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Abstract

A reliable, remote, and continuous real-time respiratory sound monitor with automated

respiratory sound analysis ability is urgently required in many clinical scenarios—such as in

monitoring disease progression of coronavirus disease 2019—to replace conventional aus-

cultation with a handheld stethoscope. However, a robust computerized respiratory sound

analysis algorithm for breath phase detection and adventitious sound detection at the

recording level has not yet been validated in practical applications. In this study, we devel-

oped a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds

(duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continu-

ous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels,

and 4,740 rhonchus labels), and 15,606 discontinuous adventitious sound labels (all crack-

les). We conducted benchmark tests using long short-term memory (LSTM), gated recurrent

unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural

network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath

phase detection and adventitious sound detection. We also conducted a performance com-

parison between the LSTM-based and GRU-based models, between unidirectional and bidi-

rectional models, and between models with and without a CNN. The results revealed that

these models exhibited adequate performance in lung sound analysis. The GRU-based

models outperformed, in terms of F1 scores and areas under the receiver operating charac-

teristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254134 July 1, 2021 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hsu F-S, Huang S-R, Huang C-W, Huang

C-J, Cheng Y-R, Chen C-C, et al. (2021)

Benchmarking of eight recurrent neural network

variants for breath phase and adventitious sound

detection on a self-developed open-access lung

sound database—HF_Lung_V1. PLoS ONE 16(7):

e0254134. https://doi.org/10.1371/journal.

pone.0254134

Editor: Thippa Reddy Gadekallu, Vellore Institute of

Technology: VIT University, INDIA

Received: March 29, 2021

Accepted: June 20, 2021

Published: July 1, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0254134

Copyright: © 2021 Hsu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://orcid.org/0000-0002-8721-5121
https://orcid.org/0000-0002-2667-1174
https://doi.org/10.1371/journal.pone.0254134
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254134&domain=pdf&date_stamp=2021-07-01
https://doi.org/10.1371/journal.pone.0254134
https://doi.org/10.1371/journal.pone.0254134
https://doi.org/10.1371/journal.pone.0254134
http://creativecommons.org/licenses/by/4.0/


bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a

CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks.

Introduction

Respiration is vital for the normal functioning of the human body. Therefore, clinical physi-

cians are frequently required to examine respiratory conditions. Respiratory auscultation [1–

3] using a stethoscope has long been a crucial first-line physical examination. The chestpiece

of a stethoscope is usually placed on a patient’s chest or back for lung sound auscultation or

over the patient’s tracheal region for tracheal sound auscultation. During auscultation, breath

cycles can be inferred, which help clinical physicians evaluate the patient’s respiratory rate. In

addition, pulmonary pathologies are suspected when the frequency or intensity of respiratory

sounds changes or when adventitious sounds, including continuous adventitious sounds

(CASs) and discontinuous adventitious sounds (DASs), are identified [1, 2, 4]. However, aus-

cultation performed using a conventional handheld stethoscope involves some limitations [4,

5]. First, the interpretation of auscultation results substantially depends on the subjectivity of

the practitioners. Even experienced clinicians might not have high consensus rates in their

interpretations of auscultatory manifestations [6, 7]. Second, auscultation is a qualitative analy-

sis method. Comparing auscultation results between individuals and quantifying the sound

change by reviewing historical records are difficult tasks. Third, prolonged continuous moni-

toring of lung sound is almost impractical. Lastly, a practitioner wearing personal protective

equipment finds it difficult to perform auscultation without breaching the protection [8],

which limits the use of auscultation on a patient with an airborne or droplet-transmitted pul-

monary disease, such as coronavirus disease 2019 (COVID-19) [9–11]. To overcome the afore-

mentioned limitations, computerized respiratory sound analysis [12] is required.

Furthermore, a tele-auscultation system [13, 14] with automated respiratory sound analysis

can be realized in the form of a mobile app or web service with proper infrastructure supports,

which can facilitate remote respiratory monitoring not only in a clinical setting but in a home-

care setting. The tele-auscultation system can greatly help during care of COVID-19 patients.

In the past, traditional machine learning methods were commonly used to build a comput-

erized analytical model for respiratory sound analysis [4, 12, 15, 16]. However, it is believed

that the improvement of the performance of traditional machine learning models may hit a

plateau as the amount of data increases beyond a certain number; however, deep learning

models do not have such concerns [17]. Moreover, deep learning approach is highly scalable

for dealing with the problems with different complexity [17]. Lastly, deep learning models can

learn the optimal features and do not rely on handcrafted feature engineering which depends

on domain knowledge [17, 18]. Therefore, more and more researchers turn their attention to

using deep learning in recent years. Besides, many studies have used deep learning to combat

the COVID-19 outbreak [19] because the problems may involve high complexity and large

amounts of data are rapidly generated and aggregated from all parts of the world.

However, previously proposed deep learning models for respiratory sound analysis may

have been limited by insufficient data. As of writing this paper, the largest reported open-

accessed respiratory sound database was organized in a scientific challenge at the International

Conference on Biomedical and Health Informatics (ICBHI) 2017 [20, 21], which comprises

6,898 breath cycles, 1898 wheezes and 8,877 crackles acquired from the lung sounds of 126

individuals. As data size plays a major role in the creation of a robust and accurate deep learn-

ing-based algorithm [22, 23], a larger open-access dataset could further benefit the develop-

ment of more accurate respiratory sound analysis models.
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In addition, computerized respiratory sound analysis can be categorized into different tasks

at different levels, namely sound classification at the segment, event and recording levels and

sound detection at the segment and recording levels [4]. To our best knowledge, almost all pre-

vious studies have focused on only distinguishing healthy participants from participants with

respiratory disorders and classifying normal breathing sounds and various types of adventi-

tious sounds. Only few studies have reported the performance of sound detection at the

recording level using deep learning based on private datasets [24–26]. Accurate detection of

the start and end times of breath phase and adventitious sounds can be used to derive quantita-

tive indexes, such as duration and occupation rate, which are potential outcome measures for

respiratory therapy [27, 28]. Therefore, it is worthwhile to pursue sound detection at the

recording level in respiratory sound analysis.

Accordingly, the aims of the present study were to establish a large and open-access respira-

tory sound database for training algorithms for the detection of breath phase and adventitious

sounds at the recording level, mainly focusing on lung sounds, and to conduct benchmark

tests on the established database using deep neural networks. Recurrent neural networks

(RNNs) [29] are effective for time-series analysis; long short-term memory (LSTM) [30] and

gated recurrent unit (GRU) [31] networks, which are two RNN variants, exhibit superior per-

formance to the original RNN model. However, whether LSTM models are superior to GRU

models (and vice versa) in many applications, particularly in respiratory sound analysis, is

inconclusive. Bidirectional RNN models [32, 33] can transfer not only past information to the

future but also future information to the past; these models consistently exhibit superior per-

formance to unidirectional RNN models in many applications [34–36] as well as in breath

phase and crackle detection [25]. However, whether bidirectional RNN models outperform

unidirectional RNN models in CAS detection has yet to be determined. Furthermore, the con-

volutional neural network (CNN)–RNN structure has been proven to be suitable for heart

sound analysis [37], lung sound analysis [38], and other tasks [35, 39]. Nevertheless, the appli-

cation of the CNN–RNN structure in respiratory sound detection has yet to be fully investi-

gated. Hence, we chose to use eight RNN-based variants, namely, LSTM, GRU, bidirectional

LSTM (BiLSTM), bidirectional GRU (BiGRU), CNN-LSTM, CNN-GRU, CNN-BiLSTM, and

CNN-BiGRU models, for the benchmark tests. Benchmarking can demonstrate the reliability

and goodness of a database and provide a baseline reference for the future studies. It can also

be applied to investigate the performance of the RNN variants in respiratory analysis.

In summary, the aims of this study are outlined as follows:

■ Establish the largest open-access lung sound database as of writing this paper—

HF_Lung_V1 (https://gitlab.com/techsupportHF/HF_Lung_V1).

■ Conduct benchmark tests of breath phase and adventitious sounds detection at the

recording level using the eight aforementioned RNN-based models based on the lung

sound data.

■ Conduct a performance comparison between LSTM and GRU models, between unidirec-

tional and bidirectional models, and between models with and without a CNN in breath

phase and adventitious sound detection based on the lung sound data.

■ Discuss factors influencing model performance.

Related work

Most previous deep learning studies in lung sound analysis have focused on the classification

of healthy participants and participants with respiratory diseases [40–46] and the classification
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of normal breathing sounds and various types of adventitious sounds [38, 46–65]. The models

in most of these studies are developed on the basis of an open-access ICBHI database [20, 21].

Only few previous studies have explored the use of deep learning for detecting the breath

phase and adventitious sounds at the recording level. In our previous study, we developed an

attention-based encoder-decoder model for breath phase detection and achieved an F1 score

of approximately 90% for inhalation detection and an F1 score of approximately 93% for exha-

lation detection. However, the dataset used was relatively small (489 15-s recordings) and the

task was to detect inspiratory and expiratory sounds in a 0.1-s segment (time frame) instead of

detecting the events of inhalations and exhalations. Messner et al. [25] applied the BiGRU to

two features, namely Mel-frequency cepstral coefficients (MFCCs) and short-time Fourier

transform (STFT)-derived spectrograms, and achieved an F1 score of approximately 86% for

breath phase detection based on 4,656 inhalations and 4,720 exhalations and an F1 score of

approximately 72% for crackle detection based on 1,339 crackle events. Jácome et al. [26] used

a faster region-based CNN (Faster R-CNN) framework to obtain a sensitivity of 97.5% and

specificity of 85% in inspiratory phase detection and a sensitivity of 95.5% and specificity of

82.5% in expiratory phase detection, which was based on a dataset comprising 3,212 inspira-

tory phases and 2,842 expiratory phases. The datasets used in the three studies are not open to

the public.

Establishment of the lung sound database

Data sources and patients

The lung sound database was established using two sources. The first source was a database

used in a datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the

license of Creative Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of

Emergency and Critical Care Medicine. Lung sound recordings in the TSECC database were

acquired from 261 patients.

The second source was sound recordings acquired from 18 residents of a respiratory care

ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2018

and October 2019. The recordings were approved by the Research Ethics Review Committee

of Far Eastern Memorial Hospital (case number: 107052-F). Written informed consent was

obtained from the 18 patients. This study was conducted in accordance with the 1964 Helsinki

Declaration and its later amendments or comparable ethical standards.

All patients were Taiwanese and aged older than 20 years. Descriptive statistics regarding

the patients’ demographic data, major diagnosis, and comorbidities are presented in Table 1;

however, information on the patients in the TSECC database is missing. Moreover, all 18

RCW/RCC residents were under mechanical ventilation.

Sound recording

Breathing lung sounds were recorded using two devices: (1) a commercial electronic stetho-

scope (Littmann 3200, 3M, Saint Paul, Minnesota, USA) and (2) a customized multichannel

acoustic recording device (HF-Type-1) that supports the connection of eight electret micro-

phones. The signals collected by the HF-Type-1 device were transmitted to a tablet (Surface

Pro 6, Microsoft, Redmond, Washington, USA; Fig 1). Breathing lung sounds were collected

at the eight locations (denoted by L1–L8) indicated in Fig 2A. The auscultation locations are

described in detail in the caption of Fig 2. The two devices had a sampling rate of 4,000 Hz and

a bit depth of 16 bits. The audio files were recorded in the WAVE (.wav) format.

All lung sounds in the TSECC database were collected using the Littmann 3200 device only,

where 15.8-s recordings were obtained sequentially from L1 to L8 (Fig 2B; Littmann 3200).
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One round of recording with the Littmann 3200 device entails a recording of lung sounds

from L1 to L8. The TSECC database was composed of data obtained from one to three rounds

of recording with the Littmann 3200 device for each patient.

We recorded the lung sounds of the 18 RCW/RCC residents by using both the Littmann

3200 device and the HF-Type-1 device. The Littmann 3200 recording protocol was in accor-

dance with that used in the TSECC database, except that data from four to five rounds of lung

sound recording were collected instead. The HF-Type-1 device was used to record breath

sounds at L1, L2, L4, L5, L6, and L8. One round of recording with the HF-Type-1 device entails

a synchronous and continuous recording of breath sounds for 30 min (Fig 2B; HF-Type-1).

However, the recording with the HF-Type-1 device was occasionally interrupted; in this case,

the recording duration was<30 min.

Voluntary deep breathing was not mandated during the recording of lung sounds. The sta-

tistics of the recordings are listed in Table 2.

Audio file truncation

In this study, the standard duration of an audio signal used for inhalation, exhalation, and

adventitious sound detection was 15 s. This duration was selected because a 15-s signal con-

tains at least three complete breath cycles, which are adequate for a clinician to reach a clinical

Table 1. Demographic data of patients.

Subjects from RCW/RCC Subjects in TSECC Database

Number (n) 18 261

Gender (M/F) 11/7 NA

Age 67.5 (36.7, 98.3) NA

Height (cm) 163.6 (147.2, 180.0) NA

Weight (kg) 62.1 (38.2, 86.1) NA

BMI (kg/m2) 23.1 (15.6, 30.7) NA

Respiratory Diseases

Acute respiratory failure 4 (22.2%) NA

Chronic respiratory failure 8 (44.4%) NA

Acute exacerbation of chronic

Obstructive pulmonary disease

1 (5.6%) NA

Chronic obstructive pulmonary disease 2 (11.1%) NA

Pneumonia 4 (22.2%) NA

Acute respiratory distress syndrome 1 (5.6%) NA

Emphysema 1 (5.6%) NA

Comorbidity

Chronic kidney disease 1 (5.6%) NA

Acute kidney injury 3 (16.7%) NA

Chronic heart failure 2 (11.1%) NA

Diabetes mellitus 7 (38.9%) NA

Hypertension 6 (33.3%) NA

Malignancy 1 (5.6%) NA

Arrythmia 1 (5.6%) NA

Cardiovascular disease 1 (5.6%) NA

BMI: body mass index, RCW: respiratory care ward, RCC: respiratory care center, TSECC: Taiwan Smart Emergency

and Critical Care. The mean values of the age, height, weight, and BMI are presented, with the corresponding 95%

confidence interval in parentheses.

https://doi.org/10.1371/journal.pone.0254134.t001
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conclusion. Furthermore, a 15-s breath sound was used previously for verification and valida-

tion [66].

Because each audio file generated by the Littmann 3200 device had a length of 15.8 s, we

cropped out the final 0.8-s signal from the files (Fig 2B; Littmann 3200). Moreover, we used

only the first 15 s of each 2-min signal of the audio files (Fig 2B; HF-Type-1) generated by the

HF-Type-1 device. Table 2 presents the number of truncated 15-s recordings and the total

duration.

Data labeling

Because the data in the TSECC database contains only classification labels indicating whether

a CAS or DAS exists in a recording, we attempted to label the start and end time of all the

events. Two board-certified respiratory therapists (NJL and YLW) and one board-certified

nurse (WLT), with 8, 3, and 13 years of clinical experience, respectively, were recruited to label

the start and end points of inhalation (I), exhalation (E), wheeze (W), stridor (S), rhonchus

Fig 1. Customized multichannel acoustic recording device (HF-Type-1) connected to a tablet.

https://doi.org/10.1371/journal.pone.0254134.g001
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(R), and DAS (D) events in the recordings. They labeled the sound events by listening to the

recorded breath sounds while simultaneously observing the corresponding patterns on a spec-

trogram by using customized labeling software [67]. The labelers were asked not to label

sound events if they could not clearly identify the corresponding sound or if an incomplete

event at the beginning or end of an audio file caused difficulty in identification. BFH held reg-

ular meetings to ensure that the labelers had good agreement on labeling criteria based on a

few samples by judging the mean pseudo-κ value [26]. When developing artificial intelligence

(AI) detection models, we combined the W, S, and R labels to form CAS labels. Moreover, the

D labels comprised only crackles, which were not differentiated into coarse or fine crackles.

The labelers were asked to label the period containing crackles but not a single explosive

sound (generally less than 25 ms) of a crackle. Each recording was annotated by only one

labeler; thus, the labels did not represent perfect ground truth. However, we used the labels as

ground-truth labels for model training, validation, and testing. The statistics of the labels are

listed in Table 2.

Fig 2. Auscultation locations and lung sound recording protocol. (a) Auscultation locations (L1–L8): L1: second

intercostal space (ICS) on the right midclavicular line (MCL); L2: fifth ICS on the right MCL; L3: fourth ICS on the

right midaxillary line (MAL); L4: tenth ICS on the right MAL; L5: second ICS on the left MCL; L6: fifth ICS on the left

MCL; L7: fourth ICS on the left MAL; and L8: tenth ICS on the left MAL. (b) A standard round of breathing lung

sound recording with Littmann 3200 and HF-Type-1 devices. The white arrows represent a continuous recording, and

the small red blocks represent 15-s recordings. When the Littmann 3200 device was used, 15.8-s signals were recorded

sequentially from L1 to L8. Subsequently, all recordings were truncated to 15 s. When the HF-Type-1 device was used,

sounds at L1, L2, L4, L5, L6, and L8 were recorded simultaneously. Subsequently, each 2-min signal was truncated to

generate new 15-s audio files.

https://doi.org/10.1371/journal.pone.0254134.g002

Table 2. Statistics of recordings and labels of HF_Lung_V1 database.

Littmann 3200 HF-Type-1 Total

Subjects

n 261 18 261

Recordings

Filename prefix steth_ trunc_ NA

Rounds of recording 748 70 NA

No of 15-sec recordings 4504 5261 9765

Total duration (min) 1126 1315.25 2441.25

Labels

No of I 16535 17560 34095

Total duration of I (min) 257.17 271.02 528.19

Mean duration of I (s) 0.93 0.93 0.93

No of E 9107 9242 18349

Total duration of E (min) 160.25 132.60 292.85

Mean duration of E (s) 1.06 0.86 0.96

No of C/W/S/R 6984/3974/152/2858 6899/4483/534/1882 13883/8457/686/4740

Total duration of C/W/S/R (min) 105.90/63.92/1.94/40.04 85.26/55.80/7.52/21.94 191.16/119.73/9.46/61.98

Mean duration of C/W/S/R (s) 0.91/0.97/0.76/0.84 0.74/0.75/0.85/0.70 0.83/0.85/0.83/0.78

No of D 7266 8340 15606

Total duration of D (min) 111.75 55.80 230.87

Mean duration of D (s) 0.92 0.87 0.89

I: inhalation, E: exhalation, W: wheeze, S: stridor, R: rhonchus, C: continuous adventitious sound, D: discontinuous

adventitious sound. W, S, and R were combined to form C.

https://doi.org/10.1371/journal.pone.0254134.t002
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Inhalation, exhalation, CAS, and DAS detection

Framework

The inhalation, exhalation, CAS, and DAS detection framework developed in this study is dis-

played in Fig 3. The prominent advantage of the research framework is its modular design.

Specifically, each unit of the framework can be tested separately, and the algorithms in differ-

ent parts of the framework can be modified to achieve optimal overall performance. Moreover,

the output of some blocks can be used for multiple purposes. For instance, the spectrogram

generated by the preprocessing block can be used as the input of a model or for visualization

in the user interface for real-time monitoring.

The framework comprises three parts: preprocessing, deep learning-based modeling, and

postprocessing. The preprocessing part involves signal processing and feature engineering

techniques. The deep learning-based modeling part entails the use of a well-designed neural

network for obtaining a sequence of classification predictions rather than a single prediction.

The postprocessing part involves merging the segment prediction results and eliminating the

burst event.

Preprocessing

We processed the lung sound recordings at a sampling frequency of 4 kHz. First, to eliminate

the 60-Hz electrical interference and a part of the heart sound noise, we applied a high-pass fil-

ter to the recordings by setting a filter order of 10 and a cut-off frequency of 80 Hz. The filtered

Fig 3. Pipeline of detection framework.

https://doi.org/10.1371/journal.pone.0254134.g003

PLOS ONE Automated lung sound analysis database

PLOS ONE | https://doi.org/10.1371/journal.pone.0254134 July 1, 2021 9 / 26

https://doi.org/10.1371/journal.pone.0254134.g003
https://doi.org/10.1371/journal.pone.0254134


signals were then processed using STFT [25, 54, 68]. In the STFT, we set a Hanning window

size of 256 and hop length of 64; no additional zero-padding was applied. Thus, a 15-s sound

signal could be transformed into a corresponding spectrogram with a size of 938 × 129. To

obtain the spectral information regarding the lung sounds, we extracted the following features

[25, 54]:

■ Spectrogram: We extracted 129-bin log-magnitude spectrograms.

■ MFCCs [69]: We extracted 20 static coefficients, 20 delta coefficients (Δ), and 20 accelera-

tion coefficients (Δ2). We used 40 mel bands within a frequency range of 0–4,000 Hz. The

frame width used to calculate the delta and acceleration coefficients was set to 9, which

resulted in a 60-bin vector per frame.

■ Energy summation: We computed the energy summation of four frequency bands,

namely 0–250, 250–500, 500–1,000, and 0–2,000 Hz, and obtained four values per time

frame.

After extracting the aforementioned features, we concatenated them to form a 938 × 193

feature matrix. Subsequently, we conducted min–max normalization on each feature. The val-

ues of the normalized features ranged between 0 and 1.

Deep learning models

We investigated the performance of eight RNN-based models, namely LSTM, GRU, BiLSTM,

BiGRU, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU, in terms of inhalation,

exhalation, and adventitious sound detection. Fig 4 illustrates the detailed model structures.

The LSTM [30] and GRU [31] models are able to use the past information to make a predic-

tion at the present. However, bidirectional RNN models [32, 33], such as the BiLSTM and

BiGRU models, can process the information not only from the past but also from the future

with two separate hidden layers. The preceding CNN layers in the CNN-LSTM, CNN-BRU,

CNN-BiLSTM, and CNN-BiGRU models can help extract abstract features first and then feed

them as input to the following RNN layers [38]. Time distributed fully connected layers are

added behind the LSTM, GRU, BiLSTM and BiGRU layers to further process the information

and give a final prediction vector. The outputs of the LSTM, GRU, BiLSTM, and BiGRU mod-

els were 938 × 1 vectors, and those of the CNN-LSTM, CNN-GRU, CNN-BiLSTM, and

CNN-BiGRU models were 469 × 1 vectors. An element in these vectors was set to 1 if an inha-

lation, exhalation, CAS, or DAS occurred within a time segment in which the output value

passed the thresholding criterion; otherwise, the element was set to 0.

For a fairer comparison of the performance of the unidirectional and bidirectional models,

we trained additional simplified (SIMP) BiLSTM, SIMP BiGRU, SIMP CNN-BiLSTM, and

SIMP CNN-BiGRU models by adjusting the number of trainable parameters. Fig 5 illustrates

the detailed architectures of the simplified bidirectional models. Parameter adjustment was

conducted by halving the number of cells of the BiLSTM and BiGRU layers from 256 to 128.

We used Adam as the optimizer in the benchmark model, and we set the initial learning

rate to 0.0001 with a step decay (0.2×) when the validation loss did not decrease for 10 epochs.

The learning process stopped when no improvement occurred over 50 consecutive epochs.

Postprocessing

The prediction vectors obtained using the adopted models can be further processed for differ-

ent purposes. For example, we can transform the prediction result from frames to time for

real-time monitoring. The breathing duration of most humans lies within a certain range; we
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Fig 4. Model architectures and postprocessing for inhalation, exhalation, CAS, and DAS segment and event detection. (a) LSTM and GRU models; (b)

BiLSTM and BiGRU models; and (c) CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models.

https://doi.org/10.1371/journal.pone.0254134.g004
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considered this fact in our study. Accordingly, when the prediction results obtained using the

models indicated that two consecutive inhalation events occurred within a very small interval,

we checked the continuity of these two events and decided whether to merge them, as illus-

trated in the bottom panel of Fig 4A. For example, when the interval between the jth and ith
events was smaller than T s, we computed the difference in frequency between their energy

peaks (|pj−pi|). Subsequently, if the difference was below a given threshold P, the two events

were merged into a single event. In the experiment, T was set to 0.5 s, and P was set to 25 Hz.

After the merging process, we further assessed whether a burst event existed. If the duration of

an event was shorter than 0.05 s, the event was deleted.

Fig 5. Architectures of simplified bidirectional models. (a) SIMP BiLSTM and SIMP BiGRU models; and (b) SIMP CNN-BiLSTM, and SIMP CNN-BiGRU

models.

https://doi.org/10.1371/journal.pone.0254134.g005
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Dataset arrangement and cross-validation

We adopted fivefold cross-validation in the training dataset to train and validate the models. More-

over, we used an independent testing dataset to test the performance of the trained models.

According to our preliminary experience, the acoustic patterns of the breath sounds collected from

one patient at different auscultation locations or between short intervals had many similarities. To

avoid potential data leakage caused by our methods of collecting and truncating the breath sound

signals, we assigned all truncated recordings collected on the same day to only one of the training,

validation, or testing datasets; this is because these recordings might have been collected from the

same patient within a short period. The statistics of the datasets are listed in Table 3. We used only

audio files containing CASs and DASs to train and test their corresponding detection models.

Task definition and evaluation metrics

Pramono RXA, Bowyer S, and Rodriguez-Villegas E [4] clearly defined adventitious sounds

classification and detection at the segment, event, and recording levels. In this study, we fol-

lowed the definition and performed two tasks. The first task involved performing detection at

the segment level. The acoustic signal of each lung sound recording was transformed into a

spectrogram. The temporal resolution of the spectrogram depended on the window size and

overlap ratio of the STFT. The aforementioned parameters were fixed such that each spectro-

gram was a matrix of size 938 × 129. Thus, each recording contained 938 time segments (time

frames), and each time segment was automatically labeled (Fig 6B) according to the ground-

truth event labels (Fig 6A) assigned by the labelers. The output of the prediction process was a

sequential prediction matrix (Fig 6C) of size 938 × 1 in the LSTM, GRU, BiLSTM, and BiGRU

models and size 469 × 1 in the CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU

models. By comparing the sequential prediction with the ground-truth time segments, we

could define true positive (TP; orange vertical bars in Fig 6D), true negative (TN; green vertical

bars in Fig 6D), false positive (FP; black vertical bars in Fig 6D), and false negative (FN; yellow

Table 3. Statistics of the datasets and labels of the HF_Lung_V1 database.

Training Dataset Testing Dataset Total

Recordings

No of 15-sec recordings 7809 1956 9765

Total duration (min) 1952.25 489 2441.25

Labels

No of I 27223 6872 34095

Total duration of I (min) 422.17 105.97 528.14

Mean duration of I (s) 0.93 0.93 0.93

No of E 15601 2748 18349

Total duration of E (min) 248.05 44.81 292.85

Mean duration of E (s) 0.95 0.98 0.96

No of C/W/S/R 11464/7027/657/3780 2419/1430/29/960 13883/8457/686/4740

Total duration of C/W/S/R (min) 160.16/100.71/9.10/50.35 31.01/19.02/0.36/11.63 191.16/119.73/9.46/61.98

Mean duration of C/W/S/R (s) 0.84/0.86/0.83/0.80 0.77/0.80/0.74/0.73 0.83/0.85/0.83/0.78

No of D 13794 1812 15606

Total duration of D (min) 203.59 27.29 230.87

Mean duration of D (s) 0.89 0.90 0.89

I: inhalation, E: exhalation, W: wheeze, S: stridor, R: rhonchus, C: continuous adventitious sound, D: discontinuous

adventitious sound. W, S, and R were combined to form C.

https://doi.org/10.1371/journal.pone.0254134.t003
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vertical bars in Fig 6D) time segments. Subsequently, the models’ sensitivity and specificity in

classifying the segments in each recording were computed.

The second task entailed event detection at the recording level. After completing the

sequential prediction (Fig 6C), we assembled the time segments associated with the same label

into a corresponding event (Fig 6E). We also derived the start and end times of each assembled

event. The Jaccard index (JI; [26]) was used to determine whether an AI inference result

Fig 6. Task definition and evaluation metrics. (a) Ground-truth event labels, (b) ground-truth time segments, (c) AI inference results, (d) segment

classification, (e) event detection, and (f) legend. JI: Jaccard index.

https://doi.org/10.1371/journal.pone.0254134.g006
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correctly matched the ground-truth event. For an assembled event to be designated as a TP

event (orange horizontal bars in Fig 6E), the corresponding JI value must be greater than 0.5.

If the JI was between 0 and 0.5, the assembled event was designated as an FN event (yellow

horizontal bars in Fig 6E), and if it was 0, the assembled event was designated as an FP event

(black horizontal bars in Fig 6E). A TN event cannot be defined in the task of event detection.

The performance of the models was evaluated using the F1 score, and that of segment detec-

tion was evaluated using the receiver operating characteristic (ROC) curve and area under the

ROC curve (AUC). In addition, the mean absolute percentage error (MAPE) of event detec-

tion was derived. The accuracy, positive predictive value (PPV), sensitivity, specificity, and F1
score of the models are presented in the section of Supporting information.

Hardware and software

We trained the baseline models on an Ubuntu 18.04 server provided by the National Center

for High-Performance Computing in Taiwan [Taiwan Computing Cloud (TWCC)]. It was

equipped with an Intel(R) Xeon(R) Gold 6154 @3.00 GHz CPU with 90 GB RAM. To manage

the intensive computation involved in RNN training, we implemented the training module by

using the TensorFlow 2.10, CUDA 10, and CuDNN 7 programs to run the NVIDIA Titan

V100 card on the TWCC server for GPU acceleration.

Results

LSTM versus GRU models

Table 4 presents the F1 scores used to compare the eight LSTM- and GRU-based models.

When a CNN was not added, the GRU models outperformed the LSTM models by 0.7%–9.5%

in terms of the F1 scores. However, the CNN-GRU and CNN-BiGRU models did not outper-

form the CNN-LSTM and CNN-BiLSTM models in terms of the F1 scores (and vice versa).

According to the ROC curves presented in Fig 7A–7D, the GRU-based models outper-

formed the LSTM-based models in all compared pairs, except for one pair, in terms of DAS

segment detection (AUC of 0.891 for CNN-BiLSTM vs 0.889 for CNN-BiGRU).

Unidirectional versus bidirectional models

As presented in Table 5, the bidirectional models outperformed their unidirectional counter-

parts in all the defined tasks by 0.4%–9.8% in terms of the F1 scores, even when the bidirec-

tional models had fewer trainable parameters after model adjustment.

Table 4. Comparison of F1 scores between LSTM-based models and GRU-based models.

Inhalation Exhalation CASs DASs

Models n of trainable

parameters

F1 score F1 score F1 score F1 score

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

LSTM 300,609 73.9% 76.1% 51.8% 57.0% 15.1% 12.2% 62.6% 59.1%

GRU 227,265 76.2% 78.9% 59.8% 65.6% 24.6% 20.1% 65.9% 62.5%

BiLSTM 732,225 78.1% 84.0% 57.3% 63.9% 19.8% 19.1% 69.6% 70.0%

BiGRU 552,769 80.3% 86.2% 64.1% 70.9% 26.9% 25.6% 70.3% 71.4%

CNN-LSTM 3,448,513 77.6% 81.1% 57.7% 62.1% 45.3% 42.5% 68.8% 64.4%

CNN-GRU 2,605,249 78.4% 82.0% 57.2% 62.0% 51.5% 49.8% 68.0% 64.6%

CNN-BiLSTM 6,959,809 80.6% 86.3% 60.4% 65.6% 47.9% 46.4% 71.2% 70.8%

CNN-BiGRU 5,240,513 80.6% 86.2% 62.2% 68.5% 53.3% 51.6% 70.6% 70.0%

The bold values indicate the higher F1 score between the compared pairs of models.

https://doi.org/10.1371/journal.pone.0254134.t004
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Models with CNN versus those without CNN

According to Table 6, the models with a CNN outperformed those without a CNN in 26 of the

32 compared pairs.

The models with a CNN exhibited higher AUC values than did those without a CNN (Fig

7A–7D), except that BiGRU had a higher AUC value than did CNN-BiGRU in terms of inhala-

tion detection (0.963 vs 0.961), GRU had a higher AUC value than did CNN-GRU in terms of

Fig 7. ROC curves for (a) inhalation, (b) exhalation, (c) CAS, and (d) DAS segment detection. The corresponding AUC values are

presented.

https://doi.org/10.1371/journal.pone.0254134.g007
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exhalation detection (0.886 vs 0.883), and BiGRU had a higher AUC value than did CNN-Bi-

GRU in terms of exhalation detection (0.911 vs 0.899).

Moreover, compared with the LSTM, GRU, BiLSTM, and BiGRU models, the CNN-LSTM,

CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models exhibited flatter and lower MAPE

curves over a wide range of threshold values in all event detection tasks (Fig 8A–8D).

Discussion

Benchmark results

According to the F1 scores presented in Table 4, among models without a CNN, the GRU and

BiGRU models consistently outperformed the LSTM and BiLSTM models in all defined tasks.

However, the GRU-based models did not have superior F1 scores among models with a CNN.

Regarding the ROC curves and AUC values (Fig 7A–7D), the GRU-based models consistently

outperformed the other models in all but one task. Accordingly, we can conclude that GRU-

based models perform slightly better than LSTM-based models in lung sound analysis.

Table 5. Comparison of F1 scores between the unidirectional and bidirectional models.

Inhalation Exhalation CASs DASs

Models n of trainable

parameters

F1 score F1 score F1 score F1 score

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

LSTM 300,609 73.9% 76.1% 51.8% 57.0% 15.1% 12.2% 62.6% 59.1%

SIMP BiLSTM 235,073 77.8% 84.1% 55.8% 62.4% 19.8% 17.9% 68.8% 68.9%

GRU 227,265 76.2% 78.9% 59.8% 65.6% 24.6% 20.1% 65.9% 62.5%

SIMP BiGRU 178,113 80.1% 86.1% 63.7% 70.0% 25.0% 22.2% 70.3% 71.3%

CNN-LSTM 3,448,513 77.6% 81.1% 57.7% 62.1% 45.3% 42.5% 68.8% 64.4%

SIMP

CNN-BiLSTM

3,382,977 80.0% 85.8% 60.4% 66.2% 50.8% 50.2% 70.2% 70.2%

CNN-GRU 2,605,249 78.4% 82.0% 57.2% 62.0% 51.5% 49.8% 68.0% 64.6%

SIMP

CNN-BiGRU

2,556,097 80.1% 85.9% 62.4% 68.4% 52.6% 51.5% 69.9% 69.5%

The bold values indicate the higher F1 score between the compared pairs of models. SIMP means the number of trainable parameters is adjusted.

https://doi.org/10.1371/journal.pone.0254134.t005

Table 6. Comparison of F1 scores between models without and with a CNN.

Inhalation Exhalation CASs DASs

Models n of trainable

parameters

F1 score F1 score F1 score F1 score

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

Segment

Detection

Event

Detection

LSTM 300,609 73.9% 76.1% 51.8% 57.0% 15.10% 12.20% 62.60% 59.10%

CNN-LSTM 3,448,513 77.6% 81.1% 57.7% 62.1% 45.30% 42.50% 68.80% 64.40%

BiLSTM 732,225 76.2% 78.9% 59.8% 65.6% 19.80% 17.90% 68.80% 68.90%

CNN-BiLSTM 6,959,809 78.4% 82.0% 57.2% 62.0% 50.80% 50.20% 70.20% 70.20%

GRU 227,265 78.1% 84.0% 57.3% 63.9% 24.60% 20.10% 65.90% 62.50%

CNN-GRU 2,605,249 80.6% 86.3% 60.4% 65.6% 51.50% 49.80% 68.00% 64.60%

BiGRU 178,113 80.3% 86.2% 64.1% 70.9% 25.00% 22.20% 70.30% 71.30%

CNN-BiGRU 2,556,097 80.6% 86.2% 62.2% 68.5% 52.60% 51.50% 69.90% 69.50%

The bold values indicate the higher F1 score between the compared pairs of models.

https://doi.org/10.1371/journal.pone.0254134.t006
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Previous studies have also compared LSTM- and GRU-based models [34, 70, 71]. Although a

concrete conclusion cannot be drawn regarding whether LSTM-based models are superior to

the GRU-based models (and vice versa), GRU-based models have been reported to outperform

LSTM-based models in terms of computation time [34, 71].

As presented in Table 5, the bidirectional models outperformed their unidirectional coun-

terparts in all defined tasks, a finding that is consistent with several previously obtained results

[25, 32, 34, 36].

Fig 8. MAPE curves for (a) inhalation, (b) exhalation, (c) CAS, and (d) DAS event detection.

https://doi.org/10.1371/journal.pone.0254134.g008
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A CNN can facilitate the extraction of useful features and enhance the prediction accuracy

of RNN-based models. The benefits engendered by a CNN are particularly vital in CAS detec-

tion. For the models with a CNN, the F1 score improvement ranged from 26.0% to 30.3% and

the AUC improvement ranged from 0.067 to 0.089 in the CAS detection tasks. Accordingly,

we can infer that considerable information used in CAS detection resides in the local posi-

tional arrangement of the features. Thus, a two-dimensional CNN facilitates the extraction of

the associated information. Notably, CNN-induced improvements in model performance in

the inhalation, exhalation, and DAS detection tasks were not as high as those observed in the

CAS detection tasks. The MAPE curves (Fig 8A–8D) reveal that a model with a CNN has more

consistent predictions over various threshold values.

In our previous study [24], an attention-based encoder–decoder architecture based on

ResNet and LSTM exhibited favorable performance in inhalation (F1 score of 90.4%) and

exhalation (F1 score of 93.2%) segment detection tasks. However, the model was established

on the basis of a very small dataset (489 recordings of 15-s-long lung sounds). Moreover, the

model involves a complicated architecture; hence, it is impossible to implement real-time

respiratory monitoring in devices with limited computing power, such as smartphones or

medical-grade tablets.

Jácome et al. used a Faster R-CNN model for breath phase detection and achieved a sensi-

tivity of 97.5% and specificity of 85% in inspiratory phase detection and a sensitivity of 95.5%

and specificity of 82.5% in expiratory phase detection [26]. The evaluation method they used is

similar but not the same as the one used for evaluating segment detection in the present study.

Moreover, they reported the results after implementing post-processing; however, the results

of our segment detection (S2 and S3 Tables) were derived before the post-processing was

applied. Therefore, a fair comparison is not achievable.

Messner et al. [25] used the BiGRU model and one-dimensional labels (similar to those

used in the present study) for breath phase and crackle detection. Their BiGRU model exhib-

ited comparable performance to our models in terms of inhalation event detection (F1 scores,

87.0% vs 86.2%) and in terms of DAS event detection (F1 scores, 72.1% vs 71.4%). However,

the performance of the BiGRU model differed considerably from that of our models in terms

of exhalation detection (F1 scores: 84.6% vs 70.9%). One of the reasons for this discrepancy is

that Messner et al. established their ground-truth labels on the basis of the gold-standard sig-

nals of a pneumotachograph [25]. The second reason is that they may include pause phases

into breath phases, but we focused on only labeling the events that can be heard. Another rea-

son is that an exhalation label is not always available following an inhalation label in our data.

Finally, we did not specifically control the sounds we recorded; for example, we did not ask

patients to perform voluntary deep breathing or keep ambient noise down. The factors influ-

encing the model performance are further discussed in the next section.

Factors influencing model performance

The benchmark performance of the proposed models may have been influenced by the follow-

ing factors: (1) unusual breathing patterns; (2) imbalanced data; (3) low signal-to-noise ratio

(SNR); (4) noisy labels, including class and attribute noise, in the database; and (5) sound

overlapping.

Fig 9A illustrates the general pattern of a breath cycle in the lung sounds when the ratio of

inhalation to exhalation durations is approximately 2:1 and an expiratory pause is noted [3, 4].

However, in our recorded lung sound, an exhalation was sometimes not heard (Fig 9B). More-

over, because we did not ask the subjects to breathe voluntarily when recording the sound,

many unusual breath patterns might have been recorded, such as patterns caused by shallow
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breathing, fast breathing, and apnea as well as those caused by double triggering of the ventila-

tor [72] and air trapping [73, 74]. These unusual breathing patterns might confuse the labeling

and learning processes and result in poor testing results.

The developed database contains imbalanced numbers of inhalation and exhalation labels

(34,095 and 18,349, respectively) because not every exhalation was heard and labeled. In addi-

tion, the proposed models may possess the capability of learning the rhythmic rise and fall of

breathing signals but not the capability of learning acoustic or texture features that can distin-

guish an inhalation from an exhalation. This may thus explain the models’ poor performance

in exhalation detection. However, these models are suitable for respiratory rate estimation and

apnea detection as long as appropriate inhalation detection is achieved. Furthermore, for all

labels, the summation of the event duration was smaller than that of the background signal

duration (these factors had a ratio of approximately 1:2.5 to 1:7). The aforementioned phe-

nomenon can be regarded as foreground–background class imbalance [75] and will be

addressed in future studies.

Most of the sounds in the established database were not recorded during the patients per-

formed deep breathing; thus, the signal quality was not maximized. However, training models

with such nonoptimal data increase their adaptability to real-world scenarios. Moreover, the

SNR may be reduced by noise, such as human voices; music; sounds from bedside monitors,

televisions, air conditioners, fans, and radios; sounds generated by mechanical ventilators;

electrical noise generated by touching or moving the parts of acoustic sensors; and friction

sounds generated by the rubbing of two surfaces together (e.g., rubbing clothes with the skin).

A poor SNR of audio signals can lead to difficulties in labeling and prediction tasks. The fea-

tures of some noise types are considerably similar to those of adventitious sounds. The poor

Fig 9. Patterns of normal breathing lung sounds. (a) General lung sound patterns and (b) general lung sound

patterns with unidentifiable exhalations. “I” represents an identifiable inhalation event, “E” represents an identifiable

exhalation event, and the black areas represent pause phases.

https://doi.org/10.1371/journal.pone.0254134.g009
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performance of the proposed models in CAS detection can be partly attributed to the noisy

environment in which the lung sounds were recorded. In particular, the sounds generated by

ventilators caused numerous FP events in the CAS detection tasks. Thus, additional effort is

required to develop a superior preprocessing algorithm that can filter out influential noise or

to identify a strategy to ensure that models focus on learning the correct CAS features. Further-

more, the integration of active noise-canceling technology [76] or noise suppression technol-

ogy [77] into respiratory sound monitors can help reduce the noise from auscultatory signals.

The sound recordings in the HF_Lung_V1 database were labeled by only one labeler; thus,

some noisy labels, including class and attribute noise, may exist in the database [78]. These

noisy labels are attributable to (1) the different hearing abilities of the labeler, which can cause

differences in the labeled duration; (2) the absence of clear criteria for differentiating between

target and confusing events; (3) individual human errors; (4) tendency to not label events

located close to the beginning and end of a recording; and (5) confusion caused by unusual

breath patterns and poor SNRs. However, deep learning models exhibit high robustness to

noisy labels [79]. Accordingly, we are currently working toward establishing better ground-

truth labels.

Breathing generates CASs and DASs under abnormal respiratory conditions. This means

that the breathing sound, CAS, and DAS might overlap with one another during the same

period. This sound overlapping, along with the data imbalance, makes the CAS and DAS

detection models learn to read the rise and fall of the breathing energy and falsely identify an

inhalation or exhalation as CAS or DAS, respectively. This FP detection was observed in our

benchmark results. In the future, strategies must be adopted to address the problem of sound

overlap.

Conclusions

We established the largest open-access lung sound database, namely HF_Lung_V1 (https://

gitlab.com/techsupportHF/HF_Lung_V1), that contains 9,765 audio files of lung sounds (each

with a duration of 15 s), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 CAS labels

(comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchus labels), and 15,606

DAS labels (all of which are crackles).

We also investigated the performance of eight RNN-based models in terms of inhalation,

exhalation, CAS detection, and DAS detection in the HF_Lung_V1 database. We determined

that the bidirectional models outperformed the unidirectional models in lung sound analysis.

Furthermore, the addition of a CNN to these models further improved their performance.

Future studies can develop more accurate respiratory sound analysis models. First, highly

accurate ground-truth labels should be established. Second, researchers should investigate the

performance of state-of-the-art convolutional layers. Third, the advantage of using CNN vari-

ants can be maximized in lung sound analysis if the labels are expanded to two-dimensional

bounding boxes on the spectrogram. Fourth, wavelet-based approaches, empirical mode

decomposition, and other methods that can extract different features should be investigated

[4, 80]. Finally, respiratory sound monitors should be equipped with the capability of tracheal

breath sound analysis [76].
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73. Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pres-

sure, and dynamic hyperinflation in mechanically ventilated patients. Respiratory care. 2005; 50

(1):110–24. PMID: 15636649

74. Miller WT, Chatzkel J, Hewitt MG. Expiratory air trapping on thoracic computed tomography. A diagnos-

tic subclassification. Annals of the American Thoracic Society. 2014; 11(6):874–81. https://doi.org/10.

1513/AnnalsATS.201311-390OC PMID: 24956379

75. Oksuz K, Cam BC, Kalkan S, Akbas E. Imbalance problems in object detection: A review. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence. 2020. https://doi.org/10.1109/TPAMI.2020.

2981890 PMID: 32191882

76. Wu Y, Liu J, He B, Zhang X, Yu L. Adaptive Filtering Improved Apnea Detection Performance Using

Tracheal Sounds in Noisy Environment: A Simulation Study. BioMed Research International. 2020;

2020. https://doi.org/10.1155/2020/7429345 PMID: 32596366

77. Emmanouilidou D, McCollum ED, Park DE, Elhilali M. Computerized lung sound screening for pediatric

auscultation in noisy field environments. IEEE Transactions on Biomedical Engineering. 2017; 65

(7):1564–74. https://doi.org/10.1109/TBME.2017.2717280 PMID: 28641244

78. Zhu X, Wu X. Class noise vs. attribute noise: A quantitative study. Artificial intelligence review. 2004; 22

(3):177–210.

79. Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label noise. arXiv preprint

arXiv:170510694. 2017.

80. Pramono RXA, Imtiaz SA, Rodriguez-Villegas E. Evaluation of features for classification of wheezes

and normal respiratory sounds. PloS one. 2019; 14(3):e0213659. https://doi.org/10.1371/journal.pone.

0213659 PMID: 30861052

PLOS ONE Automated lung sound analysis database

PLOS ONE | https://doi.org/10.1371/journal.pone.0254134 July 1, 2021 26 / 26

https://doi.org/10.1007/s00134-006-0301-8
https://doi.org/10.1007/s00134-006-0301-8
http://www.ncbi.nlm.nih.gov/pubmed/16896854
http://www.ncbi.nlm.nih.gov/pubmed/15636649
https://doi.org/10.1513/AnnalsATS.201311-390OC
https://doi.org/10.1513/AnnalsATS.201311-390OC
http://www.ncbi.nlm.nih.gov/pubmed/24956379
https://doi.org/10.1109/TPAMI.2020.2981890
https://doi.org/10.1109/TPAMI.2020.2981890
http://www.ncbi.nlm.nih.gov/pubmed/32191882
https://doi.org/10.1155/2020/7429345
http://www.ncbi.nlm.nih.gov/pubmed/32596366
https://doi.org/10.1109/TBME.2017.2717280
http://www.ncbi.nlm.nih.gov/pubmed/28641244
https://doi.org/10.1371/journal.pone.0213659
https://doi.org/10.1371/journal.pone.0213659
http://www.ncbi.nlm.nih.gov/pubmed/30861052
https://doi.org/10.1371/journal.pone.0254134

