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ABSTRACT

Complex biological mechanisms and unidentified therapeutic targets for amyotrophic lateral sclerosis (ALS)
significantly hinder the development of effective treatments. Given these challenges, reliable disease models that
accurately replicate ALS phenotypes with relevant biological underpinnings are essential for advancing precision
medicine in ALS. Patient-derived induced pluripotent stem cell (iPSC) organoids have emerged as an innovative tool
for disease modeling and drug evaluation. Growing evidence highlights the advantages of organoids in replicating
ALS phenotypes and supporting drug development. However, challenges remain in utilizing organoids for ALS drug
testing and other neurodegenerative diseases. In this review we summarize the current progress in ALS model
development, encompassing both in vitro and in vivo non-human models, as well as iPSC-derived human models.
Furthermore, within the context of ALS drug screening, we discuss critical considerations for applying organoids to
evaluate disease-associated phenotypes and to accurately reflect disease-related symptoms.
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1. INTRODUCTION worldwide. Greater than 30 at-risk genes have been
identified concerning the pathogenesis of ALS [3-6],
which accounts for the complex mechanisms leading
to ALS [7]. The heterogeneity of ALS phenotypes and
difficulty in obtaining biopsy samples from the central

nervous system (CNS) pose challenges in advancing the

Amyotrophic lateral sclerosis (ALS) is a lethal, progres-
sive neurodegenerative disease characterized by the loss
of upper and lower motor neurons [1]. The pathologic
hallmarks of ALS include motor neuron atrophy, gliosis,

and the accumulation of misfolded proteins, such as TAR
DNA-binding protein 43 (TDP-43) aggregates, dipeptide
repeat proteins, and fused in sarcoma (FUS) protein mis-
location [2]. The loss of motor neural function results in
muscle weakness, atrophy, and eventual paralysis, with
respiratory failure being the primary cause of mortality.
Current medications only provide limited effects to pre-
vent progressive neurodegeneration.

The incidence of amyotrophic lateral sclerosis (ALS)
ranges from 0.6-3.8 per 100,000 individuals annually
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understanding of ALS and the development of curable
treatment. Current strategies for drug screening by the
pharmaceutical industry are mainly based on identified
ALS targets, the list of which is incomplete, especially
sporadic ALS cases. An alternative strategy for drug
screening based on phenotypic analysis requires a reli-
able disease model associated with disease symptoms.
Non-human models, including yeast, flies, worms,
zebrafish, and rodents, have offered insights into the cel-
lular phenotypes of genetic abnormalities related to ALS.
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In recent decades neurons derived from induced pluri-
potent stem cells (iPSCs) have provided ample samples
for high throughput screening for neurodegenerative
diseases, especially sporadic ALS. Indeed, iPSCs provide
functional cells that may be involved in ALS, including
neurons, astrocytes, microglia, and skeletal myocytes.

In recent years organoids cultured from patient-
derived iPSCs have emerged as a valuable tool in ALS
research. Patient-derived iPSCs carry entire genomic
information and most of the epigenetic memory of the
donors, which provides an unlimited resource to differ-
entiate all tissue types with special interest that may be
related to the disease being studied. Because organoids
provide a three-dimensional tissue-like architecture,
organoids are expected to be a novel model to closely
mimic progression of a disease as humanized physiology.
Compared to traditionally differentiated motor neu-
rons, organoids contain multiple cell types, including
astrocytes, oligodendrocytes, and interneurons, which
may contribute to disease development and could be a
possible target for treatment.

The US FDA proposed new guidelines on use of orga-
noids as a tool in new drug discovery [8]. However, a
large gap exists in using organoids as a tool for drug
screening, especially because of organoid heterogene-
ity and the difficulty in obtaining high-content images.
Knowledge of the wide disease models in phenotypic
fingerprinting would help apply organoids in evaluat-
ing biological effects in drug evaluation. This review
summarizes established disease models used in ALS
screening, as detailed in Tables 1 and 2. Then, we pro-
vide insights into the advantages and challenges associ-
ated with the application of organoids in high-through-
put screening for ALS.

Reference
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[11]
[12]
[13]
[14]

(9]

Lysosomal protein prosaposin modifies neural-specific [15]

FUS must aggregate in the cytoplasm and bind RNA
response to oxidative stress.

to confer toxicity in yeast
nucleocytoplasmic transport participate in dipeptide

repeat (DPR)-induced toxicity
Tmx2 modifies the C9ORF72 DPR-induced ER stress

Interaction of hnRNP with ubiquilin-2 may participate
response

in ALS development
Absence of Dbr1 preventing Dbr1 from interfering

Karyopherins and effectors of Ran-mediated
TDP-43 toxicity suppressor screens (yeast); Neural death (primary neurons) with essential cellular RNAs and RNA-binding proteins

Main discovery
FACS-based EGFP/RFP flow cell sorting DDX3X is a modifier of non-AUG DPR protein
production

Spotting assays on galactose media
Spotting assays on galactose media
Spotting assays on galactose media

Evaluated phenotype
DPR-induced cell death

Yeast two-hybrid
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2. NON-HUMANIZED MODEL

Various models, including yeast, worms, zebrafish, and
mice, have considerable humanized genome homoge-
neity and accessibility for genetic modification. Such
advantages make these models useful tools for explor-
ing the functions of ALS-related genetic mutations.
Given the tissue complexity and phenotypes of these
animals, scientists could study the functions of genes
in contributing to disease development at different
scales. Different disease models show their advantages
in phenotypic readouts, tissue mirroring, and evaluating
approaches (Figure 1).

domain of ubiquilin-2 mutations
Genome-wide loss-of-function
CRISPR-Cas9 whole genome

screening
CRISPR-Cas9 whole genome

screening
CRISPR-Cas9 whole genome

overexpression screen
screening

Screening system

ubiquilin-2  Two-hybrid library with central
FUS truncations
Genome-wide plasmid

Gene of
interest
FUS
C90ORF72
TDP-43
C90ORF72

2.1 Cellular toxicity model in yeast

The yeast, Saccharomyces cerevisiae, is the first fully
sequenced eukaryotic single-cell organism [39]. The
availability of overexpression or deletion libraries of
the entire yeast genome provides a screening system
in the identification of ALS targets, especially based on
the phenotypes related to general cellular metabolism,
such as DNA damage, RNA toxicity, proteinopathies, and
mitochondrial dysfunctions [40-43]. Yeast have been

Table 1 | In vitro cellular screening system and utilization in ALS.

RPE-1 cell line dual expression C9ORF72

(GGGGCCQ),-EGFP/RFP670
Induced neurons from human N/A

K562 cell line and primary
iPSCs

Yeast and primary neuron
neurons

Cell type

Yeast
Yeast
Yeast
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Figure 1 | Summary of the ALS disease model for drug evaluation.
The diagram shows the different disease models of ALS as well as the application in ALS drug exploration. The phenotypes serve as the evalu-
ating readout for tissue or organ specificity and the devices for evaluating are listed for each model type.

applied as an ALS model via gene editing, which focuses
on cellular pathologies as the readout. The expression
of FUS in yeast recapitulates several pathologic features
of ALS, such as nuclear-to-cytoplasmic translocation, for-
mation of cytoplasmic inclusions, and cytotoxicity [44].
Researchers have currently identified 37 human genes
that suppress FUS-induced toxicity from the screening
library containing 13,570 human genes cloned in an
inducible yeast-expression vector [44].

2.2 Neurodegenerative model in Drosophila
melanogaster and Caenorhabditis elegans

The short life span and the relatively simple nervous
system in D. melanogaster and C. elegans make D.
melanogaster and C. elegans ideal models to mimic
ALS-associated neurodegeneration. D. melanogaster
has 14,000 genes, approximately 40% of which have
homology for 75% of human genes with functional
orthologues [45]. The tools for genetic screens could
be created by crossing wild-type flies to deletion stocks
or using RNAI lines, which cover approximately 90% of
the genome and are publicly available [46]. Neurologic

40 Acta Materia Medica 2025, Volume 4, Issue 1, p. 36-50

phenotypes, including climbing and crawling, brain his-
tologic profiles, eye morphologies, electrophysiology,
eclosion rate, and lifespan could be used for mirroring
ALS-associated clinical symptoms [47]. Eyes are the most
widely used tissue for evaluating modifier screening
because testing is relatively easy [48]. Transgene expres-
sion in flies is usually achieved using the bipartite Gal4-
upstream activating sequence (UAS) system derived
from gene expression for galactose metabolism in yeast.
The tissue marker of the fly is detectable using UAS-B-
galactosidase (UAS-lacZ) or UAS-green fluorescent pro-
tein (GFP). This detectable tissue marker could be used
for assessing the tissue-specific effects of specific gene
knockdown using UAS-RNAI lines [http://www.flyrnai.
org/DRSC-OVR.html] [49].

There are 19,000 genes in C. elegans based on gene
sequencing results [50]. Several well-established models,
such as C9ORF72[51], SOD1 [24], TDP43[52], and FUS [53],
have been extensively utilized based on the specific phe-
notypes, which mainly focus on lifespan, motor function,
and neurodegeneration. The survival rate, the integrity
of neuromuscular junctions, and cellular pathologies

©2025 The Authors. Creative Commons Attribution 4.0 International License
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could be applied as the readout of ALS in C. elegans.
Recent research suggests that metformin enhances auto-
phagy and extends lifespan through the daf-16 pathway
in human SODT (Hsod1) transgenic worms [54]. Ectopic
expression of ALS-associated human FUS impairs synaptic
vesicle docking at neuromuscular junctions in C. elegans,
which has led to the emergence of a population of large,
electron-dense, and filament-filled endosomes [28].

2.3 Spinal motor degenerative model in zebrafish
Zebrafish have become the most applicable vertebrate
model for drug screening due to the high degree of
conservation with human genes, ease of breeding, and
accessibility of genetic modification. A comprehensive
sequencing study has shown that zebrafish have at least
one homologous gene with >70% of human genes,
including many at-risk genes in human neurodegener-
ative diseases [55]. The small size and transparent pro-
file of the zebrafish make zebrafish more suitable for
high-throughput screening, especially in confirmation
of the disease phenotype.

The behavioral testing system of zebrafish is also
mature for studying ALS symptoms, which mainly
focuses on the motor system. By testing the traveled dis-
tance and motor axon length of zebrafish injected with
human SOD1A4V mutant mRNA, Robinson et al. [30]
provided the first evidence of a correlation between the
motor axonopathy of SODT mutations in zebrafish and
motor impairments. By injecting SODT mutant mRNA
into zebrafish embryos, DuVal et al. [56] investigated
the role of the W32 residue in SOD1 cytotoxicity. DuVal
et al. [56] reported that the nucleoside, telbivudine,
exerts rescue effects by targeting W32. Shaw et al. [33]
constructed the first C9-ALS/frontotemporal demen-
tia (FTD) zebrafish model that recapitulates the motor
defects, cognitive impairment, muscle atrophy, motor
neuron loss, and death features observed in early adult-
hood in human C9ORF72-ALS/FTD and showed that the
compounds, ivermectin and riluzole, reduce activation
of the heat shock response induced by C9ORF72- hexa-
nucleotide-repeat expansion (HRE).

2.4 Mammalian ALS model in mice
Mice serve as the mammalian rodent disease model
for most neurodegenerative diseases, including ALS.
The advantage of mouse models relies on mimicking
the clinical-related phenotypes of ALS in detail, such as
symptoms in the bulbar region of the brains and limbs.
The mouse model covers all the anatomic structures
of humans for drug evaluation and provides a system-
atic tool for testing the effects of the disease at the level
of multiple tissue interactions directly and indirectly. The
interactions include the cell network inside the brain or
spinal cord (e.g. neuron-neuron interactions and neu-
ron-glia interactions) and the factors beyond neural
tissue (e.g., liver-brain axis, gut-brain axis, and immune-
brain/spinal cord interactions), which are considered to
play a role in the development of ALS [57-59].
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3. HUMAN-DERIVED DISEASE MODEL

The non-human animal model is limited in drug devel-
opment, especially diseases like ALS, which show a
complex contribution between genetic and epigenetic
factors. Most investigational drugs in late-stage clini-
cal trials are the lack of effectiveness (57%) and safety
concerns [17%] [60]. Neurodegenerative diseases, such
as ALS and Alzheimer’s disease (AD), are mostly spo-
radic with complex etiologies, which makes recapitulat-
ing the phenotypes of these diseases a challenge [61,
62]. Therefore, a new disease model with cell diversity
derived from patients with high-throughput and dis-
ease-specific features is expected to bridge the gap
between the mouse model and ALS drug screening.
Patient-derived iPSC organoids may be a next-genera-
tion tool for ALS modeling and drug evaluation.

3.1 Cell lines and neurons

Cultured cell lines or primary neurons offer valua-
ble mammalian in vitro systems for drug screening.
Immortalized cell lines can provide sufficient samples
and ensure comprehensive coverage of screening librar-
ies. Screen strategies of the cell lines for ALS therapy
mainly depend on the molecular pathways associ-
ated with the disease and are mainly applied in whole
genome screening. CRISPR screening systems offer a
powerful tool for drug discovery across various applica-
tions, including ALS [63]. Kramer et al. [13] conducted
a comprehensive whole-genome CRISPR-Cas9 screen on
the K562 cell line with hits, including polyGR/polyPR, a
presentative gain of functional dipeptide repeat pro-
teins (DPRs) from the HRE within the C9ORF72 gene.
By using cytometry cell sorting for the retinal pigment
epithelium (RPE)-1 cell line carrying RFP670 expressed in
the AUG translation as an internal control, Cheng et al.
[14] conducted a genome-wide CRISPR-Cas9 by fused
(GGGCQ),, repeats conjunct with EGFP in the GA frame.
To avoid genetic KO-induced neural development inter-
ference, Tian et al. [15] established the genome-wide
CRISPRi (interference) and CRISPRa (activation) sys-
tems to perform the genome screens directly in human
neurons, which avoided interference from the neural
developmental stage. Based on stress granules, Fang
et al. [64] performed the screen on HEK293 and induced
motor neurons with the neuroprotective small molecule
libraries.

Patient-derived iPSC motor neurons duplicate the sur-
vival vulnerability of neurons in patients compared to
cell lines, which were utilized as the readout for drug
screening. Using induced motor neurons (iMNs) from
C90RF72-HRE ALS patients, Shi et al. [65] reported a
C90RF72 haploinsufficiency, known as a C9ORF72-HRE
loss of function (LOF), which mediated neurotoxicity.
Such a LOF could be resorted by treatment of the RAB5
chemical modulators through screening with a small
molecular chemical library [EMD Millipore kinase collec-
tion and Stemselect library, 3.3 pM final concentration]
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[65]. In 2023 the same research team identified the gen-
eral iMN phenotypes from C9ORF72, TDP43, and spo-
radic ALS. With a chemical library screening (Microsource
Spectrum Collection, which is composed of approved
drugs, bioactive compounds, and natural products), a
SYF2 inhibitor was discovered that attenuated the iMN
degeneration process [66]. By screening the phenotypes,
including neurite length, LDH release, stress granules,
and cleaved caspase-3 protein accumulation, Fujimori
et al. [67] confirmed the efficacy of the Parkinson’s
disease drug, ropinirole, in protecting ALS motor neu-
rons. In the phase 1/2a clinical study of the open-label
extension period, the ropinirole group presented signif-
icant suppression of ALS functional rating scale-revised
(ALSFRS-R) decline with an additional 27.9 weeks of dis-
ease progression-free survival [68]. To date, the Answer
ALS project has established the patient-derived iPSCs
and collected the relative clinical data, whole-genome
sequencing data, RNA-seq, ATAC-seq, and iMN pro-
teomic data from the iPSCs [69, 70].

4, ORGANOIDS: NEXT GENERATION IN DRUG
DEVELOPMENT FOR ALS

Organoids have advantages in studying diseases within
the scope of neurodegeneration by duplicating cell
diversity in the tissue-like architecture, especially the
variant disease-associated phenotypes compared with
2D neurons. Lancaster et al. [71] developed the first
brain organoids from human iPSCs, which paved the
way for a new era of disease modeling in neurologic dis-
orders. Using iPSCs or adult stem cells as a resource, 3D
culture techniques enable the generation of 3D tissue
spheroids in mimicking tissue organization and func-
tions, which provides a new model in developmental

Table 3 | Organoid modeling ALS and neurodegeneration.

biology, disease modeling, biobanking, and multiple
omics analysis. Increased cell diversity of organoids in
3D structure provides the human tissue-like microenvi-
ronment compared to 2D-induced neurons for disease
duplication. For example, PIEZO channels sense extracel-
lular mechanical stimuli to modulate stem cell functions
that can be duplicated in the intestine organoid system
[72]. Organoids have been utilized to establish numer-
ous systems for disease modeling, including brain [73],
hepatic [74, 75], and lung and colonic organoids [76].
Considering the upper and lower motor neuron
defects in ALS, organoids mimic the brain, spinal cord,
and neuromuscular system and are considered dom-
inant tools for drug testing (Table 3 and Figure 2).
ALS-associated phenotypes have been reported in the
above-mentioned organoids from patient-derived iPSCs.
Astrocytic and neuronal protein stasis and DNA repair
dysregulation have been observed from brain organoid
slices of individuals with C9ORF72 ALS/FTD [80]. Pereira
et al. [77] developed sensorimotor organoids contain-
ing motor neurons, sensory neurons, skeletal myocytes,
astrocytes, and microglia, as well as the vascular system.
Such organoids derived from ALS patient-derived iPSCs
have been shown to have significant defects in muscu-
lar contraction [77]. Injection of ALS patient spinal cord
extracts containing TDP-43 in healthy brain organoids
could result in pathogenic TDP-43-induced cell apoptosis
and astrogliosis, as well as prion-like spread of TDP-43 in
the human central nervous system [78]. Szebényi et al.
[80] generated sliced brain organoids induced from the
iPSCs of C9ORF72 patients, which represented the early
astrocytic ALS/FTD pathologic features, including aggre-
gating DPRs, DNA damage, and over-autophagy. Our
team generated the neuromuscular organoids (NMOs)
and duplicated the C9ORF72-related neuromuscular

Types Gene of Induction origin Readouts Main discovery Reference
interest
Sensorimotor C90RF72 Neuromesodermal ~ NMJ phenotypes Generated sensorimotor organoids [77]
organoids FUS progenitors Astrocytes modeling ALS subgroups and
Microglia identifying cellular impairments at
Vasculature neuromuscular junctions.
Cerebral TDP-43 Ectodermal TDP-43 pathology Used human cerebral organoids to [78]
organoids progenitors Astrocyte proliferation validate TDP-43 propagation in ALS.
Cellular apoptosis
Neuromuscular ~ C9ORF72 Neuromesodermal ~ Muscular contraction weakness  Discovered the aggregated DPRs in [79]
organoids progenitors NM]J integrity downregulation astrocytes and neurons.
DPR aggregation A contraction weakness in muscular
Electrophysiologic properties sides may manifest earlier that
histologic downregulation of NMJs.
Sliced cerebral ~ C90ORF72 Ectodermal Neural network function Revealing an increase in autophagy [80]

organoids progenitors

DNA damage

Cell homeostasis
ER stress and astroglia

signaling protein P62 levels and DNA
damage in astrocytes, which were
improved by GSK2606414 treatment.
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Figure 2 | Main organoid types mimicking ALS pathologies.

The diagram shows the induction pathway and the main types of organoids for ALS evaluation, including brain, spinal cord, and neuromuscular

organoids.

decline, as well as the trunk spinal pathologies based
on the iPSCs from the same mutation [79]. As noted, the
two systems had a positive response to the PERK inhib-
itor, GSK2606414, indicating the application of orga-
noids in drug tests. With respect to neural functional
analysis, the multiple electrode array (MEA) approach
has been used in electrophysiologic testing in brain and
neuromuscular organoids [79, 80].

Undoubtedly, organoids derived from patient-derived
iPSCs resolved the limit of the clinical sample and the
throughput of the drug screening for ALS. The in vitro
response of patient-derived iPSC organoids can predict
the response of patients to treatment thereby open-
ing up new opportunities for drug discovery [81, 82].
However, organoid variants for benchmarking requires
further confirmation to apply organoids in high content
screening.

5. OPTIMIZING ORGANOID CULTURES FOR ALS
MODELING

A model system for drug screening requires stable and
reproducible phenotypes, which could reflect the key
biological underpinning of ALS. For in vitro systems,
especially induced motor neurons, up- and down-stream
technologies ensure the considerable number of motor
neuron production fulfilling the high-content screening
via biomarker imaging.

The phenotypic analysis for organoids is currently
limited by heterogeneity, which comes from the individ-
ual sample, batch-to-batch, and different iPSC donors.

Optimizing iPSCs further into the native status could be
an option to improve organoid quality. By comparing
the line-to-line variance and within-line variance of
sensorimotor organoids between non-isogenic iPSCs
from healthy or ALS patients and the isogenic iPSCs
after ALS-related gene modification (e.g., SOD1, TDP43,
and PFNT), Pereira et al. [77] reported that the isogenic
line among line variance and within-line variance was
significantly lower than the non-isogenic group, which
from the iPSC clone pick up during genetic modification.
Such accumulating variance during iPSC replication may
increase heterogeneity among organoids from differ-
ent individuals. Reprogramming of donor cells inde-
pendent of Yamanaka factors may provide an alterna-
tive method to optimize iPSC quality, such as chemical
reprogramming and expanding pluripotent stem cells
[83, 84]. Transient-naive-treatment (TNT) protocol
methods may provide an updating resource of iPSCs for
organoid generation [83, 85]. Additionally, suppliers of
the chemicals, growth factors, and basal media during
organoid inductions are factors that cannot be ignored
in the stability of organoids. To overcome such current
issues, technical and differentiation batch repeats are
required for utilizing organoids in drug screening and
disease modeling.

The human-like biological clock is another con-
cern for organoids in mimicking degenerative disor-
ders. Most organoids typically represent early fetal
development, even after 50 days from the beginning
of induction. Such a long-term culture for organoids
mostly requires an orbital shaker to ensure the supply
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of oxygen and nutrition [71, 79, 80]. With respect to
brain organoids, the time of phenotypic significance,
including autophagy, DNA damage, and aggregation
of the DPRs, was reported around day 150 [80]. For
neuromuscular organoids system, the same iPSCs from
C90RF72 donors showed an early contraction defect
on day 50 and remarkable degenerative neuromuscu-
lar junctions and aggregation of DPRs on day 100 [79].
Those lines of evidence indicate a distinctive time of
disease progress in organoids compared to real in vivo
conditions. One of the reasons for this finding might
be the underlying difference in cell diversity between
organoids and in vivo conditions. Lack of cell diver-
sity, such as microglia and vascular epithelial cells, may
result in accelerated development of disease pheno-
types in organoids [86, 87].

The sheer stress during shaking may be another fac-
tor in the variation of organoids during morphogenesis,
which may be reflected in the random shape and brain
regions of the cortical organoids in long-term culture.
Development of an auto-bioreactor system to stabilize
the sheer force during the long-term culture phase is
widely considered necessary for mimicking age-related
neurodegenerative disease. Qian et al. [88] developed a
bioreactor named spin omega for brain region-specific
organoids, which showed advantages in stabilizing
sheer force affection and demonstrated application
for Zika virus evaluation. To address the issue of an
insufficient nutrient supply and inadequate diffusion of
nutrients, Giandomenico et al. [89] generated cerebral
organoid slices at an air-liquid interface and demon-
strated improved neuronal survival and axonal growth.
Such models have been utilized in evaluating the disease
phenotypes of C9ORF72-HRE-induced FTD/ALS pathol-
ogy [80]. Supported by the spin omega device, Qian
et al. [90] also developed sliced brain organoids and
successfully addressed the fundamental limitation that
has hindered the accurate replication of the architec-
tural features of late-stage human cortical development
in cortical organoids. In addition to those methods for
optimization, manual picking up organoids with stand-
ard guidelines provides a relatively applicable method
for evaluation. In our research involving neuromuscular
organoids modeling, the organoids with one bright and
one dark side, the olive shape was picked for assessing
the disease relative phenotype [79].

Niche factors, including the elasticity and biochem-
ical support from the extracellular matrix (ECM), are
also considered key regulators for optimizing tissue
stability and development efficiency of organoids [91].
Co-culture systems enable organoids to mimic the inter-
action of peripheral cells with neural systems, such as
microglia [92]. Embedding organoids into an artificial
hydrogel containing essential ECM components sup-
plies the physical and biochemical environments to the
disease model [93]. Assembloids and organ chips are
developed for further obtaining the multiple connec-
tive or distal organ interactions. Fusing organoids from
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different brain regions successfully mimic the neural
network between dorsal and ventral regions or from
the cortex to spinal cord [94, 95]. Further integration of
different organoids into microfluid-derived chips could
be used for studying the distal organ interaction with
the brain or spinal cord, which would further reflect
the systematic pathologies of ALS [96]. The above-
mentioned approaches would help promote the stabil-
ity of organoids and expand the tissue complex of the
organoids for mimicking more biological mechanisms of
ALS (Figure 3).

6. SET READOUTS OF ORGANOIDS ACCORDING
TO HIGH-THROUGHPUT SCREENING

Several works have been initiated to use organoids
as the model for high-throughput analysis, which has
paved the way for organoids in ALS drug screening
[97]. By integrating mathematical modeling with cere-
bral organoid (iCO) phenotypic analysis, Park et al. [98]
utilized 1300 organoids from 11 participants with spo-
radic AD and established a high-content screening (HCS)
system for testing FDA-approved blood-brain barrier
permeable drugs. Park et al. [98] manually picked the
organoids and performed the transparency for facilitat-
ing HCS analysis. The factors containing biomarker area,
shape, and diameter of the organoids were included for
automatic quality control (QC). Due to the difficulties
with organoid 3D shape, the tissue transparency tech-
nique may provide the advantage necessary for orga-
noids based HCS. By utilizing the benzyl alcohol/benzyl
benzoate (BABB)-based clearing protocol, Renner et al.
[99] developed a fully automated high-throughput
workflow for 3D-based chemical screening for human
midbrain organoids. As an alternative strategy, several
teams transferred attention to generating Matrigel-
supported 2D organoids to avoid difficulties in 3D imag-
ing. As mentioned above, the sensorimotor organoid
induced by neuromesodermal progenitors was cultured
in the Matrigel and established the motor neurons and
skeletal muscle tissue [77]. By optimizing somitogene-
sis with dual SMAD inhibitors, Urzi et al. [100] devel-
oped self-organized neuromuscular junction organoids
in a 2D cultural surface, which could duplicate spinal
muscular atrophy-associated pathologies induced by
patient-derived iPSCs. Apart from image analysis, the
level of biochemical markers, including lactate dehy-
drogenase (LDH), neurofilament light chain (NfL),
and redox oxygen species (ROS), were reported as the
readouts for screening [70, 101, 102]. Multiple disease-
associated phenotypes, such as neurite length, LDH
release, cleaved caspase-3, and G3BP stress granules,
were combined for high-throughput screening in iMNs
[67]. Moreover, setting one key readout for narrowing
down the candidates with multiple stages of testing
would be another strategy for screening [66, 97].

To avoid the interference of technicians for drug
screening, a hardware device for automated laboratories
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The diagram shows the step-by-step methods to optimize organoids for duplicating the tissue complex with ALS as the target. Bioreactor
devices, co-culture systems, assembly technologies, and organoid chips were utilized to produce organoid systems with vascularization, immune

responses, neural projection, and distal organ interactions.

is the essential step for high-throughput screening,
especially for industry. An automated platform combi-
nation with a liquid handler, acoustic droplet ejector,
robotic arm, and cell counter devices was designed to
culture midbrain-specific organoids for high-through-
put drug screening [103]. Deep learning-based catego-
rizing helped build the phenotypic fingerprints of the
organoids for further evaluating the unidentified drug
effects. By treatment with identified targeting chemi-
cals, Lukonin et al. [104] generated multivariate feature
profiles for hundreds of thousands of intestinal orga-
noids to quantitatively describe the phenotypic land-
scape and used phenotypic fingerprints to infer regula-
tory genes. It is expected that organoids will be utilized
for ALS drug screening with the development of big data
analysis, RNA sequencing, and phenotypic screening.
Considering the current issue of the instability of orga-
noids, drug screening could be performed in separated
steps or based on combined phenotypic landscapes in
a single set of organoids (Figure 4). Primary screening
would focus on using a single model, including iMNs or
organoids, after quality control. The priority readouts
are required with the direct phenotype in association
with motor neuron protection. For secondary screening,

narrowing down libraries are processed in multiple
organoids from iPSCs of different donor patients. A sys-
tematic score of the drug effects by combining the mul-
tiple phenotypes of the organoids with the RNA profile
may help to determine a final drug candidate for pre-
clinical purposes.

7. CONCLUSION AND PROSPECT

Genetic and epigenetic memory of iPSCs enable the
capacity of organoids in disease modeling, especially
based on individual patients. Further development of
3D high speed and high content images with an artifi-
cial intelligence trajectory for ALS may further enhance
organoids as a tool for drug screening. Moreover, mod-
els for ALS study can cover different aspects that are far
more than the above-mentioned models in this review.
In vivo mammalian models, including rodents and
non-human primates, also show a powerful potential for
disease modeling and drug development. Moreover, sys-
tematic organoid tools, particularly “human on a chip,”
which organically combines organoids from different
systems together on a micro-fluid chip, also exhibit a
great advantage in humanized drug evaluation.
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Figure 4 | Analysis methods using organoids as a tool for ALS drug screening.

The workflow chart shows the strategies for drug screening via patient-derived organoids. Combined neurodegenerative phenotypic finger-
prints or multiple rounds of the screening given single phenotypes may be applied for high-throughput screening. Deep analysis, such as single
cell omics studies, will be further used for exploring the mechanisms underlying select candidates from screening.

Patient-derived iPSC biobanking provides the
resource of disease modeling via multiple types of
organoids for studying ALS. The Answer ALS project
initiated from Cedars-Sinai Hospital has collected suf-
ficient resources of ALS patients with iPSCs and var-
ious genotypes and sporadic cases [69]. Combined
with different organoids, co-culturing with immune
cells or embedding the organoids into bio-engineered
hydrogels would provide a tissue-specific microen-
vironment. Further building of the assembloids and
co-culturing different organoids into chips would pro-
vide human-like organ interaction as well as the dis-
tribution of the drugs nearby and distally. Finally, the
tested drug would be further investigated in animal
and human samples (Figure 3). With the development
of high-content image technology, artificial intelli-
gence assisting phenotypic landscape analysis, and
standardization of 3D cultures, organoids may become
the dominant model for drug development and target
screening for ALS.
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