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ABSTRACT

Complex biological mechanisms and unidentified therapeutic targets for amyotrophic lateral sclerosis (ALS) 
significantly hinder the development of effective treatments. Given these challenges, reliable disease models that 
accurately replicate ALS phenotypes with relevant biological underpinnings are essential for advancing precision 
medicine in ALS. Patient-derived induced pluripotent stem cell (iPSC) organoids have emerged as an innovative tool 
for disease modeling and drug evaluation. Growing evidence highlights the advantages of organoids in replicating 
ALS phenotypes and supporting drug development. However, challenges remain in utilizing organoids for ALS drug 
testing and other neurodegenerative diseases. In this review we summarize the current progress in ALS model 
development, encompassing both in vitro and in vivo non-human models, as well as iPSC-derived human models. 
Furthermore, within the context of ALS drug screening, we discuss critical considerations for applying organoids to 
evaluate disease-associated phenotypes and to accurately reflect disease-related symptoms.
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1. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a lethal, progres-
sive neurodegenerative disease characterized by the loss 
of upper and lower motor neurons [1]. The pathologic 
hallmarks of ALS include motor neuron atrophy, gliosis, 
and the accumulation of misfolded proteins, such as TAR 
DNA-binding protein 43 (TDP-43) aggregates, dipeptide 
repeat proteins, and fused in sarcoma (FUS) protein mis-
location [2]. The loss of motor neural function results in 
muscle weakness, atrophy, and eventual paralysis, with 
respiratory failure being the primary cause of mortality. 
Current medications only provide limited effects to pre-
vent progressive neurodegeneration.

The incidence of amyotrophic lateral sclerosis (ALS) 
ranges from 0.6–3.8 per 100,000 individuals annually 

worldwide. Greater than 30 at-risk genes have been 
identified concerning the pathogenesis of ALS [3-6], 
which accounts for the complex mechanisms leading 
to ALS [7]. The heterogeneity of ALS phenotypes and 
difficulty in obtaining biopsy samples from the central 
nervous system (CNS) pose challenges in advancing the 
understanding of ALS and the development of curable 
treatment. Current strategies for drug screening by the 
pharmaceutical industry are mainly based on identified 
ALS targets, the list of which is incomplete, especially 
sporadic ALS cases. An alternative strategy for drug 
screening based on phenotypic analysis requires a reli-
able disease model associated with disease symptoms.

Non-human models, including yeast, flies, worms, 
zebrafish, and rodents, have offered insights into the cel-
lular phenotypes of genetic abnormalities related to ALS. 
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In recent decades neurons derived from induced pluri-
potent stem cells (iPSCs) have provided ample samples 
for high throughput screening for neurodegenerative 
diseases, especially sporadic ALS. Indeed, iPSCs provide 
functional cells that may be involved in ALS, including 
neurons, astrocytes, microglia, and skeletal myocytes.

In recent years organoids cultured from patient- 
derived iPSCs have emerged as a valuable tool in ALS 
research. Patient-derived iPSCs carry entire genomic 
information and most of the epigenetic memory of the 
donors, which provides an unlimited resource to differ-
entiate all tissue types with special interest that may be 
related to the disease being studied. Because organoids 
provide a three-dimensional tissue-like architecture, 
organoids are expected to be a novel model to closely 
mimic progression of a disease as humanized physiology. 
Compared to traditionally differentiated motor neu-
rons, organoids contain multiple cell types, including 
astrocytes, oligodendrocytes, and interneurons, which 
may contribute to disease development and could be a 
possible target for treatment.

The US FDA proposed new guidelines on use of orga-
noids as a tool in new drug discovery [8]. However, a 
large gap exists in using organoids as a tool for drug 
screening, especially because of organoid heterogene-
ity and the difficulty in obtaining high-content images. 
Knowledge of the wide disease models in phenotypic 
fingerprinting would help apply organoids in evaluat-
ing biological effects in drug evaluation. This review 
summarizes established disease models used in ALS 
screening, as detailed in Tables 1 and 2. Then, we pro-
vide insights into the advantages and challenges associ-
ated with the application of organoids in high-through-
put screening for ALS.

2. NON-HUMANIZED MODEL

Various models, including yeast, worms, zebrafish, and 
mice, have considerable humanized genome homoge-
neity and accessibility for genetic modification. Such 
advantages make these models useful tools for explor-
ing the functions of ALS-related genetic mutations. 
Given the tissue complexity and phenotypes of these 
animals, scientists could study the functions of genes 
in contributing to disease development at different 
scales. Different disease models show their advantages 
in phenotypic readouts, tissue mirroring, and evaluating 
approaches (Figure 1).

2.1 Cellular toxicity model in yeast
The yeast, Saccharomyces cerevisiae, is the first fully 
sequenced eukaryotic single-cell organism [39]. The 
availability of overexpression or deletion libraries of 
the entire yeast genome provides a screening system 
in the identification of ALS targets, especially based on 
the phenotypes related to general cellular metabolism, 
such as DNA damage, RNA toxicity, proteinopathies, and 
mitochondrial dysfunctions [40-43]. Yeast have been 
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applied as an ALS model via gene editing, which focuses 
on cellular pathologies as the readout. The expression 
of FUS in yeast recapitulates several pathologic features 
of ALS, such as nuclear-to-cytoplasmic translocation, for-
mation of cytoplasmic inclusions, and cytotoxicity [44]. 
Researchers have currently identified 37 human genes 
that suppress FUS-induced toxicity from the screening 
library containing 13,570 human genes cloned in an 
inducible yeast-expression vector [44].

2.2 Neurodegenerative model in Drosophila 
melanogaster and Caenorhabditis elegans
The short life span and the relatively simple nervous 
system in D. melanogaster and C. elegans make D. 
melanogaster and C. elegans ideal models to mimic 
ALS-associated neurodegeneration. D. melanogaster 
has 14,000 genes, approximately 40% of which have 
homology for 75% of human genes with functional 
orthologues [45]. The tools for genetic screens could 
be created by crossing wild-type flies to deletion stocks 
or using RNAi lines, which cover approximately 90% of 
the genome and are publicly available [46]. Neurologic 

phenotypes, including climbing and crawling, brain his-
tologic profiles, eye morphologies, electrophysiology, 
eclosion rate, and lifespan could be used for mirroring 
ALS-associated clinical symptoms [47]. Eyes are the most 
widely used tissue for evaluating modifier screening 
because testing is relatively easy [48]. Transgene expres-
sion in flies is usually achieved using the bipartite Gal4-
upstream activating sequence (UAS) system derived 
from gene expression for galactose metabolism in yeast. 
The tissue marker of the fly is detectable using UAS-β-
galactosidase (UAS-lacZ) or UAS-green fluorescent pro-
tein (GFP). This detectable tissue marker could be used 
for assessing the tissue-specific effects of specific gene 
knockdown using UAS-RNAi lines [http://www.flyrnai.
org/DRSC-OVR.html] [49].

There are 19,000 genes in C. elegans based on gene 
sequencing results [50]. Several well-established models, 
such as C9ORF72 [51], SOD1 [24], TDP43 [52], and FUS [53], 
have been extensively utilized based on the specific phe-
notypes, which mainly focus on lifespan, motor function, 
and neurodegeneration. The survival rate, the integrity 
of neuromuscular junctions, and cellular pathologies 

Figure 1 | Summary of the ALS disease model for drug evaluation.
The diagram shows the different disease models of ALS as well as the application in ALS drug exploration. The phenotypes serve as the evalu-
ating readout for tissue or organ specificity and the devices for evaluating are listed for each model type.

http://www.flyrnai.org/DRSC-OVR.html
http://www.flyrnai.org/DRSC-OVR.html
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could be applied as the readout of ALS in C. elegans. 
Recent research suggests that metformin enhances auto-
phagy and extends lifespan through the daf-16 pathway 
in human SOD1 (Hsod1) transgenic worms [54]. Ectopic 
expression of ALS-associated human FUS impairs synaptic 
vesicle docking at  neuromuscular junctions in C. elegans, 
which has led to the emergence of a population of large, 
electron-dense, and filament-filled endosomes [28].

2.3 Spinal motor degenerative model in zebrafish
Zebrafish have become the most applicable vertebrate 
model for drug screening due to the high degree of 
conservation with human genes, ease of breeding, and 
accessibility of genetic modification. A comprehensive 
sequencing study has shown that zebrafish have at least 
one homologous gene with >70% of human genes, 
including many at-risk genes in human neurodegener-
ative diseases [55]. The small size and transparent pro-
file of the zebrafish make zebrafish more suitable for 
high-throughput screening, especially in confirmation 
of the disease phenotype.

The behavioral testing system of zebrafish is also 
mature for studying ALS symptoms, which mainly 
focuses on the motor system. By testing the traveled dis-
tance and motor axon length of zebrafish injected with 
human SOD1A4V mutant mRNA, Robinson et  al. [30] 
provided the first evidence of a correlation between the 
motor axonopathy of SOD1 mutations in zebrafish and 
motor impairments. By injecting SOD1 mutant mRNA 
into zebrafish embryos, DuVal et  al. [56] investigated 
the role of the W32 residue in SOD1 cytotoxicity. DuVal 
et  al. [56] reported that the nucleoside, telbivudine, 
exerts rescue effects by targeting W32. Shaw et al. [33] 
constructed the first C9-ALS/frontotemporal demen-
tia (FTD) zebrafish model that recapitulates the motor 
defects, cognitive impairment, muscle atrophy, motor 
neuron loss, and death features observed in early adult-
hood in human C9ORF72-ALS/FTD and showed that the 
compounds, ivermectin and riluzole, reduce activation 
of the heat shock response induced by C9ORF72- hexa-
nucleotide-repeat expansion (HRE).

2.4 Mammalian ALS model in mice
Mice serve as the mammalian rodent disease model 
for most neurodegenerative diseases, including ALS. 
The advantage of mouse models relies on mimicking 
the clinical-related phenotypes of ALS in detail, such as 
symptoms in the bulbar region of the brains and limbs.

The mouse model covers all the anatomic structures 
of humans for drug evaluation and provides a system-
atic tool for testing the effects of the disease at the level 
of multiple tissue interactions directly and indirectly. The 
interactions include the cell network inside the brain or 
spinal cord (e.g. neuron-neuron interactions and neu-
ron-glia interactions) and the factors beyond neural 
tissue (e.g., liver-brain axis, gut-brain axis, and immune-
brain/spinal cord interactions), which are considered to 
play a role in the development of ALS [57-59].

3. HUMAN-DERIVED DISEASE MODEL

The non-human animal model is limited in drug devel-
opment, especially diseases like ALS, which show a 
complex contribution between genetic and epigenetic 
factors. Most investigational drugs in late-stage clini-
cal trials are the lack of effectiveness (57%) and safety 
concerns [17%] [60]. Neurodegenerative diseases, such 
as ALS and Alzheimer’s disease (AD), are mostly spo-
radic with complex etiologies, which makes recapitulat-
ing the phenotypes of these diseases a challenge [61, 
62]. Therefore, a new disease model with cell diversity 
derived from patients with high-throughput and dis-
ease-specific features is expected to bridge the gap 
between the mouse model and ALS drug screening. 
Patient-derived iPSC organoids may be a next-genera-
tion tool for ALS modeling and drug evaluation.

3.1 Cell lines and neurons
Cultured cell lines or primary neurons offer valua-
ble mammalian in vitro systems for drug screening. 
Immortalized cell lines can provide sufficient samples 
and ensure comprehensive coverage of screening librar-
ies. Screen strategies of the cell lines for ALS therapy 
mainly depend on the molecular pathways associ-
ated with the disease and are mainly applied in whole 
genome screening. CRISPR screening systems offer a 
powerful tool for drug discovery across various applica-
tions, including ALS [63]. Kramer et al. [13] conducted 
a comprehensive whole-genome CRISPR-Cas9 screen on 
the K562 cell line with hits, including polyGR/polyPR, a 
presentative gain of functional dipeptide repeat pro-
teins (DPRs) from the HRE within the C9ORF72 gene. 
By using cytometry cell sorting for the retinal pigment 
epithelium (RPE)-1 cell line carrying RFP670 expressed in 
the AUG translation as an internal control, Cheng et al. 
[14] conducted a genome-wide CRISPR-Cas9 by fused 
(GGGCC)70 repeats conjunct with EGFP in the GA frame. 
To avoid genetic KO-induced neural development inter-
ference, Tian et  al. [15] established the genome-wide 
CRISPRi (interference) and CRISPRa (activation) sys-
tems to perform the genome screens directly in human 
neurons, which avoided interference from the neural 
developmental stage. Based on stress granules, Fang 
et al. [64] performed the screen on HEK293 and induced 
motor neurons with the neuroprotective small molecule 
libraries.

Patient-derived iPSC motor neurons duplicate the sur-
vival vulnerability of neurons in patients compared to 
cell lines, which were utilized as the readout for drug 
screening. Using induced motor neurons (iMNs) from 
C9ORF72-HRE ALS patients, Shi et  al. [65] reported a 
C9ORF72 haploinsufficiency, known as a C9ORF72-HRE 
loss of function (LOF), which mediated neurotoxicity. 
Such a LOF could be resorted by treatment of the RAB5 
chemical modulators through screening with a small 
molecular chemical library [EMD Millipore kinase collec-
tion and Stemselect library, 3.3 μM final concentration] 
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[65]. In 2023 the same research team identified the gen-
eral iMN phenotypes from C9ORF72, TDP43, and spo-
radic ALS. With a chemical library screening (Microsource 
Spectrum Collection, which is composed of approved 
drugs, bioactive compounds, and natural products), a 
SYF2 inhibitor was discovered that attenuated the iMN 
degeneration process [66]. By screening the phenotypes, 
including neurite length, LDH release, stress granules, 
and cleaved caspase-3 protein accumulation, Fujimori 
et  al. [67] confirmed the efficacy of the Parkinson’s 
disease drug, ropinirole, in protecting ALS motor neu-
rons. In the phase 1/2a clinical study of the open-label 
extension period, the ropinirole group presented signif-
icant suppression of ALS functional rating scale– revised 
(ALSFRS-R) decline with an additional 27.9 weeks of dis-
ease progression-free survival [68]. To date, the Answer 
ALS project has established the patient-derived iPSCs 
and collected the relative clinical data, whole-genome 
sequencing data, RNA-seq, ATAC-seq, and iMN pro-
teomic data from the iPSCs [69, 70].

4. ORGANOIDS: NEXT GENERATION IN DRUG 
DEVELOPMENT FOR ALS

Organoids have advantages in studying diseases within 
the scope of neurodegeneration by duplicating cell 
diversity in the tissue-like architecture, especially the 
variant disease-associated phenotypes compared with 
2D neurons. Lancaster et  al. [71] developed the first 
brain organoids from human iPSCs, which paved the 
way for a new era of disease modeling in neurologic dis-
orders. Using iPSCs or adult stem cells as a resource, 3D 
culture techniques enable the generation of 3D tissue 
spheroids in mimicking tissue organization and func-
tions, which provides a new model in developmental 

biology, disease modeling, biobanking, and multiple 
omics analysis. Increased cell diversity of organoids in 
3D structure provides the human tissue-like microenvi-
ronment compared to 2D-induced neurons for disease 
duplication. For example, PIEZO channels sense extracel-
lular mechanical stimuli to modulate stem cell functions 
that can be duplicated in the intestine organoid system 
[72]. Organoids have been utilized to establish numer-
ous systems for disease modeling, including brain [73], 
hepatic [74, 75], and lung and colonic organoids [76].

Considering the upper and lower motor neuron 
defects in ALS, organoids mimic the brain, spinal cord, 
and neuromuscular system and are considered dom-
inant tools for drug testing (Table 3 and Figure 2). 
ALS-associated phenotypes have been reported in the 
above-mentioned organoids from patient-derived iPSCs. 
Astrocytic and neuronal protein stasis and DNA repair 
dysregulation have been observed from brain organoid 
slices of individuals with C9ORF72 ALS/FTD [80]. Pereira 
et  al. [77] developed sensorimotor organoids contain-
ing motor neurons, sensory neurons, skeletal myocytes, 
astrocytes, and microglia, as well as the vascular system. 
Such organoids derived from ALS patient-derived iPSCs 
have been shown to have significant defects in muscu-
lar contraction [77]. Injection of ALS patient spinal cord 
extracts containing TDP-43 in healthy brain organoids 
could result in pathogenic TDP-43-induced cell apoptosis 
and astrogliosis, as well as prion-like spread of TDP-43 in 
the human central nervous system [78]. Szebényi et al. 
[80] generated sliced brain organoids induced from the 
iPSCs of C9ORF72 patients, which represented the early 
astrocytic ALS/FTD pathologic features, including aggre-
gating DPRs, DNA damage, and over-autophagy. Our 
team generated the neuromuscular organoids (NMOs) 
and duplicated the C9ORF72-related neuromuscular 

Table 3 | Organoid modeling ALS and neurodegeneration.

Types  Gene of 
interest

 Induction origin  Readouts  Main discovery  Reference

Sensorimotor 
organoids

 C9ORF72
FUS

 Neuromesodermal 
progenitors

 NMJ phenotypes
Astrocytes
Microglia
Vasculature

 Generated sensorimotor organoids 
modeling ALS subgroups and 
identifying cellular impairments at 
neuromuscular junctions.

 [77]

Cerebral 
organoids

 TDP-43  Ectodermal 
progenitors

 TDP-43 pathology
Astrocyte proliferation
Cellular apoptosis

 Used human cerebral organoids to 
validate TDP-43 propagation in ALS.

 [78]

Neuromuscular 
organoids

 C9ORF72  Neuromesodermal 
progenitors

 Muscular contraction weakness
NMJ integrity downregulation
DPR aggregation
Electrophysiologic properties

 Discovered the aggregated DPRs in 
astrocytes and neurons.
A contraction weakness in muscular 
sides may manifest earlier that 
histologic downregulation of NMJs.

 [79]

Sliced cerebral 
organoids

 C9ORF72  Ectodermal 
progenitors

 Neural network function
Cell homeostasis
ER stress and astroglia
DNA damage

 Revealing an increase in autophagy 
signaling protein P62 levels and DNA 
damage in astrocytes, which were 
improved by GSK2606414 treatment.

 [80]
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decline, as well as the trunk spinal pathologies based 
on the iPSCs from the same mutation [79]. As noted, the 
two systems had a positive response to the PERK inhib-
itor, GSK2606414, indicating the application of orga-
noids in drug tests. With respect to neural functional 
analysis, the multiple electrode array (MEA) approach 
has been used in electrophysiologic testing in brain and 
neuromuscular organoids [79, 80].

Undoubtedly, organoids derived from patient-derived 
iPSCs resolved the limit of the clinical sample and the 
throughput of the drug screening for ALS. The in vitro 
response of patient-derived iPSC organoids can predict 
the response of patients to treatment thereby open-
ing up new opportunities for drug discovery [81, 82]. 
However, organoid variants for benchmarking requires 
further confirmation to apply organoids in high content 
screening.

5. OPTIMIZING ORGANOID CULTURES FOR ALS 
MODELING

A model system for drug screening requires stable and 
reproducible phenotypes, which could reflect the key 
biological underpinning of ALS. For in vitro systems, 
especially induced motor neurons, up- and down-stream 
technologies ensure the considerable number of motor 
neuron production fulfilling the high-content screening 
via biomarker imaging.

The phenotypic analysis for organoids is currently 
limited by heterogeneity, which comes from the individ-
ual sample, batch-to-batch, and different iPSC donors. 

Optimizing iPSCs further into the native status could be 
an option to improve organoid quality. By comparing 
the line-to-line variance and within-line variance of 
sensorimotor organoids between non-isogenic iPSCs 
from healthy or ALS patients and the isogenic iPSCs 
after ALS-related gene modification (e.g., SOD1, TDP43, 
and PFN1), Pereira et al. [77] reported that the isogenic 
line among line variance and within-line variance was 
significantly lower than the non-isogenic group, which 
from the iPSC clone pick up during genetic modification. 
Such accumulating variance during iPSC replication may 
increase heterogeneity among organoids from differ-
ent individuals. Reprogramming of donor cells inde-
pendent of Yamanaka factors may provide an alterna-
tive method to optimize iPSC quality, such as chemical 
reprogramming and expanding pluripotent stem cells 
[83, 84]. Transient-naive-treatment (TNT) protocol 
methods may provide an updating resource of iPSCs for 
organoid generation [83, 85]. Additionally, suppliers of 
the chemicals, growth factors, and basal media during 
organoid inductions are factors that cannot be ignored 
in the stability of organoids. To overcome such current 
issues, technical and differentiation batch repeats are 
required for utilizing organoids in drug screening and 
disease modeling.

The human-like biological clock is another con-
cern for organoids in mimicking degenerative disor-
ders. Most organoids typically represent early fetal 
development, even after 50 days from the beginning 
of induction. Such a long-term culture for organoids 
mostly requires an orbital shaker to ensure the supply 

Figure 2 | Main organoid types mimicking ALS pathologies.
The diagram shows the induction pathway and the main types of organoids for ALS evaluation, including brain, spinal cord, and neuromuscular 
organoids.
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of oxygen and nutrition [71, 79, 80]. With respect to 
brain organoids, the time of phenotypic significance, 
including autophagy, DNA damage, and aggregation 
of the DPRs, was reported around day 150 [80]. For 
neuromuscular organoids system, the same iPSCs from 
C9ORF72 donors showed an early contraction defect 
on day 50 and remarkable degenerative neuromuscu-
lar junctions and aggregation of DPRs on day 100 [79]. 
Those lines of evidence indicate a distinctive time of 
disease progress in organoids compared to real in vivo 
conditions. One of the reasons for this finding might 
be the underlying difference in cell diversity between 
organoids and in vivo conditions. Lack of cell diver-
sity, such as microglia and vascular epithelial cells, may 
result in accelerated development of disease pheno-
types in organoids [86, 87].

The sheer stress during shaking may be another fac-
tor in the variation of organoids during morphogenesis, 
which may be reflected in the random shape and brain 
regions of the cortical organoids in long-term culture. 
Development of an auto-bioreactor system to stabilize 
the sheer force during the long-term culture phase is 
widely considered necessary for mimicking age-related 
neurodegenerative disease. Qian et al. [88] developed a 
bioreactor named spin omega for brain region- specific 
organoids, which showed advantages in stabilizing 
sheer force affection and demonstrated application 
for Zika virus evaluation. To address the issue of an 
 insufficient nutrient supply and inadequate diffusion of 
nutrients, Giandomenico et al. [89] generated cerebral 
organoid slices at an air-liquid interface and demon-
strated improved neuronal survival and axonal growth. 
Such models have been utilized in evaluating the disease 
phenotypes of C9ORF72-HRE-induced FTD/ALS pathol-
ogy [80]. Supported by the spin omega device, Qian 
et  al. [90] also developed sliced brain organoids and 
successfully addressed the fundamental limitation that 
has hindered the accurate replication of the architec-
tural features of late-stage human cortical development 
in cortical organoids. In addition to those methods for 
optimization, manual picking up organoids with stand-
ard guidelines provides a relatively applicable method 
for evaluation. In our research involving neuromuscular 
organoids modeling, the organoids with one bright and 
one dark side, the olive shape was picked for assessing 
the disease relative phenotype [79].

Niche factors, including the elasticity and biochem-
ical support from the extracellular matrix (ECM), are 
also considered key regulators for optimizing tissue 
stability and development efficiency of organoids [91]. 
Co-culture systems enable organoids to mimic the inter-
action of peripheral cells with neural systems, such as 
microglia [92]. Embedding organoids into an artificial 
hydrogel containing essential ECM components sup-
plies the physical and biochemical environments to the 
disease model [93]. Assembloids and organ chips are 
developed for further obtaining the multiple connec-
tive or distal organ interactions. Fusing organoids from 

different brain regions successfully mimic the neural 
network between dorsal and ventral regions or from 
the cortex to spinal cord [94, 95]. Further integration of 
different organoids into microfluid-derived chips could 
be used for studying the distal organ interaction with 
the brain or spinal cord, which would further reflect 
the systematic pathologies of ALS [96]. The above- 
mentioned approaches would help promote the stabil-
ity of organoids and expand the tissue complex of the 
organoids for mimicking more biological mechanisms of 
ALS (Figure 3).

6. SET READOUTS OF ORGANOIDS ACCORDING 
TO HIGH-THROUGHPUT SCREENING

Several works have been initiated to use organoids 
as the model for high-throughput analysis, which has 
paved the way for organoids in ALS drug screening 
[97]. By integrating mathematical modeling with cere-
bral organoid (iCO) phenotypic analysis, Park et al. [98] 
utilized 1300 organoids from 11 participants with spo-
radic AD and established a high-content screening (HCS) 
system for testing FDA-approved blood-brain barrier 
permeable drugs. Park et al. [98] manually picked the 
organoids and performed the transparency for facilitat-
ing HCS analysis. The factors containing biomarker area, 
shape, and diameter of the organoids were included for 
automatic quality control (QC). Due to the difficulties 
with organoid 3D shape, the tissue transparency tech-
nique may provide the advantage necessary for orga-
noids based HCS. By utilizing the benzyl alcohol/benzyl 
benzoate (BABB)-based clearing protocol, Renner et al. 
[99] developed a fully automated high-throughput 
workflow for 3D-based chemical screening for human 
midbrain organoids. As an alternative strategy, several 
teams transferred attention to generating Matrigel-
supported 2D organoids to avoid difficulties in 3D imag-
ing. As mentioned above, the sensorimotor organoid 
induced by neuromesodermal progenitors was cultured 
in the Matrigel and established the motor neurons and 
skeletal muscle tissue [77]. By optimizing somitogene-
sis with dual SMAD inhibitors, Urzi et  al. [100] devel-
oped self-organized neuromuscular junction organoids 
in a 2D cultural surface, which could duplicate spinal 
muscular atrophy-associated pathologies induced by 
patient-derived iPSCs. Apart from image analysis, the 
level of biochemical markers, including lactate dehy-
drogenase (LDH), neurofilament light chain (NfL), 
and redox oxygen species (ROS), were reported as the 
readouts for screening [70, 101, 102]. Multiple disease- 
associated phenotypes, such as neurite length, LDH 
release, cleaved caspase-3, and G3BP stress granules, 
were combined for high-throughput screening in iMNs 
[67]. Moreover, setting one key readout for narrowing 
down the candidates with multiple stages of testing 
would be another strategy for screening [66, 97].

To avoid the interference of technicians for drug 
screening, a hardware device for automated laboratories 
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is the essential step for high-throughput screening, 
especially for industry. An automated platform combi-
nation with a liquid handler, acoustic droplet ejector, 
robotic arm, and cell counter devices was designed to 
culture midbrain-specific organoids for high-through-
put drug screening [103]. Deep learning-based catego-
rizing helped build the phenotypic fingerprints of the 
organoids for further evaluating the unidentified drug 
effects. By treatment with identified targeting chemi-
cals, Lukonin et al. [104] generated multivariate feature 
profiles for hundreds of thousands of intestinal orga-
noids to quantitatively describe the phenotypic land-
scape and used phenotypic fingerprints to infer regula-
tory genes. It is expected that organoids will be utilized 
for ALS drug screening with the development of big data 
analysis, RNA sequencing, and phenotypic screening. 
Considering the current issue of the instability of orga-
noids, drug screening could be performed in separated 
steps or based on combined phenotypic landscapes in 
a single set of organoids (Figure 4). Primary screening 
would focus on using a single model, including iMNs or 
organoids, after quality control. The priority readouts 
are required with the direct phenotype in association 
with motor neuron protection. For secondary screening, 

narrowing down libraries are processed in multiple 
organoids from iPSCs of different donor patients. A sys-
tematic score of the drug effects by combining the mul-
tiple phenotypes of the organoids with the RNA profile 
may help to determine a final drug candidate for pre-
clinical purposes.

7. CONCLUSION AND PROSPECT

Genetic and epigenetic memory of iPSCs enable the 
capacity of organoids in disease modeling, especially 
based on individual patients. Further development of 
3D high speed and high content images with an artifi-
cial intelligence trajectory for ALS may further enhance 
organoids as a tool for drug screening. Moreover, mod-
els for ALS study can cover different aspects that are far 
more than the above-mentioned models in this review. 
In vivo mammalian models, including rodents and 
non-human primates, also show a powerful potential for 
disease modeling and drug development. Moreover, sys-
tematic organoid tools, particularly “human on a chip,” 
which organically combines organoids from different 
systems together on a micro-fluid chip, also exhibit a 
great advantage in humanized drug evaluation.

Figure 3 | Optimizing the organoids mimicking disease.
The diagram shows the step-by-step methods to optimize organoids for duplicating the tissue complex with ALS as the target. Bioreactor 
devices, co-culture systems, assembly technologies, and organoid chips were utilized to produce organoid systems with vascularization, immune 
responses, neural projection, and distal organ interactions.
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Patient-derived iPSC biobanking provides the 
resource of disease modeling via multiple types of 
organoids for studying ALS. The Answer ALS project 
initiated from Cedars-Sinai Hospital has collected suf-
ficient resources of ALS patients with iPSCs and var-
ious genotypes and sporadic cases [69]. Combined 
with different organoids, co-culturing with immune 
cells or embedding the organoids into bio-engineered 
hydrogels would provide a tissue-specific microen-
vironment. Further building of the assembloids and 
co-culturing different organoids into chips would pro-
vide  human-like organ interaction as well as the dis-
tribution of the drugs nearby and distally. Finally, the 
tested drug would be further investigated in animal 
and human samples (Figure 3). With the development 
of high-content image technology, artificial intelli-
gence assisting phenotypic landscape analysis, and 
standardization of 3D cultures, organoids may become 
the dominant model for drug development and target 
screening for ALS.
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