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Global climatic changes and abiotic stresses

Climate change is an inevitable and unavoidable phenome-
non globally, which affects all aspects of human life, includ-
ing food security. Direct effects of climate change include 
temperature increase of the earth surface, drought in arid 
and semi-arid areas, uneven precipitation and unpredictably 
high precipitation (Andjelkovic 2018, Trenberth 2008). In 
2016, the global temperature was 0.99°C warmer than in the 
middle of the 20th century (NASA 2018). Whereas in the 
late 21st century, the global mean surface temperature is pro-
jected to increase 1–3.7°C relative to the end of the 20th 
century (IPCC 2014). In terms of uneven precipitation, an 
increase of annual mean precipitation is predicted in the high 
latitudes, equatorial pacific regions and some mid-latitude 
wet regions, while many mid-latitude and sub-tropical dry 

regions are expected to experience a decrease in annual 
mean precipitation by the end of this century (IPCC 2014).

When plants are exposed to any kind of unfavorable en-
vironmental condition that causes reductions in growth and 
yield, they suffer abiotic stress. The conditions could be 
high temperature, low temperature, drought, metal toxicity, 
or salinity stress. In relation with climate change, high tem-
perature (heat), drought and salinity are the most serious 
abiotic stresses. The increasing average global temperature 
triggers increases in heat stress events, whereas the decreas-
ing annual mean precipitation in some mid-latitude and 
sub-tropical regions leads to water deficits (IPCC 2014). 
The low precipitation, together with high surface evapora-
tion, weathering of rocks, seawater intrusion, and poor cul-
tural practices, increases the problem of land-salinity (Duan 
2016, Shrivastava and Kumar 2015).

Challenges for potato under climatic change with 
abiotic stresses

Potato is the third largest food crop in the world after wheat 
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exposure to high temperature, due to a delay in tuber initia-
tion and shorter bulking duration, as well as a lower net as-
similation rate (Aien et al. 2016). Climate change has been 
predicted to decrease the global potato yield from 18% to 
32% without adaptation or from 9% to 18% with adaptation 
(Hijmans 2003). In this context, adaptation is considered in 
the narrow sense of the “autonomous” adaptations made to 
the farmer field, such as adjusting the planting time or using 
adaptive cultivars (Hijmans 2003).

Drought stress
With respect to water, the potato is known as an efficient 

water-use crop, yielding more food per unit of water than 
other main crops (Vos and Haverkort 2007). However, the 
potato is extremely sensitive to water deficits, due to the 
shallow and low density of root architecture of this crop 
species (Wishart et al. 2014, Yamaguchi and Tanaka 1990). 
Potato requires 400 mm to 800 mm of precipitation for 
complete growth, and this is also dependent on other factors 
such as meteorological conditions, soil and other manage-
ment factors (Ekanayake 1989). The low precipitation caused 
by climate change in the mid-latitude and sub-tropical dry 
regions induces drought stress on the potato crop. The defi-
ciency of water negatively affects plant growth and tuber 
yield and quality (Aliche et al. 2018, Mackerron and 
Jefferies 1988, Soltys-Kalina et al. 2016). Yield losses per 
year due to drought reach 117 kg tuber per hectare for each 
millimeter of water deficit and result in smaller tubers in the 
Netherlands (Vos and Groenwold 1987). In a simulated 
model, climate change was predicted to reduce rain-fed 
potato-cultivation areas in England and Wales by 74% to 
95% by the 2050s (Daccache et al. 2012). This would great-
ly decrease potato production or shift it to irrigated fields, 
which in turn would compete with the water supply in oth-
er sectors, such as the water used for direct human con-
sumption.

Salinity
In addition to drought, salinity—either salinity of the soil 

or salinity of the water applied to it—is another stress that 
can restrict the potato crop in the semi-arid and arid zones. 
Salt stress induces severe senescence and nutritional imbal-
ance in potato plants, which reduces the plant growth and 
tuber yield (Aghaei et al. 2009, Ghosh et al. 2001, Jaarsma 
et al. 2013, Levy et al. 1988).

Cultivation approaches to alleviate abiotic stresses 
on potato

At a certain level, we can protect potato crops from adverse 
effects by abiotic stresses. Cultivation technologies such as 
mulching, shading plants, water-saving irrigation strategy 
by creating wet and dry areas in the root zone at the same 
time or partial root zone drying (PRD), applying rhizo
spheric bacteria, and nano-hormones scaling have been 
used to reduce the negative impact of environmental stress 

and rice based on food supply quantity (FAO 2019a). Potato 
is a staple food with wide agro-climatic zones, a harvesting 
area of over than 19 million hectares, where more than 388 
million tons were produced in 2017, and with consumption 
of more than 239 million tons (FAO 2019b). Mainly con-
sumed as a fresh food, potatoes also provide raw material 
for food processing (e.g., chips and French fries) and specif-
ic industries (e.g., starch and ethanol) (Birch et al. 2012, 
Watanabe 2015). In addition to high carbohydrate and low 
fat, the potato tuber has balanced nutritional value with vita-
mins and minerals, making this crop ideal for the human 
diet and important for food security worldwide (Birch et al. 
2012, White et al. 2009).

As a typical task on plant breeding, higher plants depend 
on their environment to complete the life cycle, which is 
generally reagreed as Genotype-by-Environment interaction 
(G × E). When plants are exposed to an exotic or variable 
environmental condition which may negatively affect their 
growth and decrease the yield, they are said to have encoun-
tered an abiotic stress (Cramer et al. 2011). Even though 
potato has been grown around the world under various envi-
ronments and seasons, cultivated potatoes originated from 
the highlands of Andes in South America (Hawkes 1994), a 
region characterized by a cool temperate climate and short 
photoperiod. Today the distribution of potato plants covers 
almost all the world, from 47°S to 65°N, but 90% of total 
potato production takes place in a narrower band from 22°N 
to 59°N (Hijmans 2001). Potatoes can be grown in both 
subtropical and tropical zones, such as in the highlands of 
Southeast Asia. Nonetheless, despite the wide distribution 
and adaptability of this plant to various environmental and 
climatic conditions, potato growth is not entirely unaffected 
by environmental problems. Water stress (drought and 
flooding), extreme temperature (low and high), and ion tox-
icity (salinity and heavy metal) are the abiotic constraints 
that potato plants face in their habitats (Bohnert 2007). The 
following discussion will focus on high temperature, 
drought and salinity, which are equally weighted in terms of 
their impact on potato production. In addition, more aware-
ness should be paid to the combination of these abiotic 
stresses. When drought combined with the heat wave, the 
effect would create huge losses in the agricultural sector 
(Mittler 2006). In 2016, the potato yield in Ontario de-
creased 35% to 50% in response to heat and drought (Banks 
and VanOostrum 2016).

Heat stress
In the potato crop, the optimum temperature for vegeta-

tive growth is 24°C, but the maximum total biomass would 
be produced at 20°C, as well as the maximum final tuber 
yield (Fleisher et al. 2006, Timlin et al. 2006). Potato is 
highly sensitive to high temperature (Levy and Veilleux 
2007), presenting an obstacle to cultivation in tropical and 
sub-tropical areas. Potato plants that are exposed to high 
temperature from the beginning of the growing period risk a 
higher reduction in tuber yield compared to those with later 
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maintain a lower level of soil salinity in the root zone 
(Nagaz et al. 2016), while the effects of heat stress could be 
mitigated by watering to lower the soil temperature (Dong 
et al. 2016).

As a complement to these measures, rhizospheric bacte-
ria can be applied, based on the finding in some crops that 
application of plant growth-promoting bacteria (PGPB) iso-
lated from plant roots in a harsh environment enhanced the 
plant biomass under a drought condition (Gururani et al. 
2013, Mayak et al. 2004, Naseem and Bano 2014, Timmusk 
et al. 2014). Scaling up of nano-hormones in the field 
should also be considered, since abiotic stress tolerance is 
related to certain specific hormones (Egamberdieva et al. 
2017, Tekalign and Hammes 2005). A combination of culti-
vation treatments would seem to be more efficient and more 
likely to achieve a significant effect: e.g., mulching with 
scheduled irrigation and application of micronutrients will 
reduce the soil temperature and maintain the soil humidity, 
thereby promoting optimal absorption of the nutrition.

Breeding approaches for potato abiotic stress tol-
erance

Cultivation practices could be applied to modify the micro
environment to suppress the adverse effects of abiotic 
stresses on plant. However, many areas do not have access 
to such technologies, which in any case are expensive and 

on potato plants (Table 1). Mulching can be applied in order 
to reduce soil temperature and conserve soil moisture, under 
high temperature and/or water deficit stress (Ghosh et al. 
2006, Kar and Kumar 2007). Use of organic mulch such as 
rice straw has many benefits in potato cropping under a 
water deficit, such as reduction of the soil temperature, con-
servation of the soil moisture, and increase of the availability 
of phosphorus, potassium and organic carbon (Kar and 
Kumar 2007). All these effects can improve the plant 
growth and tuber yield compared to plants without mulch. 
In arid and semi-arid agroecosystems, mulching with plastic 
film can reduce drought in the spring season by preserving 
snow from the winter season (Jia et al. 2017). In addition, to 
maintain the microenvironment above the ground, shading 
plants are also commonly used. However, the soil tempera-
ture plays a greater role in potato tuberization than the air 
temperature (Reynolds and Ewing 1989a).

Irrigation is another cultivation practice that alleviates 
environment stress (Levy et al. 2013, Pavlista 2015). In 
potato cultivation, water-saving irrigation strategies using 
scheduled irrigation during drought-sensitive growth stage 
or deficit irrigation (DI) and PRD can save from 20% to 
30% of the water used in full irrigation (Jensen et al. 2010). 
Partial root zone drying provides additional advantages, 
such as increased content of starches and antioxidants 
(Jensen et al. 2010, Jovanovic et al. 2010). Application of 
the drip irrigation method under salinity conditions could 

Table 1.	 Mitigation to alleviate the abiotic stresses on potato

Abiotic 
stress Technology aspects Main roles References

Heat Mulch Maintain soil temperature, reduce evapotranspiration Paul et al. (2017)
Intercropping Cool soil temperature, conserve soil moisture, reduce 

irradiance
Midmore et al. (1988)

Nutritional treatment: Calcium and 
Nitrogen

Keep stomatal function, maintain cell membrane thermo-
stability

Kleinhenz and Palta (2002), 
Tawfik et al. (1996)

Hormone treatment: paclobutrazol (PBZ) Increase chlorophyll a and b content, increase net 
photosynthesis

Tekalign and Hammes (2005)

Drought Irrigation scheduling Maintain water use efficiency (WUE) Kang et al. (2004), 
Kashyap and Panda (2003)

Drip irrigation Maintain WUE
Conserve soil moisture

Kumari (2012), 
Onder et al. (2005)

Partial root-zone drying (PRD) Increase WUE Jovanovic et al. (2010), 
Posadas et al. (2008)

Mulch Enhance soil fertility properties, conserve soil moisture, 
reduce evapotranspiration

Kar and Kumar (2007)

Application of Plant Growth Promoting 
Rhizobacteria (PGPR)

Enhance the ROS
scavenging enzymes

Gururani et al. (2013)

Plastic film mulching Increase temperature and soil moisture, enhance WUE Jia et al. (2017), 
Zhao et al. (2012)

Salinity Irrigation management Increase water productivity Nagaz et al. (2016)
Application of silicon nanoparticle Increase the activity of antioxidant enzymes Gowayed et al. (2017)
Application of PGPR Enhance the ROS scavenging enzymes Gururani et al. (2013)
Soil amendment using biochar Adsorb Na+ and reduce Na+ uptake Akhtar et al. (2015)
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culture room and growth chamber to expose the plant to heat 
stress (Ewing and Wareing 1978, Khan et al. 2015, Nowak 
and Colborne 1989). Since an in vitro environment is differ-
ent from the actual field condition, it needs to be validated 
using a method that is close to an actual dry environment 
(Bündig et al. 2017, Hassanpanah 2010, Khan et al. 2015). 
Screening at the in vitro level seems to be a reproducible 
method, since it is less affected by environmental factors 
and many studies have been done with this phenotyping 
technique. In vitro screening also has good predictability of 
the result under in vivo condition (Bündig et al. 2017, Khan 
et al. 2015). One factor that must be considered in in vitro 
assay is the tuberization ability under a stress condition.

In order to run screening and selection effectively, toler-
ance phenotype indices based on yield or other relevant 
traits are used to measure the level of tolerance to abiotic 
stress (Cabello et al. 2013). These indices are obtained from 
the relationship of yield or other traits under non-stress and 
under stress conditions. The tolerance indices that have 
been proposed include average yield of stress and non-stress 
conditions or Mean Productivity (MP) (Rosielle and Hamblin 
1981), Geometric Mean Productivity (GMP) that used when 
breeder is interested in relative performance under vari-
ous conditions (Fernandez 1992), differences of yield be-
tween stress and non-stress environment or Tolerance 
(TOL) (Hossain et al. 1990), the Stress Tolerance Index 
(STI) to identify genotypes with high yield under both stress 
and non-stress condition (Fernandez 1992), the Stress Sus-
ceptibility Index (SSI) to measure relative yield loss in 
stress condition (Fischer and Maurer 1978), and the propor-
tion of yield in stress to yield in non-stress condition or 
Yield Stability Index (YSI) (Bouslama and Schapaugh 
1984). Potato drought stress tolerance selection based on 
tolerance indices revealed that MP, GMP and the Drought 
Tolerance Index (DTI, comparison of yield under stress and 
non-stress condition to the yield of all genotype under non-
stress condition) (Cabello et al. 2013) and MP, GMP, STI 
and modified STI (Hassanpanah 2010) were effective to 

labor intensive. Use of a tolerant variety is the most reason-
able solution. Breeding activities have been widely conduct-
ed. Genetic diversity is the basic principal in breeding 
programs (Govindaraj et al. 2015, Hawkes 1991). Such 
diversity can be obtained from germplasm collection, plant 
introduction, landraces, hybridization, or modifications by 
mutation and genetic engineering. Landraces and wild rela-
tives are the best genetic resources for breeding plants with 
biotic and abiotic stress tolerance (Hawkes 1991), since 
they have been adapted in a wide range of habitats with 
harsh environments (Dwivedi et al. 2016, Hawkes 1994, 
Watanabe et al. 2011).

To utilize the diversity of genetic resources in plant 
breeding, the potentially useful resources must be screened, 
selected and evaluated. A tolerance evaluation method with 
consideration of plant phenotypes is the key to stress breed-
ing. The International Potato Center (CIP) has developed a 
guide for drought phenotyping and drought stress investiga-
tion (Ekanayake 1989). Some screening and evaluation pro-
tocols for abiotic stress tolerance have been studied and 
developed (Table 2). Basically, screening methods have 
been conducted under three environmental conditions: in 
vitro, in a growth chamber or green house, and in the field. 
For the drought stress screening and evaluation, either Poly 
Ethylene Glycol (PEG) 6000 or 8000 (Anithakumari et al. 
2011, Barra et al. 2013, Gopal and Iwama 2007, 
Hassanpanah 2009, Huynh et al. 2014) or sorbitol (Albiski 
et al. 2012, Gopal and Iwama 2007) is used, mostly at vari-
ous concentrations that result in a water potential of media 
between –1.10 and –1.80 Mpa, which induces osmotic 
stress that represents a drought condition. Potted plants in 
the greenhouse are also commonly used in drought stress 
screening, since drought conditions can be replicated simply 
by withholding watering. Whereas in the salinity stress tol-
erance screening, NaCl is added to the in vitro or in vivo 
planting medium (Aghaei et al. 2008a, Khrais et al. 1998, 
Queirós et al. 2007, Shaterian et al. 2008, Zhang and 
Donnelly 1997). High temperature was used in the in vitro 

Table 2.	 Screening techniques for abiotic stress tolerance on potatoes

Screening techniques Abiotic stress References
In vitro tuberization heat Khan et al. (2015), Nowak and Colborne (1989)
Internodal elongation heat Nagarajan and Minhas (1995)
Nodal cutting tuberization assay heat Ewing and Wareing (1978), Reynolds and Ewing (1989b), Van den Berg et al. 

(1990)
Seedling assay heat Levy et al. (1991), Sattelmacher (1983)
Pulling resistance of root (PR) drought Ekanayake and Midmore (1992)
In vitro assay drought Albiski et al. (2012), Anithakumari et al. (2011), Barra et al. (2013), Gopal 

and Iwama (2007), Hassanpanah (2009), Huynh et al. (2014)
Electrolyte leakage bioassay salinity, drought, cold and heat Arvin and Donnelly (2008)
In vitro assay salinity Aghaei et al. (2008), Khrais et al. 1998, Queirós et al. (2007), Zhang and 

Donnelly (1997)
In vitro recurrent selection salinity Ochatt et al. (1999)
Hydroponic sand-based system salinity Shaterian et al. (2008)
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quency of desirable alleles in a population.
These abiotic stress-related traits could be utilized for 

selection criteria, but only when investigating one stress at a 
time. A problem arises when we work with combined abiot-
ic stresses. The response to combined abiotic stresses is 
unique and different from the response to each stress indi-
vidually (Mittler 2006, Pandey et al. 2015, Shaar-Moshe et 
al. 2017, Zandalinas et al. 2018). Thus drought stress and 
heat stress result in very different effects (Table 3).

Cultivars having tolerance to a single abiotic stress have 
been identified and developed. Recently, the heat-tolerant 
cultivar Kufri Lima was released in India (CIP 2017). Kufri 
Surya, another heat-tolerant cultivar, had previously been 
released in India approximately a decade earlier (Minhas et 
al. 2006). Both cultivars were derived from crossing be-
tween local cultivar and heat-tolerant lines developed for 
lowland tropics at the International Potato Centre, Lima 
Peru. In Japan, conventional breeding by crossing two com-
mercial potato cultivars, Irish Cobbler (the Japanese name is 
Danshakuimo) and Konafubuki, resulted in a drought toler-
ant cultivar, Konyu (Iwama 2008). This cultivar has been 
developed using high root dry weight as a selection criteri-
on. However, the heritability of these traits is still in ques-
tion to be applied widely to stress tolerance in different 
cultivars.

The use of stress-related traits with high heritability and 
genetic advances for selection criteria could assist in the 
breeding steps required to obtain stable tolerance. Three 
factors must be considered in order to develop drought 
stress tolerances in plants: membrane stability, the photo-
synthesis system and the root system (Farooq et al. 2009). 
The integrity of the cell membrane ensures that cellular ac-
tivities will proceed in an optimal fashion. On the other 
hand, the photosynthetic reaction is correlated with plant 
growth and yield under stress conditions.

With respect to abiotic stresses, the cell membrane plays 
many important roles, such as providing a protective barrier, 
sensing and transducing various external signals, and 

identify genotypes with high yield under both conditions, 
irrigated and water stress. The Geometric Mean also gave 
comparable tolerance indication when used in heat stress 
tolerance selection (Lambert et al. 2006).

The effect of abiotic stress can be observed visually and 
directly on plant morphology and physiology—that is, by 
phenotyping. Some of phenotypes correlate with abiotic 
stress tolerance (Table 3). The use of these variables as se-
lection criteria could assist in the development of a potato 
cultivar tolerant to abiotic stress. The leaves are the part of 
plants most directly affected by high temperature (Berry and 
Bjorkman 1980). Therefore, the photosynthesis process 
and some of its apparatus could be used to assist in the pro-
cess of heat-tolerance breeding. However, to develop a 
heat-tolerant potato, at least three physiological processes 
need to be considered: photosynthetic efficiency and haulm 
growth, tuber initiation, and photosynthate partitioning 
(Vayda 1993). Root architecture is related to drought toler-
ance (Khan et al. 2016, Koevoets et al. 2016), since root 
depth contributes positively to drought tolerance (Lahlou 
and Ledent 2005, Zarzyńska et al. 2017). In addition, 
Wishart et al. (2014) proposed that high numbers or high 
length of stolon roots contributed to drought tolerance. The 
drought-tolerant potato genotype increases the mass of roots 
under a stress condition induced by water deficit (Schafleitner 
et al. 2007b). It is also known that water deficit stress toler-
ance is associated with high Water Use Efficiency (WUE). 
High WUE is regulated by a low transpiration rate, which 
means low stomatal conductance (Blum 2005, Levy et al. 
2013, Li et al. 2017). It is important to determine the main 
traits related to stress with high variability, heritability and 
genetic advance under stress condition (Gastelo et al. 2017, 
Luthra et al. 2013). However, because there is a Genotype ×  
Environment interaction (G × E) on several desirable traits, 
we should consider conducting the selection at multiple 
time points and different locations (Benites and Pinto 2011, 
Gautney and Haynes 1983). Recurrent selection is common-
ly used to improve the targeted traits by increasing the fre-

Table 3.	 Physiological and morphological traits associated with abiotic stress tolerance in potato

Abiotic stress Target traits References
Heat High net photosynthesis Dou et al. (2014), Reynolds et al. (1990), Wolf et al. (1990)

High stomatal conductance Reynolds et al. (1990), Wolf et al. (1990)
Drought Low stomatal conductance Moon et al. (2015)

Low transpiration rate
High WUE

Coleman (2008)

High cell membrane stability Rudack et al. (2017)
Stay green Ramírez et al. (2014), Rolando et al. (2015), Schafleitner et al. (2007a)
High root mass system Ahmadi et al. (2017), Iwama (2008), Wishart et al. (2014)
High Leaf Area Index (LAI) Iwama (2008), Romero et al. (2017)
High biomass Schafleitner et al. (2007a)
High photosynthesis per leaf area unit Romero et al. (2017)

Salinity Growth index Shaterian et al. (2008)
Root growth Murshed et al. (2015)
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Chlorophyll fluorescence and chlorophyll content
Chlorophyll fluorescence is a measure of photosynthetic 

performance, particularly for photosystem II (PS II), which 
is highly sensitive to environmental changes (Murchie and 
Lawson 2013). Potato genotypes that have high PSII perfor-
mance under drought stress show tolerance to drought 
(Boguszewska-Mańkowska et al. 2018). Leaf chlorophyll 
content is used to assess senescence or loss of greenness 
caused by water deficit, and is measured using a portable 
chlorophyll meter (SPAD from Konica Minolta, Japan) 
(Ramírez et al. 2014, 2015, Rudack et al. 2017). Stay-green 
character has been correlated with extension of photosyn-
thesis activity, which translates to high yield under drought 
conditions (Tuberosa 2012), and is used as a drought toler-
ance indicator in potatoes (Rolando et al. 2015).
Water relative content (RWC)

Leaf RWC is a key indicator of plant water status—spe-
cifically, it estimates water status in the leaf resulting from a 
disparity between the leaf water supply and the transpiration 
rate (Soltys-Kalina et al. 2016). Potato genotypes that can 
maintain high RWC under a drought condition are consid-
ered tolerant to drought stress (Shi et al. 2015, Soltys-Kalina 
et al. 2016).
Cell membrane stability (CMS)

Drought stress induces a high accumulation of reactive 
oxygen species (ROS) on the cell wall, resulting in a shift in 
the cell wall composition and a decrease in cell wall integ
rity (Zhu 2016). The high stability of the cell membrane 
keeps all cellular processes going properly. Measurement of 
the leakage of ions from the cell with a conductivity-meter 
is commonly used to evaluate the CMS. Increasing mem-
brane stability is one strategy for the adaptation of potatoes 
to drought (Arvin and Donnelly 2008, Rudack et al. 2017).

activating the mechanisms to maintain cell homeostasis 
(Barkla and Pantoja 2011). Membrane stability and photo-
synthetic activity are the traits that built the abiotic stress 
tolerance in some landraces and wild types of potato 
(Table 4). In chili pepper, membrane thermostability has 
high heritability and genetic advance values and has a posi-
tive genetic correlation with yield (Usman et al. 2014).

Techniques for evaluating water stress in potato

a. Physiological variables
As the main mass component in the growing plant tissue 

(90%), water is highly required for physiological processes 
and associated physical function in the plant (Araya and 
Garcia-Baquero 2014). Evaluation of the potato response 
and the tolerance of potatoes to drought stress could be done 
using physiological analyses.
Gas exchange

Gas exchange analysis is the most frequently performed 
evaluation in relation to drought stress, because it is closely 
related to the main physiological traits, such as stomatal 
conductance, net photosynthesis, internal leaf CO2, water 
use efficiency and transpiration rate (Fandika et al. 2014). In 
response to a water deficit condition, the leaf stomata will 
close to maintain the water potential in leaf cells by reduc-
ing the transpiration rate; however, the CO2 input will de-
crease and affect the net photosynthesis (Yan et al. 2016). 
Genotypes with efficient photosynthesis under low stomatal 
conductances are considered to be drought tolerant. Gas ex-
change analysis is usually conducted using a portable pho-
tosynthesis system (Fandika et al. 2014, Romero et al. 
2017).

Table 4.	 Genetic resources for abiotic stress in landraces and wild species of potato

Abiotic stress Source (Ploidy, EBN level) References Traits associated with tolerance
Heat S. commersonii (2x, 1 EBN), S. demissum (6x, 4 EBN) Arvin and Donnelly (2008) Membrane stability

S. juzepczukii (3x) Havaux (1995) High PS II activity
S. gandarillasii cardenas (2x, 2 EBN) Coleman (2008) Membrane stability
S. chacoense (2x, 2EBN), S. bulbocastanum (2x, 1 
EBN), S. demissum (6x, 4 EBN), and S. stoloniferum 
(4x, 2 EBN)

Reynolds and Ewing (1989b) Shoot growth and tuberization 
ability

S. acaule (4x, 2 EBN) and S. circaefolium (2x, 1 EBN) Midmore and Prange (1991) High dry matter content
S. phureja (2x, 2 EBN) Hetherington et al. (1983) High chlorophyll fluorescence

Drought S. juzepczukii (3x) Vacher (1998) Stomatal tolerance and high net 
photosynthesis

S. gandarillasii Cardenas (2x) Coleman (2008) Water use efficiency
S. acaule (4x, 2 EBN) Arvin and Donnelly (2008) Membrane stability
S. chillonanum (2x), S. jamesii (2x, 1 EBN), and 
S. okadae (2x)

Watanabe et al. (2011) Rooting system

Salinity S. chacoense (2x, 2 EBN) Bilski et al. (1988) Survival and shoot growth
S. acaule (4x, 2 EBN)
S. demissum (6x, 4 EBN)

Arvin and Donnelly (2008), 
Daneshmand et al. (2010)

Membrane stability
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identification of the best line, and subsequent improvement 
of the breeding efficiency (Araus and Cairns 2014). Various 
phenotyping tools have been developed and studied in 
potato plants in relation to environmental conditions, such as 
digital RGB (an additive color modelling using visible light 
red, green and blue) imaging to determine chlorophyll con-
tent (Gupta et al. 2013), thermal imaging to measure stoma-
tal conductance (Prashar et al. 2013), spectral reflectance to 
assess physiological traits under drought stress (Romero et 
al. 2017), and chlorophyll fluorescence imaging to deter-
mine photosynthesis efficiency (Prinzenberg et al. 2018). 
Some of the other techniques used are related to biotic 
stress, i.e., field phenotyping using RGB imagery from an 
unmanned aerial vehicle (UAV) (Gibson-Poole et al. 2017, 
Sugiura et al. 2016), multispectral imaging from a UAV 
(Duarte-Carvajalino et al. 2018), and imaging with a camera 
sensor on-the-go (Dammer et al. 2016).

The dynamic development of high throughput phenotyp-
ing technology is expected to permit broad application to 
potato crops in the future. For instance, Light Detection and 
Ranging (LiDAR) estimates aspects of plant growth that are 
affected by abiotic stress, such as plant height, ground cov-
erage, and biomass, and has already been applied to wheat 
(Jimenez-Berni et al. 2018) and cotton (Sun et al. 2018). 
Field-based phenotyping using mobile multiple imaging 
sensors, including thermal and hyperspectral sensors, has 
been developed and successfully used to differentiate plant 
growth parameters in several wheat cultivars under various 
growth conditions (Svensgaard et al. 2014) and in cotton 
(Jiang et al. 2018).

Exotic genetic resources support abiotic stress tol-
erance breeding and introgressiomics

Commercial potatoes (Solanum tuberosum) are generally 
sensitive to abiotic stresses. In addition, because of its nar-
row genetic variation, we need to explore and identify other 
resources, which has tolerance attributes to improve the 
traits of cultivated potato against abiotic stresses. Such re-
sources could include exotic cultivated potatoes, landraces 
or wild relatives of potato. The wild relatives have been ex-
amined primarily for biotic (pest and diseases) stress resis
tance, rather than abiotic stress (Jansky et al. 2013, Prohens 
et al. 2017). However, in the case of the potato, many inves-
tigations have been done and have provided evidence of 
abiotic tolerances in the above-mentioned kinds of genetic 
resources (Table 4). For example, S. acaule and S. demissum 
have multi-tolerances, and thus could be used to breed a 
combined-abiotic stress tolerant potato cultivar (Arvin and 
Donnelly 2008). The polyploid nature of the potato germ
plasm often inhibits the use of potatoes in breeding work, 
and therefore we should apply the genetic rules of potatoes 
to enhance the potential for such applications (Watanabe 
2015).

Even though the wild relatives of potato may provide 
great advantages for improving the traits of potatoes, it 

Low photosynthetic rate values and mesophyll conduct-
ance

The photosynthetic process is affected by water restric-
tion, and this relation is associated with stomatal closure in 
the beginning and mesophyll conductance afterward (Flexas 
and Medrano 2002, Schapendonk et al. 1989). The variance 
of photosynthetic rate value and mesophyll conductance 
were revealed among potato cultivars, even could distinguish 
cultivars tolerant to water deficit from cultivars susceptible 
to this stress (Schapendonk et al. 1989, Vasquez-Robinet et 
al. 2008).
Canopy spectral and vegetation spectral indices

Since physiological traits analysis requires a large num-
ber of samples and a large amount of time, reflectance in-
formation could be useful in phenotyping under a water 
limitation condition (Gutierrez et al. 2010, Romero et al. 
2017, Sun et al. 2014). Canopy spectral reflectance mea
surement is a non-destructive form of analysis, and some 
indices derived from canopy spectral reflectance data have 
been highly correlated with physiological traits (Romero et 
al. 2017). Vegetation indices calculated from the hyperspec-
tral reflectance data, such as the Normalized Difference 
Vegetation Index (NDVI), the vegetation quantification by 
measuring the difference of vegetation reflectance and Soil 
Adjusted Vegetation Index (SAVI), the modification of 
NDVI with account variations in soil, have also been shown 
to discriminate potato crops under different irrigation re-
gimes, and are highly correlated with the projected leaves 
surface area overground area or Leaf Area Index (LAI) (Ray 
et al. 2006).
Leaf chlorophyll and leaf nitrogen contents

Moderate water deficit increases the chlorophyll contents 
in potato leaves, and leaves of the susceptible genotype ex-
hibit a higher chlorophyll concentration than those of the 
tolerant genotype (Ramírez et al. 2014, Rolando et al. 
2015). However, a lower rate of chlorophyll degradation 
was detected on a drought-tolerant cultivar (Rolando et al. 
2015). Nitrogen content also increases in response to 
drought stress, and genotype-related differences in this vari-
able have also been investigated (Meise et al. 2018).

b. �High-throughput phenotyping supporting potato breed-
ing
Appropriate phenotyping techniques are essential, given 

the phenotypic plasticity of plants in response to environ-
mental conditions (Araus and Cairns 2014, Gratani 2014). 
We need to understand shifts of phenotype in response to 
abiotic stress, but phenotypic characterization performed by 
manual visualization and measurement is prone to subjec-
tivity, destructive to certain properties of the samples, ex-
pensive, and time and labor intensive (Rahaman et al. 2015, 
Romero et al. 2017). Such problems are especially relevant 
when we are in a screening or selecting step, which involves 
a huge number of accessions or breeding lines. Choice of a 
proper screening technique coupled with high throughput 
phenotyping is thought to be useful for rapid and accurate 
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This combines hybridization-backcrossing of crops with the 
wild relatives to generate a number of introgression lines 
and a genomic approach (Prohens et al. 2017). This ap-
proach was inspired by the fact that pre-breeding activities 
are needed to incorporate desired traits from CWRs into 
commercial varieties, since CWRs cannot be used directly 
in commercial breeding (Longin and Reif 2014). Conven-
tional pre-breeding work is thought to be ineffective, as it 
takes a long time before readily for breeder (Sharma et al. 
2013). The main idea of introgressiomics is to develop in-
trogression generation massively by utilizing CWRs, for 
future needs (Prohens et al. 2017). Because potato wild rel-
atives provide gene resources for abiotic stress-tolerance 
breeding and various approaches to overcome the crossing 
barrier between cultivated and wild relatives are available, it 
is possible to develop a number of potato lines carrying in-
trogressions of genome fragments from wild relatives to an-
swer the needs of abiotic stress breeding. Combined with a 
genomic approach, in introgressiomic full genome sequenc-
ing could be performed on targeted wild relatives to provide 
functional subsets of germplasm diversity (Warschefsky et 
al. 2014). Then, molecular markers could be used to trace 
the introgressed fragments from the wild species and char-
acterize the introgressiomics individuals using less time, 
cost and human resources (Prohens et al. 2017).

Status of biotechnology application—transgenic 
technology

Some landraces and wild species are attributed with abiotic 
stress tolerances, however, in any cases, they cannot be di-
rectly used in a breeding program at the present time; on the 
other hand, almost daily progress is being made in genomic 
information. Reflecting on cv. Kufri Surya and Konyu, 
which were developed using conventional breeding, and 

remains highly challenging to incorporate the desired traits 
into cultivated varieties in conventional ways. There are ge-
netic barriers to crossing among them, due to differences in 
ploidy and the endosperm balance number (EBN) (Hanneman 
1999, Jackson and Hanneman 1999, Johnston and Hanneman 
1982, Novy and Hanneman 1991). To overcome these barri-
ers, ploidy manipulation, somatic fusion and bridge cross-
ing strategies have been used (Bidani et al. 2007, Jansky 
2006, Jansky and Hamernik 2009).

Based on the composition of the potato gene pool as de-
scribed by Bradeen and Haynes (2011), genetic resources 
that are included in the primary gene pool could be directly 
utilized by breeders, which would involve cultivated potatoes 
and landraces (2n = 4x = 48, 4EBN). With some manipula-
tions, sexual crosses could also be made between cultivated 
potato and wild relatives in the secondary gene pool 
(2n = 2x = 24, 2EBN, 2n = 4x = 4EBN). On the other hand, 
for tertiary gene pool species that consist of wild Solanum 
species (2n = 2x = 24, 1EBN), which are sexually isolated 
from cultivated potato, specific techniques are needed to 
transfer the target traits into cultivated potato (Watanabe et 
al. 1995).

Various studies have been performed to manipulate the 
incorporation of desired traits from wild species into culti-
vated potato. The strategies have included somatic hybridi-
zation (Helgeson et al. 1998, Symda et al. 2013), the use of 
2n gametes (Ortiz et al. 1997, Watanabe et al. 1992), bridge 
crossing (Yermishin et al. 2014, 2017) and gene cloning 
followed by transformation (Oosumi et al. 2009, Song et al. 
2003), and most of them used for diseases resistance breed-
ing (Table 5). From these cases, we can study the possibili-
ty of incorporating abiotic stress-tolerance genes from wild 
relatives into cultivated potatoes.

A new concept, the introgressiomics approach, was pro-
posed relates with using the crop wild relatives (CWRs). 

Table 5.	 Strategies for overcoming the genetic barriers in potato

Strategies Genetic resources involved Target traits References
Somatic hybridization S. bulbocastanum and 

S. × michoacanum
late blight resistance Helgeson et al. 1998, 

Symda et al. 2013
S. tarnii potato virus Y (PVY), late blight and 

root knot nematode
Austin et al. 1993, 
Thieme et al. 2008

S. brevidens tuber soft root and early blight Austin et al. 1986, 
Tek et al. 2004

S. commersonii bacterial wilt Laferriere et al. 1999
S. verrucosum potato leafroll virus (PLRV) Carrasco et al. 2000

2n gametes S. chacoense and S. sparsipilum bacterial wilt resistance Watanabe et al. 1992
S. vernei and S. sparsipilum potato cyst nematode Ortiz et al. 1997

Bridge crossing S. verrucosum (as bridging species), 
S. bulbocastanum, S. pinnatisectum, 
S. polyadenium, S. commersonii and 
S. circaeifolium

– Yermishin et al. 2014, 2017

Gene cloning followed by 
transformation

S. bulbocastanum late blight resistance gene Song et al. 2003, 
Oosumi et al. 2009
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et al. 2017a), many challenges remain before these genes 
can be efficiently transmitted and effectively utilized.

Genetic engineering by inserting or manipulating desired 
genes associated with abiotic stresses from other species or 
organisms into cultivated potatoes is ongoing. Table 6 re-
views the genes that have been identified and used to devel-
op transgenic potatoes. The potential for development of 
transgenic potato plants tolerant to abiotic stress engenders 
hope that we will be able to continue planting potatoes even 
under suboptimal conditions. The aforementioned transgenic 

which required 13 and 16 years, respectively, from crossing 
to release (and note that parental material already existed in 
these cases) (Iwama 2008, Minhas et al. 2006), we need 
other tools to accelerate the breeding work in cases of com-
plex traits and/or low heritability. Indeed, aside the en-
hancement difficulty, the sources of eminent tolerances in 
natural variation are limited or difficult to evaluate based on 
phenotypic selection. Although numerous genes related to 
abiotic stress in potato have been identified (Gangadhar et 
al. 2014, Gong et al. 2015, Schafleitner et al. 2007b, Zhang 

Table 6.	 Genes and transcription factors related to abiotic stress tolerance in potato

Abiotic stress Gene Source Function References
Heat nsLTP1 S. tuberosum Enhance cell membrane integrity under stress 

conditions
Enhance activation of antioxidative defense 
mechanisms
Regulate expression of stress-related genes

Gangadhar et al. (2016)

HSP17.7 Daucus carota Improve membrane stability Ahn and Zimmerman (2006)
CuZnSOD; 
APX; NDPK2

Manihot esculenta; Pisum 
sativum; A. thaliana

Increase levels of the antioxidants superoxide 
dismutase, ascorbate peroxidase and catalase, 
which are responsible for ROS scavenging

Kim et al. (2010)

CBF3 Arabidopsis thaliana Induce expression of genes involved in 
photosynthesis activities and antioxidant 
defense

Dou et al. (2014)

Drought CBF1 A. thaliana Modulate the abiotic stress-responsive genes 
expression, maintain high photosynthetic 
activity

Storani et al. (2015)

DREB 1B A. thaliana Preserve cell water content Movahedi et al. (2012)
BZ1 Capsicum annuum ABA-sensitive stomata closure and reduce 

water loss, up-regulate stress related genes
Moon et al. (2015)

MYB1R-1 S. tuberosum Reduce water loss transcription factor in-
volved in drought-related genes activation

Shin et al. (2011)

BADH Spinacia oleracea Membrane stabilization Zhang et al. (2011)
DHAR1 A. thaliana Maintain membrane integrity, protecting 

chlorophyll against degradation, allowing 
faster removal of H2O2

Eltayeb et al. (2011)

codA Arthrobacter globiformis Maintain the osmotic equilibrium of cells by 
inducing glycine betaine production as 
osmoregulator

Cheng et al. (2013a)

Salinity DREB1 S. tuberosum Activate stress-inducible genes, accumulate 
proline osmoprotectant

Bouaziz et al. (2013)

DREB1A A. thaliana Transcription factor involved in abiotic 
stress-related genes activation

Celebi-toprak et al. (2005), 
Shimazaki et al. (2016), 
Watanabe et al. (2011)

MYB1 Ipomoea batatas Regulate the metabolism of secondary metab-
olites

Cheng et al. (2013b)

SOD; APX Potentilla atrosanguinea; 
Rheum australe

Enhance lignin deposition and scavenging 
capacity

Shafi et al. (2017)

BADH Spinacia oleracea Membrane stabilization Zhang et al. (2011)
NHX1 A. thaliana Enhance the capacity of vacuolar 

compartmentation of extra Na+
Wang et al. (2013)

DHAR1 A. thaliana Membrane integrity, protect chlorophyll 
against degradation, allowing faster removal 
of H2O2

Eltayeb et al. (2011)
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RNAi product in potato with less bruising and low acryl
amide (Waltz 2015). Off-target events also become an issue 
in ZFN besides the complexity to engineer ZFNs, on other 
side, it has binding specificity in the genome and high re-
pairing ability (Gupta and Musunuru 2014). TALEN pro-
duces fewer off-targeting effects; however, it has a high cost 
and high complexity of work (Boettcher and McManus 
2015). With its simplicity of design, combined with its low 
cost and less off-targeting effects, CRISPR/Cas9 (Boettcher 
and McManus 2015, Kadam et al. 2018) could be an appro-
priate tool for supporting plant breeding. The establishment 
of plant tolerance to abiotic stress using gene editing tech-
nologies, particularly CRISPR and CRISPR-associated 
protein-9 (CRISPR/Cas9), has already been accomplished 
in some plant species (Kim et al. 2018, Osakabe et al. 2016, 
Shi et al. 2017). In the potato itself, genome editing is also 
being studied even though this work does not yet involve 
the adaptation to environmental stresses (Table 7). Those 
studies focused on herbicide resistance, as well as tuber 
quality traits, by employing CRISPR-Cas9 and TALENs. 
For example, Andersson et al. (2017, 2018) developed mu-
tated lines which are high in amylopectin starch content by 
knocking-out the Granule-Bound Starch Synthase (GBSS) 
gene using a CRISPR-Cas9 technique. By utilizing the in-
formation of genes related to abiotic stress, gene editing 
technology may also contribute to the breeding of abiotic 
stress-tolerant potatoes. Moreover, candidate genes for tu-
berization have been reviewed (Dutt et al. 2017), such as 
StSP6A, StPOTH1, StBEL5, etc. We need to have sufficient 
information on the response of these genes to abiotic stress, 
both singularly and when combined. Then, the integrative 
molecular work between many genes involved in cellular, 
physiological and tuberization processes might be gradually 
harnessed to achieve a broad portfolio of stress tolerance.

studies employ genes involved in membrane stability, i.e., 
nsLTP1, HSP17.7, BADH, and DHAR1, and other physio-
logical processes, such as CBF1 (DREB3A) and CBF3 
(DREB1A), which are involved in photosynthesis activity. 
Both type of genes play roles in determining plant growth 
under stress conditions. However, it should be noted that the 
potato is unique among crops in that the tuber is its main 
economic value. Therefore, the tolerance of potatoes devel-
oped by biotechnology should cover not only the physiolog-
ical traits, but also the tuber yield parameters, as shown in a 
potato transgenic line harboring the gene CaBZ1, which 
confers drought-tolerance without sacrificing tuber yield 
(Moon et al. 2015). Continuing the strict transgenic plant 
assessment, field testing is required to ensure the yield 
potential. The potato transgenic field assessment conducted 
by Nichol et al. (2015) did not find that any of the transgenic 
lines showed superior drought resistance.

Status of biotechnology application—genome editing

Genome editing (or gene editing) is another biotechnologi-
cal tool that could provide an alternative for the creation of 
potato tolerance to abiotic stress. Unlike transgenic technol-
ogy, genome editing does not involve genes from a donor, 
but works precisely at a specific pin-pointed site in the ge-
nome. Four important genome editing (or gene editing) 
technologies are ribonucleic acid interference (RNAi), zinc 
finger nucleases (ZFNs), transcription activator-like effector 
nuclease (TALENs); and clustered regularly interspaced 
short palindromic repeats and CRISPR-associated protein-9 
(CRISPR/Cas9) (Zhang et al. 2017b). Although work han-
dling with RNAi is the simplest among the other tools, it 
has a high off-targeting issue (Boettcher and McManus 
2015). This technique did lead to an important success sto-
ry: in 2014, the US Department of Agriculture approved an 

Table 7.	 Study of genome editing (or gene editing) in potato

Tool Trait Gene target References
CRISPR-Cas9 High amylopectin content (waxy 

potato)
granule bound starch synthase (GBSS) Andersson et al. (2017)

CRISPR-Cas9 RNP High amylopectin content (waxy 
potato)

granule bound starch synthase (GBSS) Andersson et al. (2018)

CRISPR-Cas9 Steroidalglycoalkaloids (SGAs) 
free

St16DOX Nakayasu et al. (2018)

TALENs Reducing sugar and acrylamide 
levels in cold-stored
Processing quality in the cold 
storage

vacuolar invertase gene (VInv) Clasen et al. (2016)

TALENs No data 1,4-alpha-glucan branching enzyme (SBE1) gene
StvacINV2

Ma et al. (2017)

TALENs Herbicide resistance acetolactate synthase gene (ALS) Forsyth et al. (2016), 
Nicolia et al. (2015)

TALEN and CRISPR-Cas9 Herbicide resistance StALS1 Butler et al. (2016)
RNAi Less bruising and browning; 

lower acrylamide
Polyphenol oxidase-5 (PPO5); Asparagine syn-
thetase-1 (Asn1)

Waltz et al. (2015)
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planting time is helpful in relation to the abiotic stress peri-
od in the field. Potato growers can rely on weather forecasts 
to decide the proper time to start planting, avoiding periods 
of low humidity and/or high temperature during plant 
growth. In addition, various environmental conditions could 
be monitored by drone during plant growth, such as air tem-
perature, soil temperature, soil moisture, and soil nutrient 
status. The growers could then refer to this collective data-
base to decide the timing of the appropriate action, such as 
irrigation, fertilization or mulching.

In addition to good cultivation techniques, potato culti-
vars with stable tolerance to abiotic stress must be planted 
in order to ensure high production. Various traits correlated 
to abiotic stress have been evaluated and utilized as selec-
tion markers in the breeding process, including both mor-
phological and physiological traits. Physiological variables 
have been widely used to distinguish tolerant genotypes 
from those susceptible to a water-deficit condition—e.g., 
analyses have been performed based on gas exchange vari
ables, photosynthetic rate values, mesophyll conductance, 
relative water content, and chlorophyll content. However, 
these approaches were used to examine only a single stress 
condition (drought, heat, or salinity stress), and in some 
cases they would not work for the assessment of a combina-
tion of abiotic stresses.

Phenotyping plays an important role in breeding work. 
High-throughput phenotyping provides phenotype datasets 
that can be integrated with genotyping data and utilized in 
the breeding process. However, phenotyping with digitaliz-
ing study remains some crucial traits related to abiotic stress 
in potato. Root architecture is highly correlated with 
drought tolerance in potato (Deguchi et al. 2010, Lahlou 
and Ledent 2005, Wishart et al. 2014). Because the roots are 
underground, root phenotyping by destructive sampling is 
laborious and not reliable for a large number of accessions. 
RGB imaging and hyperspectral imaging could be useful 
for potato root phenotyping, as this method was developed 
and practiced on other species (Bodner et al. 2017, 2018). 
Measurement of water use efficiency, another main trait re-
lated to drought stress, could be done by multispectral drone 
imaging (Thorp et al. 2018).

Wild relatives provide us gene resources for abiotic 
stress tolerance, although there are some obstacles to their 
direct use in breeding programs. An introgressiomic ap-
proach provides a great opportunity to utilize wild relative 
in abiotic stress-tolerant breeding. Here, genomics is incor-
porated in some of the steps, from identifying the wild rela-
tives and selecting the backcross cycle till introgressiomics 
population. Anticipating the dynamic plant breeding needs 
that are highly influenced by environmental changes, we 
will require large amounts of breeding material availability 
that can be directly used for the development of tolerant va-
rieties. For this challenge, introgressiomics approach would 
be reliable.

Genetic engineering studies on abiotic stresses in potato 
plants continue to develop, either by transgenic or genome 

Abiotic stress and transcriptomics, proteomics 
and metabolomics studies in potato

Because abiotic stress tolerance is multi-genic, the develop-
ment of abiotic tolerant potato varieties, either with tradition-
al breeding or genetic engineering approach, will require a 
basic understanding of the physiology, biochemical and 
molecular responses to each stress (Hancock et al. 2014). 
Thus, comprehensive information from integrated studies 
will be needed to develop cultivars tolerant to abiotic stress. 
Environmental stress affects the alteration of transcriptomics 
and proteomics in plants (Batista et al. 2017), as well as 
secondary metabolites (Yang et al. 2018). Understanding 
such alterations will be key to revealing how plants respond 
to and tolerate abiotic stress.

Transcriptomic studies in potato have identified a num-
ber of abiotic stress-related genes, providing new candidate 
genes for future studies of abiotic stress responses in potato 
(Gong et al. 2015, Pieczynski et al. 2018, Resink et al. 
2005). Analysis using potato genotypes with contrasting 
heat-tolerance revealed that genes associated with photo-
synthesis, hormonal activity, sugar transportation and tran-
scription factors were expressed differentially (Singh et al. 
2015). Recently, Sprenger et al. (2018) proposed twenty 
transcripts as drought-tolerance markers, with the transcript 
annotated as glucosyl transferase being the most important. 
Knowledge regarding these gene functions can be used to 
generate potato cultivars that are tolerant to unfavorable 
conditions. Following the transcription factor, proteins, as 
the product of gene expression, have the important role 
of defining the plant response to abiotic stress. As studied 
by Aghaei et al. (2008b), up-regulation of some defense- 
associated proteins (e.g. osmotine-like protein, TSI-1 protein, 
heat-shock protein and calreticulin) and novel proteins 
could be considered involved in salt stress tolerance of 
potato plants. On the other hand, the metabolic features that 
explain variation of yield under stress condition also be-
come a strong instrument in breeding program to abiotic 
stress tolerance (Evers et al. 2010). Various secondary me-
tabolites are known to be increased in response to drought 
stress, such as galactose, inositol, galactinol, proline and 
proline analogues (Evers et al. 2010), and a number of 
drought-tolerance metabolite markers have also been pro-
posed, such as ribitol, arbutin (4-hydroxyphenyl-b-D- 
glucopyranoside), dopamine and tyramine (Sprenger et al. 
2018).

Conclusion and future perspectives

Potatoes are one of the world’s main food crops, and their 
production is threatened by abiotic stress, which in turn is 
exacerbated by global warming. Various cultivation tech-
niques have been applied to reduce the negative impact of 
abiotic stress on potato yield. To apply the available cultiva-
tion techniques effectively and precisely, potato growers 
should adopt precision agriculture in their field. Setting the 
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the new crop breeding frontier. Trends Plant Sci. 19: 52–61.
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Sons, Ltd., New York. doi: 10.1002/9780470015902.a0003201.
pub2

Arvin, M.J. and D.J. Donnelly (2008) Screening potato cultivars and 
wild species to abiotic stresses using an electrolyte leakage bio-
assay. J. Agric. Sci. Technol. 10: 33–42.

Austin, S., M.K. Ehlenfeldt, M.A. Baer and J.P. Helgeson (1986) 
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editing techniques. One important problem is that a potato 
plant may exhibit good tolerance to an abiotic stress, on the 
other hand tuber production has not been noticed. In the fu-
ture, it will be important to consider gene stacking, so that 
not only genes that contribute to abiotic stress tolerance 
physiologically, but also those that promote tuber yield 
might be adopted simultaneously. In addition, advances in 
omics studies will provide us with various biological mark-
ers to be used in the potato breeding program, such as genes 
and metabolites related to abiotic stress. Such markers could 
be applied either singly or in combination.

Recommendations

The use of appropriate cultivation techniques and a toler-
ant cultivar will greatly determine the sustainability of potato 
production under abiotic stress. To practice proper cultivation, 
potato producers could be assisted by precision agriculture 
through the support of many high throughput phenotyping 
techniques; such technologies may first be supported by 
public institutions on an experimental basis and then later 
developed as commercial services. This is needed to ensure 
that every cultivation action is carried out exactly on the 
right target, at the right time, using the right dose, and that 
it is used optimally by the crop plant. For example, the irri-
gation of potato fields (with respect to time, block, and volume) 
should be carried out based on the results of monitoring of 
soil moisture levels and plant physiological responses, 
through satellite imagery or soil and plant analysis tools 
affixed to an unmanned aerial vehicle. On the other hand, 
abiotic stress-tolerant cultivar development needs to be ac-
celerated by utilizing biotechnology tools on a wide range 
of potato genetic resources. Introgressiomics is a more ac-
ceptable approach than genetic engineering, particularly in 
relation to transgenic issues in many countries, by incorpo-
rating markers evaluated by transcriptomics, proteomics, 
and metabolomics approach and engaging high throughput 
phenotyping in certain steps.
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