain. Recent
studies have found that the EA stimulation of acupoint
Shangjuxu significantly reduced visceral hypersensitivity and
lowered the pain threshold in rats with IBS induced by
CRD; moreover, CRH and its mRNA expression appeared
abnormal in the peripheral target organs, colon, and spinal
cord [32]. Thus, EA stimulation of acupoint Shangjuxu also
achieves a therapeutic effect through this pathway in IBS rats
with visceral hypersensitivity.

The spinal cord is the first level of the integration center
for pain signals that enter the central nerves. It directly mod-
ulates pain sensation and simultaneously receives descending
regulatory signals from the upper spinal center; thus, it also
regulates the transmission of visceral nociceptive informa-
tion. AP signals are conveyed through SDH neurons to reach
the upper spinal center; once the descending modulation
system of pain is activated, AP regulates the expression of
SDH c-fos, p38, and 5-HT receptors to achieve an analgesic
effect [65, 66]. Additionally, EA can markedly inhibit the
expression of c-fos and NMDA-R1 receptors in the L6–S2
segments of the SDH and RVM [67–70] and can reduce the
abnormally high excitability of visceral response neurons in
the SDH and RVM. As described, the regulation of visceral
pain sensation in IBS rats is achieved through multiple
receptors at the spinal cord level. Experimental data have
shown that EA can alleviate visceral hyperalgesia by reducing
c-fos, P2X2, and P2X3 receptor expression in the colon and
spinal cord [59] and P2Y1 receptor expression in the DRG
cells of rats with visceral pain. Thus, the spinal cord and the
upper spinal center play an important role in the analgesic
mechanism of EA for visceral pain [71, 72].

3.2.3. Sacral Dorsal Commissural Nucleus (DCN). The DCN
is located in the dorsal central canal of the sacral spinal
cord. It is the projection site of primary afferent signals from
the pelvic organs. The DCN participates in the transmission
and regulation of pain signals in the left semicolon and
acts as a relay station of the brain-gut axis in the pain
pathways. DCN neurons have been shown to be activated
by the colonic inflammation-induced visceral pain response,
and the activated neurons in turn can preliminarily integrate
noxious stimuli from the colon, thereby regulating the vis-
ceral pain response [73–75]. Moreover, recent studies have
shown that glial cells play an important role in pain [76].
EA stimulation of acupoint Zusanli significantly attenuated
the visceral pain response induced by noxious stimulation
and inhibitedDCN, glial fibrillary acidic protein (GFAP), and
OX42 expression, indicating that glial cells (astrocytes and
microglia) in the DCN participate in the analgesic process
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of EA [77]; the activation time of astrocytes is earlier than
that of microglia [78]. Meanwhile, there is the “exchange
of information” and “conversation” between glial cells and
neurons, with mutual “activation” between one another [79].
It was further postulated that AP has an inhibitory effect on
the activated glial cells in the DCN of rats with visceral pain,
thereby posing an inhibitory effect on the excited neurons in
the DCN and further playing an analgesic effect or blocking
the transmission of pain information to the upper center.This
postulation must be verified in further studies.

3.3. Upper Spinal Neurobiological Mechanism of EA for
Relieving GI Visceral Pain

3.3.1. Thalamic and Brainstem Reticular Neurons. The thala-
mus and brainstem reticular formation are important centers
for processing pain information and integrating pain sensa-
tion. Thalamic and brainstem reticular neurons are the third
level of pain information transmission. AP can influence
nociceptive information transmission of the thalamus and
brainstem reticular formation in the upper spinal center [53,
80, 81] (Figure 1). Neurophysiological research shows that
neurons that respond to noxious stimuli exist at various levels
of the CNS [82]. Early studies found that hypothalamic vaso-
pressin neurons and the paraventricular nucleus participate
in the inhibitory mechanism of EA for visceral pain induced
by the intraperitoneal injection of antimony potassium tar-
trate [83].TheEA stimulation of acupoints ST36 and ST37 EA
markedly relieved visceral pain and simultaneously upregu-
lated hypothalamus 𝛽-endorphin and SP expression [84] and
CRF synthesis [32, 85] in a rat model of visceral pain induced
by mechanical distension of the stomach and colon. More-
over, EA stimulation of acupoint Zusanli inhibited visceral
pain; fos expression in the brainstem nucleus raphes dorsalis,
shallow SDH, and colonic epithelium; and 5-HT expression
in the nucleus raphes dorsalis and the SDH in a rat model
of visceral pain caused by neonate-mother separation [63].
This finding suggests that the thalamic mediodorsal nucleus
(MD) is involved in information transmission of not only
visceral pain but also AP. EA stimulation of acupoint Zusanli
markedly inhibited the discharges evoked by pain-excited
neurons of the thalamic MD but increased the discharges
of the pain-inhibition unit in a rat model of visceral pain,
thus producing an analgesic effect [86]. Additionally, visceral
pain afferent signals can cause discharge reactions in thalamic
and brainstem reticular neurons and thus cause the possible
convergence of two sensory afferent signals (impulses from
theAP site and visceral pain) in these thalamic and brainstem
reticular neurons. AP can inhibit discharge reactions in
visceral pain through certain integration mechanisms of the
center, thereby alleviating visceral pain [81]. The stimula-
tion at “Zusanli-Shangjuxu” acupoints enhanced discharge
activity of VPL neurons under CRD-induced visceral pain.
The frequency of neuronal discharge was associated with the
pressure gradient of CRDwhich showed that visceral noxious
stimulation may intensify the body’s functional response to
stimulation at acupoints [87].

The electronic stimulation of skin receptive fields and
acupoint Zusanli can inhibit the response of somatic and

visceral convergence neurons of the thalamic ventrobasal
nucleus to the CRD [88].The skin receptive fields of thalamic
neurons that are responsive to visceral nociceptive sensations
are mainly located on the stomach meridian in traditional
Chinese medicine. Therefore, stimulation of the receptive
fields will generate a stronger inhibitory effect compared to
acupoint Zusanli.

3.3.2. Nucleus Tractus Solitarius (NTS). The NTS is located
in the dorsal medial part of the medulla oblongata. It acts as
the relay nuclei of the visceral primary afferent fibers, which
receive afferent information from the peripheral nerves and
the spinal cord or medulla oblongata. Meanwhile, the NTS
participates in the transmission of visceral nociceptive pain
information and is an important central passageway for
nociceptive afferent fibers and integration and regulation of
visceral pain sensation [89]. The c-fos serves as a marker
of active neurons [90], and the expression of glial fibrillary
acidic protein (GFAP) is a sign of active glial cells [76]. Both
c-fos and GFAP participate in the regulation of GI visceral
pain. Research on the mechanism of EA for relieving GI
visceral pain found that AP pretreatment markedly reduced
c-fos positive neurons and GFAP expression in the NTS
in model rats with GI visceral pain; these results suggest
that the regulatory process of AP in visceral pain is closely
related to the NTS [91]. Meanwhile, CRD can induce an
excitatory response in related neurons in theNTSwhereas EA
stimulation poses an inhibitory effect on these neurons; these
findings provide electrophysiological evidence that the NTS
receives the afferent information of CRD-induced visceral
pain and participates in the analgesic process of AP [92, 93]
(Figure 1).

3.3.3. Rostral Ventromedial Medulla (RVM). The RVM is
located at the central junction of the pontine reticular
formation. It plays a critical role in the central regulation
of pain and additionally serves as a common pathway of
the upper spinal center for descending regulation of visceral
noxious stimuli. The RVM has a dual role in regulating
visceral pain, and it may inhibit or facilitate the input of
noxious stimuli [94, 95]. The RVM can induce analgesia
when receiving high intensity electrical stimulation and
high concentrations of certain excitatory neurotransmitter
microinjections; however, it will promote the pain response
when receiving low intensity electrical stimulation or low
concentrations of certain excitatory neurotransmitters [54].
Experimental studies found that, after CRD stimulation,
model rats presented with increased excitability of visceral
responsive neurons in the RVM,with an abnormal increase in
c-fos positive neurons; EA treatment markedly inhibited the
expression of c-fos positive neurons in the RVMofmodel rats
with IBS and thus reduced the abnormally high excitability
of visceral responsive neurons in the RVM. This may be
one mechanism by which AP alleviates chronic visceral
hyperalgesia. EA stimulation (5–100Hz) of acupoint Zusanli
can reduce the AWR score and IBS-induced glutamate N1
and fos overexpression in the RVM [72]. Application of the
NMDAR antagonist in the RVM could inhibit visceral pain
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[70, 96], indicating that EA inhibits the activation of NMDA
in the RVM to alleviate visceral pain.

3.3.4. ACC and Prefrontal Cortex (PFC). Nerve nuclei such as
the PFC, ACC, thalamic medial nuclei, amygdala, midbrain
periaqueductal gray matter, and caudate nucleus that partic-
ipate in pain sensation and modulation have extensive fiber
links and are important centers of pain sensation [97–99].
After being transmitted through the ascending pathways such
as the pelvic and splanchnic nerves, visceral pain is integrated
in the ACC. PET revealed the activation of the ACC in
IBS patients after CRD [100]. In situ hybridization and
immunohistochemical studies indicated that P2X3 receptors
are expressed at certain levels in the PFC and ACC of adult
rats; mechanical CRD could upregulate P2X3 expression in
the PFC and ACC; moreover, EA stimulation of acupoint
Shangjuxu could regulate the P2X3 receptors in the PFC and
ACC [57], with an excellent modulatory effect on the degree
of central sensitization and visceral hyperalgesia.

4. Others

Under the rectal balloon distension plus electroacupuncture
condition, stimulation by electroacupuncture at Tianshu (ST
25) manifested a decreased regional cerebral metabolic rate
of glucose in the left cingulate gyrus, right insula, right
caudate nucleus, fusiform gyrus, and hippocampal gyrus.
Electroacupuncture therapy relieved abdominal pain, dis-
tension, or discomfort by decreasing glucose metabolism
in the brain [101]. A few studies recently published in
Nature Medicine have shown that EA excites vagus nerves
by surface stimulation of acupoint Zusanli, further leading
to a strong systemic anti-inflammatory effect [102, 103]. This
anti-inflammatory effect is achieved through dopamine, and
its pathophysiological process typically reflects the function
of the nerve-endocrine-immune network. It remains unclear
whether this anti-inflammatory effect plays a role in the
mechanism of EA for relieving inflammatory visceral pain
(e.g., IBD). Nonetheless, all of these findings provide a
good basis for revealing the mechanism of EA treatment for
inflammatory visceral pain.

5. Conclusion and Outlook

Under physiological and pathological conditions, the pro-
cessing of pain information by the body generally has cross-
level features. Although research has been conducted on
both the cellular and the molecular levels (e.g., chemical
transmission mechanism of signals), there is also a higher
level of exploration including serial and parallel processing
of signals that eventually form sensory perception. With the
continuous development of science and technology, research
on EA analgesia has entered the molecular neurobiology
level.This paper systematically discusses themajor neurobio-
logical mechanisms of EA analgesia for GI visceral pain from
the aspects of the peripheral and central pathways. Various
pathways and substances are involved in the mechanism of
EA for alleviating visceral pain. Although both peripheral

and central nerves participate in the analgesic mechanism,
most of our information has been derived from elucidation
of in vitro animal experiments. There remains a lack of
verification by in vivo functional experiments and clinical
trials. Further clarification is necessary to understand how
these structures jointly function during the analgesic process
of EA. Additionally, most existing studies have observed the
regulatory effect of EA on neurotransmitters at the peripheral
and central levels to discuss the possible mechanism of EA
analgesia. However, relatively accurate neural pathways of
EA analgesia have not yet been revealed because of the
high complexity and diversity of nerve distribution in the
transmission and modulation of visceral pain. Meanwhile,
experimental research on EA for alleviating visceral pain is
often focused on functional GI disorders, particularly IBS,
as a model to investigate the underlying mechanism. Thus
far, research has been lacking on AP analgesia of visceral
pain in inflammatory GI disorders. Therefore, continuous
investigation of the neural pathways of EA analgesia will be
the priority of future research.
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