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Abstract

Rectal cancer (RC) is one of the most common cancers worldwide. RC has high morbidity and mortality rates, with 
locally advanced rectal cancer (LARC) accounting for > 30% of cases. Patients with LARC are routinely treated with 
neoadjuvant chemoradiotherapy (nCRT) but treatment outcomes vary greatly. It is crucial to predict and evaluate 
patient response to nCRT as early as possible. Radiomics is a potentially useful and non-invasive tool for clinical 
applications in different types of cancer including colorectal cancer. Radiomics has recently been used to predict 
treatment outcomes and many published studies have demonstrated the efficacy of radiomics. This review will 
discuss the application of radiomics in predicting of LARC response to nCRT and provide new insight for corollary 
studies.
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1. INTRODUCTION

Colorectal cancer is the third most common cancer 
worldwide and has a high mortality rate [1, 2]. 
Approximately 30% of all colorectal cancers are rectal 
cancers (RCs) [3]. Clinical stage T3/4 or N+ RC is referred 
to as locally advanced rectal cancer (LARC) [4]. LARC has 
a high rate of distant recurrence and a low survival rate 
despite the availability of different treatment options. 
Local recurrence or RC, however, is considerably less fre-
quent than distant recurrence [5, 6]. One of the recom-
mended treatments for LARC patients is neoadjuvant 
chemoradiotherapy (nCRT), followed by total mesorec-
tal excision (TME) [6-8]. However, there are significant 
variations in the treatment response, ranging from no 
response (NR) to pathologic complete response (PCR) 
[9], which may be attributed to patient individuality and 
tumor heterogeneity. PCR is reported to occur in 15%–
27% of patients after nCRT [10]. Such patients may ben-
efit from a wait-and-see strategy as opposed to surgery 
to avoid surgical complications [11, 12]. Recent studies 
have also reported no discernible difference between 
patients with PCR who undergo a watch-and-wait 
approach versus surgery with respect to overall survival 

or non-regrowth cancer recurrence [13, 14]. Additionally, 
some patients who do not achieve PCR are still able to 
reduce tumor size and improve after treatment [15, 
16], indicating a good response (GR) with better tumor 
resectability. For patients who have a NR after nCRT it is 
essential to modify treatment plans to avoid side effects 
brought on by ineffective treatment [17, 18].

The pathologic tumor regression grade (TRG) is cur-
rently utilized for assessing the therapeutic response 
to nCRT. There are several grading systems, includ-
ing the Mandard [19], Dworak [20], and AJCC systems 
[21], which are accepted norms. These systems evaluate 
regression grades using specimens from neoadjuvant 
rectal cancer resections. The pathologic assessment is 
thought to be accurate and reliable but cannot be used 
for the early identification of patients who may benefit 
from nCRT because the specimen can only be resected 
and assessed after nCRT and surgery [22].

Radiomics is a high-throughput technology that 
extracts and utilizes quantitative features from med-
ical images to improve the accuracy of diagnosis and 
prognosis in clinical decision-making systems [23-25]. 
In recent years an increasing number of studies have 
used radiomics to build models that have produced 
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encouraging results that predict the LARC response 
after nCRT [26-28]. These models can help with the early 
identification of patients with different therapeutic 
responses (PCR, GR, and NR) and aid in the development 
of individualized care.

This article will introduce the radiomics applications, 
challenges, and potential, such as computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and 
positron emission tomography/computed tomography 
(PET/CT), for preoperative tumor response prediction in 
patients with LARC after nCRT.

2. RADIOMICS

Radiomics can be divided into traditional and deep learn-
ing-based radiomics; the former uses different machine 
learning techniques, while the latter uses deep learning 
techniques. The automatic learning data representation 
is the primary difference between traditional and deep 
learning-based radiomics [29].

2.1 Traditional radiomics
The workflow of traditional radiomics (Figure 1) can be 
summarized as follows [23, 30]: (a) Image collection is 
the collection of complete and high-quality imaging 
data, which are the foundation of a successful radiomics. 
(b) Image segmentation in the region of interest (ROI) 
is obtained by outlining the tumors. There are three 
ways to obtain the ROI (manually, semi-automatically, 
and automatically). The tumor can be delineated along 
continuous slices or on the image layer with the largest 
possible tumor size. (c) Radiomics feature extraction and 
selection within the entire ROI is used to extract hun-
dreds of radiomics features. The radiomics features can 

be divided into five categories (first-order features, tex-
ture features, shape features, transform-based features, 
and model-based features). Then, features are further 
selected to prevent overfitting as a process of feature 
dimension reduction using different machine learning 
techniques, such as least absolute shrinkage and selec-
tion operator (LASSO), principal component analysis 
(PCA), and max-relevance and min-redundancy (mRMR). 
(d) Model construction is performed when selected radi-
omic features are used to develop models that predict 
clinical events, such as the clinical stage of a tumor, how 
well the tumor responds to treatment, and the prog-
nosis. Clinical parameters may also be included in the 
models to improve predictive performance. Popular 
machine learning models, including logistic regression 
(LR), random forest (RF), and support vector machine 
(SVM), along with other different techniques have a 
significant impact on the final prediction performance. 
Therefore, nearly all studies use multiple methods to 
evaluate the performance of developed models, such as 
receiver operating characteristic (ROC) curve, sensitivity, 
specificity, calibration curve, and decision curve analysis 
(DCA). (e) Model application occurs when the developed 
radiomics models are used to assist clinicians in realizing 
the individualized treatment of patients.

2.2 Deep learning-based radiomics
Deep learning represents a class of deep neural network 
structures based on numerous algorithm layers that can 
automatically learn useful features and representations 
from raw data, then perform accurate data analysis [31]. 
In recent years radiomics models based on deep learn-
ing have developed rapidly and have been widely used 
[32, 33].

Figure 1  |  Traditional radiomics workflow.



Review

Radiology 
Science

Radiology Science 2024, Volume 3, Issue 1, p. 1-14      3 
© 2024 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International

Deep learning can be roughly categorized into 
supervised, unsupervised, and semi-supervised learn-
ing depending on whether training dataset labels are 
present [34]. Supervised learning algorithms include 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs). CNNs are widely used deep 
learning networks in medical image analysis. The typ-
ical architecture of CNNs include convolutional, pool-
ing, and fully connected layers. A typical CNN directly 
takes an image as input, extracts features from the 
convolution and pooling layers, and finally maps the 
extracted features into output via fully connected lay-
ers [35]. Unsupervised learning methods mainly include 
autoencoders, generative adversarial networks, and 
restricted Boltzmann machines. This technique makes 
it possible to implement the deep learning process in 
the absence of labels. The common semi-supervised 
learning (SSL) method includes consistency regulariza-
tion-, pseudo-labeling-, and generative model-based 
approaches. The SSL method combines labeled and 
unlabeled data and is applied to scenarios where labe-
led data are scarce. If sufficient unlabeled data are 
provided, the additional information unlabeled data 
carries about prediction could help improve model 
performance.

Compared with traditional radiomics, deep learning 
methods can extract and select supplementary high-
dimensional features through automatic learning 
neural networks, which obtain robustness of the usual 
input data variations [36, 37]. This characteristic enables 
deep learning models to mine image information more 
comprehensively.

3. RADIOMICS IN PREDICTION OF LARC PATIENT 
RESPONSE AFTER NCRT

All relevant studies that used radiomics to predict the 
response of patients with LARC to nCRT and were pub-
lished in the Web of Science database (https://www.
webofscience.com) before August 2022 were searched 
and reviewed. Review articles and conference abstracts 
were excluded. The keywords used for the search 
included rectal cancer, radiomics, neoadjuvant chemora-
diotherapy, response, nCRT, and LARC. Sixty studies were 
identified for analysis, including 46 MRI, 7 CT, 2 PET/CT, 
and 5 multimodal radiomics studies. Various models that 
predict PCR, GR, and NR will be assessed below.

3.1 Radiomics in PCR prediction
PCR is defined as few or no remaining invasive cancer cells 
in the rectal cancer resection specimen and indicates the 
absence of residual tumor after nCRT treatment [9, 20, 
38]. Patients who achieve a PCR have a higher likelihood 
of preserving their sphincters, which would completely 
alter their treatment regimen and improve the quality 
of life [39-41]. It is important from a clinical perspective 
to identify significant factors that predict PCR following 
preoperative nCRT. Table 1 provides an overview of the 

major studies that recommend radiomics for PCR predic-
tion after nCRT.

Several studies are currently investigating radiomics 
models in PCR prediction, the majority of which focus 
on MRI images. MRI is the preferred modality for stag-
ing and evaluating rectal cancer because MRI provides 
excellent spatial resolution and superb soft tissue con-
trast with respect to structural detail of the rectum and 
surrounding structures, such as the lumen, mesorectum, 
and nodes [76-79]. Previous studies commonly extracted 
radiomics features from T2WI images to develop pre-
diction models. Rectal lesions are well-localized by 
T2WI, which facilitates accurate ROI delineation and 
reduces variability caused by manual delineation by 
different radiologists. Li et  al. [46] used pre- and pro-
treated T2WI LARC images to develop the models. Li 
et  al. [46] extracted first-order, shape, texture, and 
transform-based features from these images and the 
model demonstrated its predictive ability with an AUC 
of 0.945 and a sensitivity of 0.857 in the training set 
with cross-validation. The small sample size and absence 
of external validation datasets question whether the 
robust generalization of the model can be guaranteed.

Additional sequences, including DWI, ADC, and 
CE-TIWI, aid in tumor biological process quantifica-
tion, such as microcirculation, vascular permeability, 
and tissue cellularity [76]. Using multiple sequences 
might improve the performance of radiomics models 
even though the findings of existing studies are not in 
agreement. One meta-analysis [80] concluded that MRI 
assessment, which combines T2WI and DWI, performs 
better than T2WI alone in predicting PCR after nCRT in 
LARC patients. However, Shin et al. [56] demonstrated 
that the T2-weighted model outperforms the radiom-
ics model based on T2WI and ADC (AUCT2WI+ADC = 0.82, 
AUCT2WI = 0.82; P > 0.05) with respect to classification 
performance of PCR and non-PCR but did not show the 
advantages of models using multiple sequences.

Additionally, developing a model that incorporates 
radiomics features and clinical parameters may improve 
model performance for prediction and classification 
but also produces results that are currently inconsist-
ent across studies [42, 50]. It is essential to explore the 
predictive effectiveness of clinical variables and mul-
tiparametric radiomics in large-scale and multicenter 
studies. However, existing studies typically lack exten-
sive external validation and prospective studies, which 
are common limitations. A prospective study by Feng 
et al. [61] using three different sequences (T2WI, DWI, 
and CE-T1WI) and 1033 patients yielded promising pre-
dictive results in two external validation sets, which 
ensured the generalizability and reliability of the estab-
lished models.

A CT scan is frequently the preferred examination for 
initial staging of rectal cancer [76]. Despite having less 
soft tissue contrast than MRI, CT has its own advantages 
in conducting radiomics studies due to robust volumet-
ric data, which has high reproducibility across different 
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Table 1  |  Summary of radiomics applications for predicting PCR after nCRT.

Study   Year   Imaging modality  Image 
timing

  Design   No. of 
patients

  Feature type   Developed 
model

  AUC*

Song et al. [42]   2022   T2WI   Pre-nCRT   Retrospective
Multi-center

  674   Radiomics and 
clinical features

  DT
SVM

  0.9891

Boldrini et al. [43]   2022   T2WI   Pre-nCRT   Retrospective
Multi-center

  221   Radiomics and 
clinical features

  LR   0.73

Tang et al. [44]   2022   T2WI   Pre-nCRT   Retrospective
Multi-center

  88   Radiomics and 
clinical features

  GLM   0.831

Chiloiro et al. [45]   2021   T2WI   Pro-nCRT   Retrospective
Single center

  144   Radiomics 
features

  LR   0.84

Li et al. [46]   2021   T2WI   Pre-nCRT
Pro-nCRT

  Retrospective
Single center

  80   Radiomics 
features

  LR
RF
DT
KNN

  0.945

Delli et al. [47]   2021   T2WI   Pre-nCRT   Retrospective
Single center

  72   Radiomics and 
clinical features

  PLS regression   0.793

Pang et al. [48]   2021   T2WI   Pro-nCRT   Retrospective
Multi-center

  275   Radiomics 
features

  SVM   0.924

Cusumano et al. 
[49]

  2021   T2WI   Pre-nCRT   Retrospective
Multi-center

  195   Radiomics 
features

  RF   0.72

Petkovska et al. 
[50]

  2020   T2WI   Pre-nCRT   Retrospective
Single center

  102   Radiomics and 
clinical features

  SVM   0.75

Shaish et al. [51]   2020   T2WI   Pre-nCRT   Retrospective
Multi-center

  132   Radiomics and 
clinical features

  LR   0.8

Antunes et al. [52]  2020   T2WI   Pre-nCRT   Retrospective
Multi-center

  104   Radiomics 
features

  RF   0.699

Li et al. [53]   2019   T2WI   Delta-nCRT   Retrospective
Single center

  131   Radiomics 
features

  LR   0.92

Yi et al. [54]   2019   T2WI   Pre-nCRT   Retrospective
Single center

  134   Radiomics and 
clinical features

  SVM   0.9078

Ferrari et al. [55]   2019   T2WI   Pre-nCRT
Mid-nCRT
Pro-nCRT

  Retrospective
Single center

  55   Radiomics 
features

  RF   0.86

Dinapoli et al. [39]   2018   T2WI   Pre-nCRT   Retrospective
Multi-center

  221   Radiomics and 
clinical features

  LR   0.73

Shin et al. [56]   2022   T2WI
ADC

  Pro-nCRT   Retrospective
Single center

  898   Radiomics 
features

  LR   0.89

Wan et al. [57]   2021   T2WI
DWI

  Delta-nCRT   Retrospective
Single center

  165   Radiomics 
features

  LR   0.91

Zhang et al. [58]   2020   T2WI
DKI

  Pre-nCRT
Pro-nCRT

  Prospective
Single center

  383   Radiomics 
features

  CNN   0.997

Liu et al. [59]   2017   T2WI
DWI

  Pre-nCRT
Pro-nCRT

  Retrospective
Single center

  222   Radiomics and 
clinical features

  SVM   0.9799

Nardone et al. 
[60]

  2022   T2WI
DWI
ADC

  Delta-nCRT   Retrospective
Multi-center

  100   Radiomics 
features

  LR   0.87

Feng et al. [61]   2022   T2WI
DWI
CE-T1WI

  Pre-nCRT   Retrospective 
and prospective
Multi-center

  1033   Radiomics and 
clinical features

  SVM   0.868
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Study   Year   Imaging modality  Image 
timing

  Design   No. of 
patients

  Feature type   Developed 
model

  AUC*

Cheng et al. [62]   2021   T1WI
T2WI
T2WI-FS

  Pre-nCRT   Retrospective
Single center

  193   Radiomics and 
clinical features

  LR   0.959

Lee et al. [63]   2021   MSFI   Pre-nCRT   Retrospective
Single center

  912   Radiomics 
features

  RF   0.837

Shi et al. [64]   2020   T2WI
ADC
CE-T1WI

  Pre-nCRT
Mid-nCRT

  Retrospective
Single center

  51   Radiomics 
features

  ANN
CNN

  0.86

Van Griethuysen 
et al. [65]

  2020   T2WI
DWI
ADC

  Pre-nCRT   Retrospective
Multi-center

  133   Radiomics 
features

  LR   0.73-0.77

Bulens et al. [66]   2019   T2WI
DWI
ADC

  Pre-nCRT
Pro-nCRT

  Retrospective
Multi-center

  125   Radiomics 
features

  LASSO   0.86

Cui et al. [67]   2018   T2WI
ADC
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  186   Radiomics and 
clinical features

  LR   0.948

Nie et al. [68]   2016   T1WI
T2WI
ADC
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  48   Radiomics 
features

  ANN   0.84

Mao et al. [69]   2022   CE-CT   Pre-nCRT   Retrospective
Single center

  216   Radiomics and 
clinical features

  LR   0.926

Zhuang et al. [70]   2021   CE-CT   Pre-nCRT   Retrospective
Single center

  177   Radiomics and 
clinical features

  LR
SVM
GBM

  0.997

Bibault et al. [71]   2018   CE-CT   Pre-nCRT   Retrospective
Multi-center

  95   Radiomics and 
clinical features

  DNN
SVM
LR

  0.72

Yuan et al. [72]   2020   Non-contrast CT   Pre-nCRT   Retrospective
Single center

  91   Radiomics 
features

  LR
RF
SVM

  No AUC; 
accuracy, 
83.90%

Hamerla et al. [73]  2019   Non-contrast CT   Pre-nCRT   Retrospective
Single center

  169   Radiomics 
features

  RF   No AUC; 
accuracy, 87%

Capelli et al. et al. 
[74]

  2022   T2WI
ADC
PET/CT

  Pre-nCRT   Retrospective
Single center

  50   Radiomics 
features

  LR   0.863

Bordron et al. [75]   2022   CE-CT
T2WI
DWI

  Pre-nCRT   Retrospective
Multi-center

  124   Radiomics and 
clinical features

  NNC   0.95

T2WI, T2-weighted imaging; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; DKI, diffusion kurtosis 
imaging; CE-TIWI, contrast-enhanced T1-weighted imaging; T1WI, T1-weighted imaging; T2WI-FS, T2-weighted imaging 
fat suppression; MSFI, multi-sequence fusion images; CE-CT, contrast-enhanced computed tomography; PET/CT, positron 
emission tomography/computed tomography; nCRT, neoadjuvant chemoradiotherapy; DT, decision tree; SVM, support vector 
machine; LR, logistic regression; GLM, generalized linear model; RF, random forest; KNN, K-nearest neighbors; PLS regression, 
partial least square regression; CNN, convolutional neural network; ANN, artificial neural network; LASSO, least absolute 
shrinkage and selection operator; GBM, gradient boosting machine; DNN, deep neural networks; NNC, neural network 
classifier; *The AUC is from the top-preformed model of the training set.

Table 1  |  Continued
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Table 2  |  Summary of radiomics applications for predicting GR after nCRT.

Study   Year   Imaging 
modality

  Image timing   Design   No. of 
patients

  Feature type   Developed 
model

  AUC*

Filitto et al. [83]   2022   T2WI   Pre-nCRT   Retrospective
Single center

  39   Radiomics 
features

  SVC   0.89

Chen et al. [84]   2022   T2WI   Pre-nCRT   Prospective
Single center

  137   Radiomics and 
clinical features

  LR   0.871

Horvat et al. [85]   2022   T2WI   Pre-nCRT   Retrospective
Multi-center

  164   Radiomics 
features

  RF   0.83

Jeon et al. [86]   2020   T2WI   Pre-nCRT   Retrospective
Single center

  135   Radiomics and 
clinical features

  EN   0.785

Yi et al. [54]   2019   T2WI   Pre-nCRT   Retrospective
Single center

  134   Radiomics and 
clinical features

  SVM   0.9017

Tang et al. [87]   2019   DWI   Pre-nCRT
Pro-nCRT

  Retrospective
Single center

  222   Radiomics and 
clinical features

  LR   0.893

Wan et al. [88]   2022   T2WI
DWI

  Pre-nCRT
Pro-nCRT

  Retrospective
Single center

  153   Radiomics and 
clinical features

  LR   0.93

Zhang et al. [89]   2021   T2WI
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  189   Radiomics and 
clinical features

  RF
SVM
KNN
EC

  0.97

Liu et al. [90]   2021   T2WI
CE-T1WI

  Pre-nCRT   Retrospective
Multi-center

  189   Radiomics and 
clinical features

  SVM   0.9371

Chen et al. [91]   2021   ADC
APTw

  Pre-nCRT
Pro-nCRT

  Retrospective
Single center

  53   Radiomics 
features

  LR   0.895

Zhang et al. [58]   2020   T2WI
DKI

  Pre-nCRT
Pro-nCRT

  Prospective
Single center

  383   Radiomics 
features

  CNN   0.99

Wang et al. [92]   2022   T2WI
DWI
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  207   Radiomics 
features

  DT
RF
SVM
LR
Adaboost

  0.923

Wang et al. [93]   2020   T2WI
ADC
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  183   Radiomics and 
clinical features

  RF
LR

  0.923

Cheng et al. [62]   2021   T1WI
T2WI
T2WI-FS

  Pre-nCRT   Retrospective
Single center

  193   Radiomics and 
clinical features

  LR   0.918

Shi et al. [64]   2020   T2WI
ADC
CE-T1WI

  Pre-nCRT
Mid-nCRT

  Retrospective
Single center

  51   Radiomics 
features

  ANN
CNN

  0.93

Van Griethuysen 
et al. [65]

  2020   T2WI
DWI
ADC

  Pre-nCRT   Retrospective
Multi-center

  133   Radiomics 
features

  LR   0.69-0.79

Nie et al. [68]   2016   T1WI
T2WI
DWI
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  48   Radiomics 
features

  ANN   0.89
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patients [81]. Indeed, few studies have used CT radiomics 
models to predict PCR; however, the models developed 
using contrast-enhanced CT (CE-CT) or non-enhanced 
CT (NE-CT) achieved good results in these studies. The 
clinical-radiomics model developed by Zhuang et  al. 
[70] included radiomics features extracted from pre-
treatment CE-CT images as well as clinical parameters, 
such as carcinoembryonic antigen (CEA), mesorectal 
fasciae (MRF), and tumor thickness. The model had an 
AUC of 0.997 and an accuracy of 97.3%. Yuan et al. [72] 
developed a predictive model using a variety of machine 
learning techniques with NE-CT scans that were acquired 
before treatment. The top model was developed using 
an RF classifier, with an accuracy of 83.90% in the inde-
pendent validation cohort, suggesting the potential 
predictive value of NE-CT radiomics. NE-CT images are 
more accessible than CE-CT and MR images, which low-
ers the clinical application restriction for radiomics.

Multimodal radiomics has been used in some studies 
to develop prediction models by extracting and select-
ing features from various images, such as CT, MRI, and 
PET. Capelli et  al. [74] developed a logistic regression 
model that combines T2WI, ADC images, and PET-CT 
images. This model successfully separated patients 
with and without PCR (AUC = 0.863); however, in the 
absence of external validation, only a small dataset 
was used to test model repeatability and generalizabil-
ity. In another study [75], a PCR prediction model was 
developed by combining clinical signatures and radiom-
ics features from multimodality images (CE-CT, T2WI, 
and DWI) and multicenter datasets. The final model 
delivered satisfactory results after using ComBat and 
synthetic minority over-sampling technique (SMOTE) 
approaches to harmonize inter-institution heterogene-
ity and imbalanced data. It is intriguing that none of the 
radiomic features extracted from CE-CT were retained 

after features selection, which failed to demonstrate 
the benefits of multimodality images. The value of a 
CT-based radiomics model was investigated by Zhuang 
et al. [70]. According to Zhuang et al. [70], a multimodal 
radiomics model that combines a CT- and MRI-based 
rad-score performs superior to a model that uses only 
CT or MRI. There is currently a lack of multimodal imag-
ing research and the findings from various studies are 
quite inconsistent, so additional research is needed to 
determine the potential predictive value of multimodal 
radiomics.

3.2 Radiomics in GR prediction
GR is the presence of cancer cells that have not com-
pletely disappeared along with fibrosis in neoadjuvant 
rectal cancer resection specimens [38]. For patients who 
achieve a GR, the likelihood of local and distant metas-
tases is decreased [82]. Specifically, tumors are staged 
less severely in 50%–60% of LARC patients after receiv-
ing nCRT [5]. Table 2 provides a summary of the major 
studies that support radiomics for the prediction of a GR 
after nCRT.

Zhang et  al. [89] developed a nomogram that inte-
grates CE-T1WI, T2WI images, and clinical signatures, 
such as CEA and tumor diameter. The nomogram 
demonstrated accurate prediction of a GR and non-GR 
in both training and validation cohorts with AUC val-
ues of 0.970 and 0.949, respectively. In another study 
conducted in a single center, Jeon et al. [86] developed 
a clinical-radiomics model based on T2WI images and 
blood biomarkers with an AUC of 0.785, which effec-
tively distinguished between patients who did and did 
not achieve a GR. Additionally, according to Jeon et al. 
[86], both blood biomarkers and radiomics features pro-
vide useful information for prediction, with the latter 
having a higher relative predictive power.

Study   Year   Imaging 
modality

  Image timing   Design   No. of 
patients

  Feature type   Developed 
model

  AUC*

Bonomo et al. 
[94]

  2022   Simulation CT   Pre-nCRT   Retrospective
Multi-center

  201   Radiomics 
features

  RF
LR
SVM
DT
KNN
GNB

  0.65

Wu et al. [95]   2021   PET/CT   Pre-nCRT   Retrospective
Single center

  236   Radiomics 
features

  SVM   0.96

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; CE-TIWI, contrast-enhanced T1-weighted imaging; ADC, 
apparent diffusion coefficient; APTw, amide proton weighted; DKI, diffusion kurtosis imaging; T1WI, T1-weighted imaging; 
T2WI-FS, T2-weighted imaging fat suppression; PET/CT, positron emission tomography/computed tomography; nCRT, 
neoadjuvant chemoradiotherapy; SVC, support vector classifier; LR, logistic regression; RF, random forest; EN, elastic net; 
SVM, support vector machine; KNN, K-nearest neighbors; EC, ensemble classifier (including RF, SVM, and KNN); CNN, 
convolutional neural network; DT, decision tree; ANN, artificial neural network; GNB, Gaussian naïve-Bayes; *The AUC is from 
the top-preformed model of the training set.

Table 2  |  Continued
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3.3 Radiomics in NR prediction
An NR is the absence of regressive alterations in neo-
adjuvant rectal cancer resection specimens [38]. Among 
patients with an NR, nCRT is ineffective and patients 
should be more aware of the potential side effects of 
receiving nCRT, such as sexual, urinary, and intestinal 
dysfunction [96-98]. As a result, identifying potential 
patients with an NR before receiving nCRT can help 

modify the treatment plan to lessen any side effects 
from ineffective therapy. A summary of the major stud-
ies supporting radiomics for the prediction of an NR 
after nCRT is presented in Table 3.

Zhang et al. [105] developed an LR model using CE-CT 
features and clinical biomarkers, which demonstrated 
satisfactory performance in predicting an NR with an 
AUC of 0.924 and a sensitivity of 88.00%. In another 

Table 3  |  Summary of radiomics applications for predicting NR after nCRT.

Study   Year   Imaging 
modality

  Image 
timing

  Design   No. of 
patients

  Feature type   Developed 
model

  AUC*

Shayesteh et al. [99]   2021   T2WI   Pre-nCRT
Pro-nCRT
Delta-nCRT

  Retrospective
Multi-center

  53   Radiomics 
features

  KNN
NB
RF
XGB

  0.96

Coppola et al. [100]   2021   T2WI   Pre-nCRT   Retrospective
Single center

  40   Radiomics 
features

  ROC curve   0.9

Petresc et al. [101]   2020   T2WI   Pre-nCRT   Retrospective
Single center

  67   Radiomics and 
clinical features

  LR   0.97

Ferrari et al. [55]   2019   T2WI   Pre-nCRT
Mid-nCRT
Pro-nCRT

  Retrospective
Single center

  55   Radiomics 
features

  RF   0.83

Su et al. [102]   2022   T2WI
DWI

  Pre-nCRT   Retrospective
Single center

  62   Radiomics and 
clinical features

  LR   0.979

Defeudis et al. [103]   2022   T2WI
ADC

  Pre-nCRT   Retrospective
Multi-center

  95   Radiomics 
features

  SVM
BM
EL
LR

  0.9

Zhou et al. [104]   2019   T1WI
T2WI
ADC
CE-T1WI

  Pre-nCRT   Retrospective
Single center

  425   Radiomics and 
clinical features

  LR   0.822

Zhang et al. [105]   2022   CE-CT   Pre-nCRT   Retrospective
Single center

  215   Radiomics and 
clinical features

  EL
LR

  0.924

Karahan et al. [106]   2020   PET/CT   Pre-nCRT   Retrospective
Single center

  110   Radiomics and 
clinical features

  LR   0.838

Shahzadi et al. [107]   2022   T2WI
Non-contrast CT

  Pre-nCRT   Retrospective
Multi-center

  190   Radiomics and 
clinical features

  LR   0.72

Li et al. [108]   2020   T2WI
ADC
CE-T1WI
CE-CT

  Pre-nCRT   Retrospective
Single center

  118   Radiomics and 
clinical features

  LR   0.925

Giannini et al. [109]   2019   T2WI
ADC
PET/CT

  Pre-nCRT   Retrospective
Single center

  52   Radiomics 
features

  LR   0.86

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; T1WI, T1-weighted 
imaging; CE-TIWI, contrast-enhanced T1-weighted imaging; CE-CT, contrast-enhanced computed tomography; PET/CT, 
positron emission tomography/computed tomography; nCRT, neoadjuvant chemoradiotherapy; KNN, K-nearest neighbors; 
NB, naïve Bayes; RF, random forest; XGB, extreme gradient boosting; ROC curve, receiver operating characteristic curve; LR, 
logistic regression; SVM, support vector machine; BM, Bayesian model; EL, ensemble learning; *The AUC is from the top-
preformed model of the training set.
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multicenter study, Shayesteh et al. [99] combined T2WI 
features before and after nCRT and delta-radiomics 
features to develop NR prediction models with multi-
ple classifiers; the top-performing model had an AUC of 
0.96 and an accuracy of 0.93. Shayesteh et al. [99] also 
reported that delta-radiomics could improve the accu-
racy of the predictive model. Delta-radiomics may serve 
as an indirect marker of the subtle alterations induced 
by therapy, which could be essential knowledge for pro-
jecting the course of treatment. Most current studies 
only focus on pre-treatment images and ignore post- 
and delta-treatment images, which may eliminate some 
essential parameters and subsequently reduce the pre-
dictive power.

In a multimodal radiomics study [109], radiomics fea-
tures were extracted from PET and MRI, including T2WI 
and ADC, for the development of PET- and MRI-based 
models, and MRI-PET combined models. The MRI-PET 
combined model achieved the best predictive efficacy 
with an AUC of 0.86, which demonstrated the benefit of 
multimodal radiomics.

4. CHALLENGES AND PROSPECTS

Radiomics is a useful tool that has demonstrated great 
promise in predicting therapeutic responses. A variety 
of excellent models have been developed using radi-
omics in predicting the response to treatment in LARC 
patients after nCRT; however, some flaws persist.

First, most studies are retrospective with small sample 
sizes and lack independent external validation, mak-
ing it impossible to guarantee the generalizability of 
the developed models. Shahzadi et  al. [107] designed 
an external validation study by selecting 11 published 
radiomics studies and applying the radiomics models to 
a multicenter cohort. Only one study performed well 
from this independent external dataset, indicating that 
radiomics studies generally lack good reproducibility 
and repeatability. Therefore, it is imperative to carry 
out additional extensive, multicenter, and prospective 
studies. Second, various centers have different machine 
settings and imaging acquisition protocols, which might 
affect the capacity of a model for generalization. Studies 
have shown that each step in the radiomics workflow, 
such as individual differences, scanners, acquisition pro-
tocols, and reconstruction settings, directly affect the 
reproducibility and accuracy of the developed radiom-
ics models [110, 111]. Regular quality assurance checks 
and maintenance of the scanners can reduce the impact 
of differences in scanners and acquisition parameters in 
radiomics studies. In addition, eliminating radiomic fea-
tures that are sensitive and unstable to different influ-
encing factors can improve radiomic model robustness; 
however, there is also the possibility of losing impor-
tant information. Third, manual delineation of the 
ROI by radiologists is commonly used in many studies. 
Due to individual preferences and diagnostic experi-
ence, the ROI delineation of the same image may vary 

significantly from radiologist-to-radiologist. In using 
automatic or semi-automatic ROI segmentation tech-
niques, interobserver subjectivity can be somewhat mit-
igated. Fourth, the reproducibility of radiomics models 
may be hampered by unclear descriptions of the radi-
omics workflow, such as ambiguous criteria for tumor 
delineation and unclear selection of the final radiomics 
features. This issue might be resolved by reporting stud-
ies in accordance with the TRIPOD statement [112].

At present, the interpretability of radiomic features 
and models remains a challenge, which results in reser-
vations towards the use of radiomics in clinical applica-
tions [24, 113]. In contrast, radiomics studies have used 
different evaluation metrics to assess the performance 
of developed models, such as discrimination statistics of 
the models (ROC curve and AUC), calibration statistics 
(calibration curve), and clinical utility (decision curve), 
which make it difficult to compare the performance 
between different models. Therefore, improvement in 
radiomic model explanation and the establishment of 
consistent standards for model evaluation are urgently 
needed for the development of radiomics. It is worth 
noting that combining radiomics with pathomics and 
genomics may improve the accuracy of the model and 
is also in need of further development for radiomics in 
the future.

5. CONCLUSION

Radiomics, as an emerging technique, has provided 
new perspectives and practical techniques to predict 
the response of patients with LARC to nCRT. However, 
before radiomics can be formally applied in clinical set-
tings, radiomics must still overcome several obstacles. 
To confirm the true clinical value of radiomics, large-
scale, multicenter, and prospective radiomics studies are 
required.
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