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The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and
chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered
disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations
are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the
expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as
redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving
oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative
stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on
potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD), a pandemic dis-
ease, is predicted to be the most common indication for liver
transplantation in the next decade. NAFLD refers to the
state when hepatic lipid accounts for more than 5% of the
liver weight without excessive alcohol consumption or other
known causes of liver diseases (viruses, drugs, toxins, auto-
immune disease, etc.). Regarding the clinical course, the full
spectrum of NAFLD includes simple steatosis, steatohepati-
tis, liver cirrhosis, and hepatocellular carcinoma (HCC).
Recently, based on the finding of concomitant liver disease
and the heterogeneous pathology, a new definition of meta-
bolic dysfunction-associated fatty liver disease (MAFLD) has
recently been put forward [1].

According to recent data, the overall global prevalence of
NAFLD is estimated to be 24% among adults. The highest
prevalence was reported to be 31.79% in the Middle East,
followed by 30.45% in South America, 27.37% in Asia,
24.13% in North America, 23.71% in Europe, and 13.48%

in Africa [2]. From 2012 to 2017, cirrhosis due to NAFLD
and NAFLD-related death increased globally, especially in
Australia, Latin America, and Asia [3]. NAFLD has replaced
viral hepatitis to be the most common liver disease in China.
The prevalence of NAFLD is higher in younger generations
and lean people, in addition to the elderly population [4,
5]. Importantly, although there are no typical symptoms or
signs of NAFLD, its potential harm to the liver and extrahe-
patic complications in cardiovascular and other systems can-
not be neglected. NAFLD may start with the insulin
resistance and dysfunction of adipocytes, providing a patho-
genic milieu rich in lipid metabolites, and then, proinflam-
matory cytokines may be released into the peripheral
circulation, leading to mitochondrial dysfunction, activation
of apoptosis, and a chronic inflammatory state. The whole
process includes crosstalk among the liver, muscles, adipose
tissues, and a systemic disturbance of cytokines and hor-
mones, which eventually causes systemic effects such as met-
abolic syndrome (MetS), type 2 diabetes mellitus (T2DM),
cardiovascular disease (CVD), and hypertension. Due to
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inadequate awareness, unavailability of diagnostic tools, and
a lack of effective medication, the vast majority of potential
NAFLD patients are undiagnosed and untreated [6].

According to the classical “two-hit” theory, NAFLD is
characterized by two steps of liver injury: intrahepatic lipid
accumulation (hepatic steatosis) and inflammatory progres-
sion to nonalcoholic steatohepatitis (NASH) [7]. This classi-
cal hypothesis has been modified to indicate that NAFLD
may be a consequence of parallel “multihits” [8]. Lipotoxi-
city primes the liver for injury arising from “multiple and
parallel hits” (oxidative stress and the activation of proin-
flammatory and fibrogenic pathways) [9]. Oxidative stress
leads to cellular dysfunction and is considered a causative
factor in the pathophysiology of NAFLD. When the genera-
tion of reactive oxygen species (ROS) exceeds the capacity of
antioxidants to detoxify them, these highly toxic molecules
induce damage to the normal lipid metabolism [10]. More-
over, increased ROS levels are responsible for insulin resis-
tance in numerous settings [11], which indicates that
redox-dependent molecular alterations also play an impor-
tant role in the early stage of NAFLD.

Considering the vital role played by several nuclear
receptors (NRs) and transcription factors in the develop-
ment of NAFLD [12], this review focuses on the role played
by ROS in the regulation of the transcriptional network that
modulates hepatic lipid metabolism, suggesting a redox-
centered pathogenic hypothesis. Moreover, the impact of
endogenous hormones as environmental factors on NR
expression in the development of NAFLD is discussed.

2. ROS Production and Oxidative Stress in the
Development of NAFLD

The liver serves as the distribution center of nutrients,
smoothing out blood glucose and lipid fluctuations between
intermittent food intake. The content of triglycerides in the
liver varies with the metabolic states. During fasting, fatty
acids released from adipose tissues oxidize in hepatic mito-
chondria to generate energy. On the other hand, when fatty
acids and chylomicrons are redundant in the circulation after
a meal, the liver packages them in the form of lipid droplets for
further use. As shown in Figure 1, increased uptake of free
fatty acids and lipogenesis, defects in fatty acids oxidation,
and decreased lipids export contribute to the impaired hepatic
lipid metabolism. It is worth mentioning that ROS appears
necessary in those processes that lead to the dysfunction of
lipid metabolism and the development of NAFLD. The imbal-
ance between ROS generation and antioxidant defenses causes
oxidative stress and tissue damage [13]. Clinically, increased
mitochondrial levels of ROS and mitochondrial dysfunction
are observed in liver tissues from patients with NAFLD [14,
15]. The results from mouse models also indicate that
impaired mitochondrial dynamics leads to metabolic abnor-
malities such as NASH phenotypes [16]. This section outlines
the knowledge on ROS generation and highlights the role of
oxidative stress in the NAFLD pathology.

2.1. Mechanism of Excessive ROS Production in NAFLD.
ROS or oxidants can be classified as free radicals and major

physiologically relevant ROS, including superoxide anions
(O2

•−), hydroxyl radicals (•OH), and hydrogen peroxide
(H2O2). The imbalance between oxidants and antioxidants
induces the oxidative stress [17]. Under conditions of nor-
mal antioxidant homeostasis, cells can effectively remove
physiological ROS through protection systems consisting of
enzymatic and nonenzymatic components. Some of the
most relevant enzymes that detoxify ROS are superoxide dis-
mutases (SODs), catalase (CAT), and glutathione peroxidase
and reductase (GSH-Px) [18]. The nonenzymatic compo-
nents including some small molecules such as vitamin
A/C/E and glutathione act as cell structures or electron
receptors against the damage from free radicals [19].

Mitochondria have been considered a major site of ROS
production, where molecular O2 is reduced to O2

•− through
complexes I and III by nicotinamide adenine dinucleotide/-
flavin adenine dinucleotide (NADH/FADH2). Monoamine
oxidase, α-ketoglutarate dehydrogenase, and glycerol phos-
phatase dehydrogenase further contribute to generating O2

•−

[20]. Mitochondrial dysfunction seems to be a commonmedi-
ator triggering oxidative stress. Under conditions of normal
mitochondrial homeostasis, a cell can eliminate physiological
ROS and make metabolic adaptations. In NAFLD, however,
increased mitochondrial fatty acid oxidation and tricarboxylic
acid (TCA) cycle activity persistently supply reducing equiva-
lents to the electron transport chain (ETC) [21]. This pro-
longed dysfunction in the respiratory complex promotes the
generation of superoxide anion (O2

•-). Notably, the uncou-
pling between β-oxidation, the TCA cycle, and ETC fre-
quently results in inefficient lipid metabolism and ROS
overproduction in the liver [22, 23]. In addition, the capability
of mitochondria to reduce ROS levels is reduced in NAFLD, as
indicated by decreased GSH metabolism [24], Mn superoxide
dismutase (MnSOD) activity [25], and catalase activity [26].
Hence, either an increased production of prooxidant products
or the dysfunction of the antioxidant system may induce oxi-
dative stress. Accompanied by ROS accumulation, free fatty
acid-induced hepatic lipotoxicity also promotesmitochondrial
outer membrane permeabilization (MOMP) and alters the
release of mitochondrial proteins and mitochondrial bioener-
getics in NAFLD [27, 28].

Additionally, due to lack of histone protection, mito-
chondrial DNA (mtDNA) is highly sensitive to ROS. It is
prone to damage and mutation, resulting in respiratory
chain defects and decreased mitochondrial biogenesis under
oxidative stress [29]. Oxidative damage to nuclear DNA
impairs mitochondrial function and hinders the transcrip-
tion of nuclear-encoded mitochondrial genes. For example,
nuclear factor erythroid 2-related factor 2 (Nrf2), an essen-
tial modulator of antioxidant signaling that serves as a pri-
mary cellular defense against the cytotoxic effects of
oxidative stress, has been reported to be decreased in
NAFLD [30]. In the process of hepatic metabolism, specific
polyunsaturated fatty acids (PUFAs) trigger lipid peroxida-
tion, accompanied by increases in highly reactive aldehyde
products such as malondialdehyde (MDA) and 4-hydroxy-
2-non-enal (4-HNE) [31]. Thus, these mechanisms may
eventually lead to a harmful cycle of mitochondrial damage
and mitochondria-derived oxygen radicals.
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In addition, the endoplasmic reticulum (ER) and perox-
isomes are able to produce various kinds of ROS in liver tis-
sues. Highly reactive molecules such as •OH, perhydroxyl
radical (HO2•), H2O2, and

1O2 are produced from the reac-
tion between O2•− and other molecules [32]. ER stress in the
development of steatosis and subsequent generation of ROS
aggravate the liver injury and promote the progression of
NAFLD [33]. Moreover, excess of long-chain fatty acids
(LCFAs) promotes the generation of H2O2 through increas-
ing peroxisomal β-oxidation [34]. Similarly, very long-chain
fatty acids (VLCFAs) enhance ROS production by cyto-
chromes P4504A- and P4502E1-mediated microsomal oxi-
dation [35]. In addition, several enzymes in the plasma
membrane and cytosol are the producer of free radicals.
For example, cytochrome P450 (CYP) enzymes play vital
roles in the metabolism of drugs and other xenobiotics and
regulate the generation of ROS and bioactivated intermedi-
ates [36]. Nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX), xanthine oxidase, cyclooxy-
genases, and lipoxygenases also act as important regulators
in the reactions of xenobiotic metabolism [37].

It has been proposed that the gut microbiota acts as a
vital role in developing NAFLD [38]. In patients with
NAFLD, the abundance and composition of the microbiome
are altered (dysbiosis) [39], accompanied by enhanced intes-
tinal permeability [40]. As a result, bacterial lipopolysaccha-

rides (LPS) are derived from the overgrowth of Gram-
negative bacteria. Evidence has shown that the serum level
of LPS increases 38–40% in patients with NAFLD compared
with that in controls [41]. High liver exposure to LPS
induces the excessive release of ROS due to impaired antiox-
idant system [42]. Moreover, in patients with NAFLD,
endogenous ethanol also caused by some microbial species
increases ROS formation in hepatic stellate cells (HSCs)
and stimulates intestinal bacteria to release LPS [38]. Besides
the role in increasing hepatic inflammation and oxidation,
LPS acts on Kupffer cells (KCs) to upregulate cytokine
receptors such as tumor necrosis factor-α (TNF-α) receptor,
which may also be involved in ROS overgeneration [43].

Overall, diverse sources of ROS and redox regulation
may explain the pathogenesis of various liver diseases. In
NAFLD, the increased formation of reducing equivalents
results in an overflow of electrons from the mitochondrial
respiratory chain, which induces higher ROS generation.
ROS overproduction suppresses the capacity of antioxidant
defense systems and causes further oxidative damage
(Figure 2).

2.2. Implication of ROS and Oxidative Stress in the
Development of NAFLD. Oxidative stress and imbalance of
the redox state are distinctive characteristics of NAFLD
[44]. Under physiological and pathological conditions,
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Figure 1: Hepatic lipid metabolism. Increased uptake of circulating free fatty acids (FFA) and de novo lipogenesis, impaired oxidation of
fatty acids in league with decreased lipids export in the liver all contribute to the development of fatty liver.
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redox-dependent molecular alterations participate in the
development of steatosis, providing new insights into the
role of ROS as core regulators of liver lipid metabolism. Fur-
thermore, increased ROS output and oxidative stress are
identified as underlying mechanisms of insulin resistance,
profibrogenic processes, and chronic inflammatory
responses in NAFLD [10, 45]. This section outlines the
recent knowledge on the regulators of ROS and oxidative
stress in lipid metabolism and NAFLD progression.

2.2.1. Redox Regulation of Crucial Enzyme Activity in Lipid
Metabolism. The increased lipid uptake and synthesis and
impaired lipid oxidation and removal lead to hepatic steato-
sis. The redox status modulates the activity of some key
enzymes involved in hepatic lipid metabolism [10].

First, de novo lipogenesis (DNL) is activated when abun-
dant glucose and insulin are in the plasma, usually in the
postprandial state. However, under the selective insulin-
resistant state in NAFLD, gluconeogenesis cannot be sup-
pressed while DNL is promoted [46]. The human isotope-
labeling studies showed that DNL is significantly elevated
in patients with NAFLD, and the portion DNL accounts
for intrahepatic triglyceride-palmitate increases as the sever-
ity of insulin resistance increases, about 11% in the lean
group, 19% in the obese group, and 38% in the obese-
NAFLD group [47, 48]. Saturated fatty acids (SFA) are the
first product of DNL and can promote redox imbalance
and the formation of reactive oxygen intermediates. In
human HepG2 cells, SFAs were reported to increase ROS
production by upregulating the expression levels of several
components of the NADPH oxidase, including NOX3,
NOX4, and p22phox [49]. Moreover, stearoyl-CoA desatur-
ase -1 (SCD-1) can improve the toxic effects of SFAs [50].
While the downregulation of SCD-1 enhances delivery of
FAs to mitochondria and oxidation in the fed state [51].
Once fatty acids reach the liver, they are bound to fatty
acid-binding protein-1 (FABP-1) and then transport to the
liver with the help of cell surface receptors such as fatty acid
transport protein (FATP) family members and fatty acid
translocase (CD36). In palmitic acid- (PA-) treated hepato-

cytes, H2O2 pretreatment abolished the effects of CD36
knockdown in attenuated oxidative stress [52]. Third, fatty
acid oxidation usually takes place in mitochondria and per-
oxisome of energy-requiring tissues such as the liver and
skeletal muscles. Hepatic β-oxidation mainly provides the
fuel for hepatic basal energy requirements [53]. Liver-
specific peroxisome proliferator-activated receptor α
(PPARα) knockout mice with impaired β-oxidation sponta-
neously are prone to NAFLD in aging even under a standard
diet [54]. Notably, increased lipid oxidation and the TCA
cycle are increased in NAFLD, indicating that hepatocytes
enhance oxidation when counteracting lipid overload [55].
β-Oxidation is the primary producer to generate reducing
equivalents (NADH or FADH2). The excess reducing equiv-
alents cannot be resolved in the mitochondrial respiratory
chain, resulting in higher ROS generation. Peroxisomal β-
oxidation and microsomal oxidation also contribute to the
redox unbalance in NAFLD [56]. These changes increase
hepatic reduction degree, as indicated by alterations in the
NADH/NAD+ ratio [57]. The increased ratio suppressed
the activities of acyl-CoA dehydrogenase (LCAD) and β-
hydroxyacyl-CoA dehydrogenase (β-HAD), which are
involved in the pathway of fatty acid oxidation [58, 59].
Lastly, the export of lipids is another way for the liver to
reduce lipid accumulation. Lipoproteins, such as chylomi-
crons (CM) and very-low-density lipoproteins (VLDL), con-
tain core lipids like triglycerides and cholesterol esters.
Hepatic endoplasmic reticulum synthesizes VLDL with apo-
lipoprotein B (ApoB) and triglyceride with the help of
microsomal triglyceride transfer protein (MTTP). This pro-
cess enables the liver to alleviate endogenous triglycerides by
secreting water-soluble VLDL into circulation [60]. How-
ever, a marked decline in VLDL secretion is observed in
the insulin-resistant state of NAFLD. The unbalance
between lipid droplets production with VLDL secretion
leads to hepatic steatosis [61, 62].

In addition, the role of cholesterol metabolism in
NAFLD is also an attractive topic. Cholesterol can further
induce the alteration of cellular redox status and associates
with the progression of liver damage [50]. Previous studies
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Figure 2: Main sources of ROS during the development of the fatty liver. In NAFLD, lipid oxidation induces the formation of reducing
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reported that 3-hydroxy-3-methylglutaryl-CoA reductase
(HMG-CR), the rate-limiting enzyme in the cholesterol syn-
thesis pathway, may be modulated by its thiol redox status
and induced by hepatic ROS [63, 64]. More investigations
are needed to elucidate the role of ROS in cholesterol
metabolism.

2.2.2. Oxidative Stress Involvement in NAFLD Progression.
Simple steatosis may progress to NASH with apparent
inflammation, advanced fibrosis, and cirrhosis [8]. In 1965,
Comporti first reported that increased lipid peroxidation
levels in carbon tetrachloride- (CCl4-) treated rats and
described the production of ROS in hepatic injury. Then,
in 1972, slater and colleagues hypothesized that ROS plays
a causative role in the progression of liver damage [65]. In
the context of NAFLD, impaired redox status and ROS accu-
mulation are the origins of hepatic maladaptive responses to
fat accumulation, thereby leading to hepatic metabolic
impairment and NASH progression [10]. Moreover, oxida-
tive stress-related oxidized phospholipids accumulate and
induce mitochondrial dysfunction in hepatocytes [66]. The
mitochondrial GSH depletion is also induced by cholesterol
accumulation in the progression of NAFL to NASH [67].
Mitochondrial DNA (mtDNA), released from fatty liver-
damaged hepatocytes, causes liver inflammation by toll-like
receptor 9 (TRL9) activation [68]. Koliaki et al. reported that
the mtDNA levels are decreased in patients with more
advanced forms of NAFLD [69]. Thus, increased oxidative
stress triggers hepatic stress pathways, and maintaining cel-
lular redox homeostasis is a promising strategy for NASH
therapy [70].

The hepatocytes are the primary cells affected by
lipotoxicity-induced oxidative stress in the liver. However,
nonparenchymal cells (NPCs), including HSCs, liver sinu-
soidal endothelial cells (LSECs), and KCs, are also involved
in oxidative stress-induced liver damage [71]. As we know,
HSCs are responsible for extracellular matrix (ECM) deposi-
tion in the development of liver fibrosis. Cytochrome
P4502E1- (CYP2E1-) induced free radicals can activate the
transdifferentiating of HSCs. On the contrary, antioxidants
could prevent the effect of ROS on increasing collagen pro-
duction [72]. The NOX1- and NOX2- deficient mice exhib-
ited improved ROS production and hepatic fibrosis in CCl4
or bile duct ligation-treated models [73]. In addition, mice
deficient in antioxidant cytoglobin (Cygb) are susceptible
to oxidative stress, inflammation, and fibrosis under diethyl-
nitrosamine (DEN) or a choline-deficient diet [74]. Specifi-
cally, LSECs govern the regenerative process initiation, but
oxidative stress damages the typical phenotype of LSECs.
Aberrant LSEC activation in chronic liver injury induces
fibrosis [75, 76]. In addition, oxidative stress increases M1
polarization and promotes proinflammatory cytokines in
Kupffer cells [77]. Therefore, it is intriguing to investigate
oxidative stress-targeting, possibly even cell type-directed
strategies for treating NASH progression.

During liver injury, oxidative stress induces the activation
of redox-sensitive transcription factors, such as nuclear factor-
κB (NF-κB) and activator protein-1 (AP-1), leading to an
inflammatory response and the activation of cell death path-

ways in hepatocytes. In NAFLD, ROS regulates NF-kB activa-
tion by increasing the expression of proinflammatory cytokine
TNF-α [78]. NF-κB, a significant regulator of the inflamma-
tory response, plays a vital role in regulating the transcription
of genes involved in the establishment of the immune and
inflammatory responses [79]. Reduced NF-κB activity by anti-
oxidants has been proposed as a therapeutic target in NASH
due to its anti-inflammatory properties [80, 81]. Moreover,
in the development of steatohepatitis, E2-related factor 2
(Nrf2) acts as a significant regulator of the redox balance and
mediates anti-inflammatory and antiapoptotic effects of anti-
oxidants [82]. The release and activation of Nrf2 increase the
expression levels of the antioxidant genes in hepatocytes with
ROS accumulation [83], while Nrf2-knockout mice treated
with methionine- and choline-deficient (MCD) diet show
exacerbation of liver inflammation and steatosis compared to
control mice [84]. Evidence has shown that the dysfunctional
Nrf2 in patients with NASH is tightly involved in the grade
of inflammation, but not steatosis [85]. In addition, upregu-
lated Nrf2 in senescent hepatocytes is related to the activation
of cocultured HSCs. The Nrf2 agonist sulforaphane remark-
ably inhibits the effect of lipid accumulation-induced hepato-
cyte senescence on activation of HSCs by the Nrf2-
antioxidant response element (ARE) pathway [86]. A new
study reported that the dysfunction of redox homeostasis
induces hepatocytes to be highly susceptible to proteasome-
associated metabolic stress. In comparison, insufficient
PPARγ/Nrf2-driven antioxidative response is the main factor
[87]. Moreover, the interaction between NF-κB and Nrf2 is
also a noticeable target for NAFLD progression. Evidence
showed that NF-κB p65 subunit represses the Nrf2/ARE sys-
tem at transcriptional level by competitive interaction with
the binding domain of CREB-binding protein (CBP) [88].
NF-κB dissociates from inhibitor kappa B (IκB) and then
translocates to the nucleus. Nrf2 negatively controls the NF-
κB signaling pathway by multiple mechanisms, including inhi-
biting nuclear translocation of NF-κB and blocking the degra-
dation of IκB-α [89].

Overall, oxidative stress plays a central role in the path-
ogenesis of various liver diseases. Modulation of the antiox-
idant response emerges as a promising direction to prevent
NAFLD progression. Moreover, monitoring oxidative
markers can recognize liver dysfunction and observe the
response to pharmacological therapies.

3. Transcriptional Regulation of Lipid
Metabolism by NRs in NAFLD

Metabolic homeostasis is regulated through a network of
programs, involving transcription factors, phosphatases,
kinases, and NRs. NRs function directly on the genome to
control gene transcription, often in response to small lipo-
philic ligands. Our group recently reported that nuclear
receptor subfamily 2, group F, member 6 (NR2F6), acts as
a causal factor in the development of NAFLD by binding
directly to the CD36 promoter region in hepatocytes [90].
Moreover, several endogenous and exogenous lipids, includ-
ing FAs and cholesterol, can serve as physiological NR
ligands, and NRs also regulate the metabolism/catabolism
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of their respective ligands [91]. Notably, the cellular redox
state may affect NR ligands or induce conformational
changes in NRs to alter their DNA binding or nuclear
import [91, 92]. The regulatory roles of some metabolic-
related NRs in the development of NAFLD are specifically
addressed below (Figure 3).

3.1. Introduction of NRs. NRs can be classified into four clas-
ses according to their domains and ligand: class I steroid
receptors (e.g., glucocorticoid receptor (GR), androgen
receptor (AR), estrogen receptor α (ERα), and vitamin D
receptor (VDR)), class II retinoid X receptor (RXR) hetero-
dimers (e.g., retinoic acid receptor (RAR), PPARs, liver-X-
receptor (LXR), and farnesoid-X-receptor (FXR)), class III
dimeric orphan receptors (e.g., pregnane X receptor (PXR),
and class IV monomeric orphan receptors (e.g., liver recep-
tor homolog 1 (LRH-1)). Class I classic nuclear receptors
modulate lipid metabolism by reacting to traditional hor-
mones including, but not limited to, thyroid hormone, glu-
cocorticoids, estrogen, and testosterone. Class II nuclear
receptors are linked to lipid metabolism and interact with
metabolites as metabolic sensors. The third and fourth class

of the nuclear receptor family is called orphan receptors,
whose ligands have not been identified and functions remain
elusive. A typical nuclear receptor has five regions in order: a
variable N-terminal region (A/B) usually has a hormone-
independent transactivation function, a conserved DNA
binding domain (C) with two zinc-finger structures, a vari-
able short hinge region (D), a conserved ligand binding-
domain (E), and a variable C-terminal region (F). Regions
C and E are signatures of nuclear receptors [93]. The human
NR family can be classified into six evolutionary groups. In
humans, all forty-eight NRs have these six domains except
for 2 NRs in the subfamily NR0B lacking a DNA binding
domain, but only half of the NRs are ligand-dependent.
When ligands bind to these NRs, the ligand-binding domain
(LBD) of the receptor changes conformationally to switch on
the activity of the NRs. Notably, steroid receptors may mod-
ify enzymes and ion channels independent of transcriptional
activation, namely, nongenomic effects [94]. Besides meta-
bolic regulation through binding to multiple hormones,
NRs also widely impact the embryonic development and
maturation of several organ systems, signaling control in
proliferation, and reproduction [95].
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Figure 3: Nuclear receptor involved in hepatic lipid metabolism. Metabolic-related NRs can be classified into four classes according to their
domains and ligands. Glucocorticoid receptors (GRs) coordinate energy requirements and mitochondrial oxidative phosphorylation enzyme
biosynthesis, affecting lipid oxidation and the progression of inflammation. Androgen receptors (ARs), estrogen receptor α (ERα), and small
heterodimer partner (SHP) contribute to the synthesis of fatty acids. ERα decreases fatty acid uptake and ROS generation. Fatty acid
oxidation is favored by estrogen-related receptor (ERRs) and peroxisome proliferator-activated receptor α (PPARα). PPARγ regulates
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3.2. Metabolic-Related NRs

3.2.1. Glucocorticoid Receptor (GR). Chronic stress or exces-
sive exposure to glucocorticoids (GCs) contributes to the
pathogenesis of NAFLD [96]. GR mediates the action of
GC and may act as a regulator on the effects of ROS in liver
diseases. Mitochondrial GR coordinates the energy require-
ment with the mitochondrial oxidative phosphorylation
enzyme biosynthesis, affecting the generation of free radicals
[97]. In contrast, antioxidants can decrease the GR expres-
sion and increase the activity of the hypothalamus-
pituitary-adrenal (HPA) axis in the pituitary [98]. Overse-
cretion of serum GCs induced by hyperactivity of HPA pro-
motes ROS production in the brain tissues [99].

Lipid accumulation is a vital source of ROS production in
the liver. Patients with Cushing’s syndrome are inclined to
develop hepatic steatosis [98]. GC receptors boost hepatic glu-
coneogenesis in response to oxidative stress and fasting. Long-
term treatment with GCs usually leads to hyperglycemia and
hepatic steatosis, partly because GCs can increase the expres-
sion of a set of circadian genes in the liver [100]. The detri-
mental metabolic actions of GCs can be mitigated by timed
administration [101]. GRβ coordinates with GRα in GC sig-
naling, inducing high blood triglyceride levels and fatty liver
in mice. The activity of glycogen synthase kinase 3 β (GSK3β)
increases in the liver of GRβ-Ad mice, in contrast to the
decrease in PPARα and fibroblast growth factor 21 (FGF21)
[102]. GRs, binding to its ligand corticosteroids, recruit his-
tone deacetylases 2 (HDAC2) and then translocase to the
nucleus to bind GC response elements (GREs). The complex
promotes the expression of anti-inflammatory proteins by
reversing their histone acetylation [103]. Furthermore, GR-
dependent fat mass- and obesity-associated (FTO) transacti-
vation and m6A demethylation on mRNA of lipogenic genes
are involved in the pathogenesis of NAFLD [104]. Impor-
tantly, the investigation of GR signaling provides new strate-
gies for NAFLD treatment. E47 is required to activate GR
target genes, as evidenced by free of GC-induced hyperglyce-
mia or hepatic lipid accumulation in E47-knockout mice.
Targeting E47 acts as a potential approach to improve the side
effects of GC treatment because E47 can selectively regulate a
subset of target genes [105]. In the liver, SET domain bifur-
cated 2 (SETDB2) serves as a GC-induced putative epigenetic
modifier to regulate the GR-mediated gene activation. GR-
SETDB2 dependent induction of insulin-induced gene 2
(Insig2) inhibits SREBP-1c-driven lipogenesis [106].
Dexamethasone-induced lipid accumulation can be reversed
by hairy and enhancer of split 1 (Hes1) reconstitution and
subsequent restoration of lipase gene expression (PNL and
PNLRP2), highlighting the role of Hes1 in GR-mediated lipol-
ysis. The deficiency of Hes1 in response to GC action explains
the steatotic phenotype under starvation, myotonic dystrophy,
and Cushing’s syndrome [107]. Kruppel-like factor 9- (klf9-)
mediated GR activation induces hepatic gluconeogenesis and
hyperglycemia. Thus, targeting Klf9 might be a therapeutic
approach to GC therapy-induced diabetes [108]. The
increased expression of periostin in white adipose tissues
mediates the effect of dexamethasone on hepatic lipid accu-
mulation [109]. Moreover, other nuclear receptors also play

roles in GR signaling. LXR α/β double-knockout (DKO) mice
are protected from dexamethasone-induced insulin resistance
by suppressing the key gluconeogenic enzyme phosphoenol-
pyruvate carboxykinase (PEPCK). While LXRβ is required
for the metabolic role of GR, it does not facilitate anti-
inflammatory effects. The LXRα/β DKO mice hint at an
opportunity to use selective GC agonists to induce anti-
inflammatory effects without negative metabolic effects
[110]. The selective GR modulator CORT118335 mimics the
physiological GC action, stimulating the secretion of VLDL
to delay the onset of NAFLD [111].

Notably, the tissue-specific action of GC gives it poten-
tial value in the metabolic modification of the liver, adipose
tissue, and other tissues. 11β-Hydroxysteroid dehydrogenase
type 1 (11β-HSD1) is an enzyme that promotes local GC
regeneration. Mice with hepatic overexpression of 11β-
HSD1 present increased hepatic lipid flux and impaired
hepatic lipid clearance [112]. Global 11beta-HSD1 knockout
mice show reduced expression of lipolytic enzymes (HSL
and ATGL) in adipose tissue. Impaired hepatic 11β-HSD1
expression in ob/ob mice contributes to the pathogenesis
of obesity [108]. Elevated in NAFLD but reduced in NASH,
11β-HSD1 has versatile roles in lipid metabolism and GC-
related anti-inflammatory effects [113]. The 11β-HSD1
inhibitor RO5093151 slightly reduces liver-fat content in
comparison with placebo [87]. Numerous compounds tar-
geting 11β-HSD1 are under investigation, including natural
products such as glycyrrhetinic acid and resveratrol, in the
search for a therapeutic approach to NAFLD. However,
unselective inhibition of 11β-HSD1 accelerates the activa-
tion of HSCs in the liver [108], suggesting that suitable target
tissues should be established to bring into full play its inhib-
itory potency and low toxicity [114].

Overall, glucocorticoids modulate mitochondrial cal-
cium homeostasis, ROS overproduction, and lipolysis [115,
116]. Multiple stressors activate the HPA-axis, which stimu-
lates the adrenal secretion of glucocorticoids, thereby partic-
ipating in the modulation of immune responses and
inflammation [117]. These mechanisms may contribute to
the effect of glucocorticoids in treating NAFLD/NASH. Tar-
geting hepatic GR signaling by the star strand miR-192-3p is
promising for treating fatty liver and insulin resistance
[118]. However, given their complex pharmacology and
effects on the immune system, more investigations are
needed to evaluate the applicability of GRs as therapeutic
targets in NAFLD.

3.2.2. Androgen Receptor (AR) and Estrogen Receptor α
(ERα). The prevalence of NAFLD differs in gender and age
[119]. Premenopausal women are less likely to develop
NAFLD than men of the same age. In the same BMI level
(27 ± 3Kg/m2), postmenopausal women (60.2%) show a sig-
nificantly higher prevalence of NAFLD than premenopausal
women (42.9%), implying the protective effect of estrogen
against hepatic steatosis [120]. Consistently, female mice
receiving ovariectomy or tamoxifen treatment also suffer
from TG accumulation [121].

Sex steroids are mainly inactivated in the liver. Both AR
and ER are expressed in the human male and female livers.
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Independent of insulin resistance and obesity, sex steroids
play vital roles in lipid and glucose metabolism by regulating
the transcription of hepatic metabolic genes including car-
boxylase (ACC), transcription factor forkhead box protein
O1 (Foxo1), SREBP-1, and FGF21. Androgen promotes the
progression of hepatic fibrosis and HCC while estrogen has
the countereffect [122]. Moreover, estradiol modulates mito-
chondrial metabolism and activities, including bioenergetics,
oxygen consumption rate (OCR), and extracellular acidifica-
tion (ECAR). Activation of nuclear respiratory factor-1
(NRF-1) transcription may mediate the effect of estradiol
on mitochondrial function [123]. Loss of estrogen signaling
contributes to hepatic oxidative damage induced by low
levels of PGC-1α, exacerbating steatohepatitis in mice with
high fat-diet [124]. ERα, the most well-characterized isoform
of ER in the liver, can upregulate the expression of miR-125b
to decrease fatty acid uptake and synthesis, which protects
female mice from NAFLD [125]. Hepatic ERα genetic dele-
tion/mutation mice develop severe hepatosteatosis regard-
less of gender [122]. Moreover, the estrogen-ER axis also
plays a protective role in improving fatty acid oxidation
and insulin response in adipose tissue and skeletal [123,
126]. Since cardiovascular events are more frequent in men
and postmenopausal women, estrogen replacement therapy
may be used in postmenopausal women to prevent cardio-
metabolic consequences in NAFLD [127].

Estradiol has protective effects in males and females.
Whereas androgen only reduces hepatic steatosis in the male
group. Liver-targeted deletion of AR promotes fatty liver in
male rodent models [128]. Since the incidence of obesity-
related HCC is much higher in men than in women, andro-
gen receptors may produce ontogenetic efficacy through
alternative mechanisms, such as interaction with signal
transducer and activator of transcription 3 (STAT3) [129].
AR plays a role in developing of neovascularization and liver
cancer metastasis, which may participate in the progression
from NASH to HCC [130].

The hepatic and whole-body metabolisms are improved
in diabetic patients with estrogen treatment [48]. Consis-
tently, hepatocyte ERα is considered a relevant molecular
target for NAFLD prevention [131]. The effect of activation
in ER signaling is complicated. At present, the clinical evi-
dence for drugs that target ER is insufficient.

3.2.3. Vitamin D Receptor (VDR). VDR is highly expressed
in gastrointestinal tract and endocrine tissues. Meanwhile,
VDR is widely expressed in chronic liver disease patients’
inflammatory cells and liver tissue [132, 133]. VDR mediates
the genomic actions of vitamin D. It has been proposed that
VDR may act as a druggable target for NAFLD in light of the
discovery of vitamin D deficiency in NAFLD patients [134].

The primary active form of vitamin D is 1,25(OH)2D3,
and the VDR ligand alters DNA-bound VDR homodimers
into VDR-RXR heterodimers [135]. Exposing obese mice
to 1,25(OH)2D3 prevents lipid accumulation and inflamma-
tion in developing NAFLD/NASH [136, 137]. However,
vitamin D treatment has not consistently conferred expected
therapeutic benefits. A new result of a meta-analysis indi-
cated that vitamin D supplementation does not improve glu-

cose metabolism parameters or lipid levels [138]. Moreover,
plasma and hepatic ROS levels are decreased in the liver of
VDR-deficiency mice compared to WT mice with acute hep-
atitis [139]. Several studies have shown that VDR-knockout
mice are resistant to the development of liver steatosis and
inflammation by decreasing lipid synthesis and promoting
fatty acid oxidation [140]. In contrast, some long-term
studies reported that VDR deficiency develops hepatic
inflammation and fibrosis [141, 142]. Interestingly, nonpar-
enchymal cells in the liver, including HSCs, KCs, and biliary
epithelial cells, exhibit higher expression levels of VDR than
in hepatocytes. Activation of VDR in hepatocytes promotes
lipid accumulation [143], whereas inducing VDR in hepatic
macrophages and HSCs attenuates hepatic inflammation
and fibrosis [141, 142]. Moreover, ER stress induces
increased VDR expression in hepatic macrophages. It has
been proposed that VDR signaling regulates a shift between
proinflammatory and anti-inflammatory activation during
ER stress-induced inflammation to promote hepatic ER
stress resolution [142]. Besides vitamin D, bile acids also
act as ligands for VDR. It has been reported that hepatic
VDR inhibits bile acid synthesis, thus preventing the liver
injury in cholestasis [144].

Multiple genetic polymorphisms of the VDR gene or
vitamin D-associated genes may explain these contradictory
effects of vitamin D treatment in humans. Moreover, VDR-
independent mechanisms or the binding ability of VDR to
other endogenous ligands may play roles in mediating differ-
ent effects of vitamin D. Thus, the diversity of VDR ligands
and the cell type specificity of VDR activation would likely
create difficulties in exploring VDR-targeted strategy for
NASH treatment.

3.2.4. Peroxisome Proliferator-Activated Receptors (PPARs).
PPARs are named for their interaction with peroxisome pro-
liferators [145]. PPARs act as crucial regulators in lipid
metabolism and determine synthesis rate of many enzymes
involved in lipid, glucose, bile acid metabolism, adipocyte
differentiation, and plasma apolipoprotein regulation. Three
types of PPARs work in different organs [146].

PPARα is mainly expressed in the liver and brown adi-
pose tissue. It promotes energy utilization during fasting by
boosting fatty acid oxidation and hepatic ketogenesis in the
liver. PPARα-knockout mice showed impaired fatty acid
oxidation and a lower metabolic rate, resulting in hepatic
steatosis, while the rate of VLDL secretion and gluconeogen-
esis remained unchanged [147]. PPARα modulates liver-
derived FGF21 in diabetic ketotic states [148]. Diet-
induced obesity leads to disruption of circadian metabolic
rhythms in PPARα and SREBP-1. SREBP-1 regulates the
production of endogenous PPARα ligands to affect fatty acid
oxidation [149]. Krüppel-like factor 6 (KLF6) [150], fatty
acids [151], nutrition status [152], miR-27 [153], and other
factors all affect the activity of PPARα. Yoo et al. reported
that fenofibrate, a PPARα agonist, decreases hepatic fat
accumulation through increasing TFEB-mediated lipophagy
[154]. Moreover, PPARα is also engaged in anti-
inflammatory responses by interacting with NF-κB and acti-
vator protein-1 (AP-1) [155]. PPARα agonists reverse
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steatohepatitis and improve fibrosis [156]. In the livers of
patients with NAFLD, increased poly (ADP-ribose) poly-
merase 1 (PARP1) activity represses PPARα transactivation
and may lead to weakened fatty acid oxidation [157]. PPARα
may act as a modulator in the antioxidant response, given
the evidence that PPARα expression is correlated with the
Cu2+, Zn2+-superoxide dismutase (SOD) expression [158].
Moreover, the levels of PPARα and its target genes including
acyl-CoA oxidase type 1 (ACOX1) and carnitine palmitoyl
transferases 1 (CPT-1) are decreased by H2O2 exposure in
hepatocytes [159]. Clinical data showed that the expression
levels of PPARα negatively correlate with NASH sever-
ity [160].

PPARγ regulates lipid storage and insulin sensitivity in
adipose tissue, macrophages, and skeletal muscle. Hyperin-
sulinemia accelerates the development of hepatosteatosis in
a PPARγ-dependent manner [161]. PPARγ protein expres-
sion is significantly downregulated in NAFLD, and PPARγ
transgene liver-knockout mice show a similar decrease in
the expression levels of lipogenic genes such as fatty acid
synthase (FAS) and SCD-1 [162, 163]. PPARγ in macro-
phages of adipose tissue regulates genes involved in fatty
acid synthesis, β-oxidation, and insulin-stimulated glucose
uptake [149]. PPARγ activators enhance cholesterol efflux
in human macrophages [155] and suppress inflammatory
cytokines in monocytes [164]. In fibrosis regulation, the
reduced expression of PPARγ results in inhibited HSC acti-
vation and increased collagen production [165]. In addition,
PPARγ agonists are insulin sensitizers that have been used
to treat diabetes. Other studies have shown the prospects
of nonagonist PPARγ ligands for their antidiabetic actions
[166]. Notably, a new study showed that PPARγ2 translo-
cates to the nucleus and activates signal transduction
through a complex of PPARγ2 and transportin 1 (Tnpo1)
that forms via redox-sensitive disulfide bonds. The increased
DNA-bound PPARγ induces lipid accumulation in the liver.
This evidence supports that a redox environment is a poten-
tial therapeutic target in the treatment of PPARγ-related dis-
eases [167].

PPARδ is a dual regulator of lipid utilization and inflam-
matory signaling. Meanwhile, it can effectively improve insu-
lin sensitivity and reduce atherogenic dyslipidemia [168].
PPARδ stimulates FFA breakdown, fat depletion, and weight
loss. microRNA-122 regulates hepatic fatty acid and choles-
terol metabolism by targeting various genes, including PPARδ
[169]. The PPARδ agonist GW501516 increased fat oxidation
in skeletal muscle [170] and decreased serum ApoC-III con-
centration to help hepatic VLDL secretion in a small clinical
data sample [171]. In a diet-fed obese diabetic mouse model,
the PPARδ agonist seladelpar (MBX-8025) reversed insulin
insensitivity and improved NASH pathology independent of
weight loss [172].

PPARβ/δ shares several similar functions to PPARα in
inducing fatty acid oxidation and improving NAFLD by
functioning in the liver and other tissues [173]. Moreover,
the effects of PPARβ/δ on NAFLD, including its capacity
to decrease lipogenesis, improve inflammation and endo-
plasmic reticulum stress, alleviate insulin resistance, and
attenuate liver injury [174]. PPARβ/δ agonists have been

employed to prevent fibrosis in preclinical animal studies
[175]. Thus, synthetic or natural ligand-induced activation
of hepatic PPARβ/δ provides a promising therapeutic strat-
egy for NAFLD. Despite no PPARβ/δ activator being
approved for patients with NAFLD/NASH, various com-
pounds are under clinical development at different stages.

3.2.5. Liver X Receptor (LXR). LXRs, including LXRα
(NR1H3) and LXRβ (NR1H2), are mainly expressed by the
digestive tract where lipids are digested and absorbed. They
are nuclear receptors that regulate the metabolism of several
vital lipids, including cholesterol and bile acids [176]. LXRs
upregulates cholesterol 7alpha-hydroxylase 1 (CYP7A1) in
the reverse cholesterol pathway. Moreover, LXRs act as glu-
cose sensors and strengthen fatty acid synthesis by activating
SREBP-1c and carbohydrate responsive element-binding
protein (ChREBP) [177]. As reported, hepatic insulin resis-
tance leads to an increase in the activity of SREBP-1a, 1c
and -2, resulting in elevated fatty acid synthesis [178, 179].
LXRα plays a crucial role in the insulin-induced proteolytic
process to activate SREBP-1c. However, LXR agonists can-
not affect SREBP-2 or its downstream targets [180]. Target
genes of LXRs include hepatic cholesterol efflux modulator
ATP-binding cassette transporters (ABCA1) and apolipo-
proteins as well as mitochondrial metabolic regulator
PARP1 in brown adipose tissue and skeletal muscles [181].
LXRα/β also plays a role in the dynamic modulation of
membrane phospholipid composition through Lpcat3, indi-
rectly regulating the ER stress and inflammation in the liver
[182]. LXR-null mice show impaired reverse cholesterol
transport and increased atherosclerosis [183]. LXRα/β-defi-
cient-ob/ob (LOKO) mice exhibits improved insulin sensi-
tivity and weaken SREBP-1c and ChREBP activity in the
liver accompanied by impaired hepatic lipogenesis [184].
Although liver-specific activation of LXRs does not impact
reverse cholesterol transport, intestinal-specific LXR activa-
tion suppresses the absorption of cholesterol and improves
lipoprotein profile [185]. When in the state of hypercholes-
terolemia, LXRαmaintains peripheral cholesterol homeosta-
sis [186], and LXRβ can compensate for the
antiatherosclerosis effect in the absence of LXRα [187].
Pharmacological activation of LXR by GW3965 and
T0901317 increases transintestinal excretion of plasma cho-
lesterol in different mouse models [185, 188]. Moreover,
LXR functions are required for Kupffer cell identity and sur-
vival in response to NASH-induced environmental signals.
These results show the regulator role of LXR in the develop-
ment of NASH by controlling diversification in macrophage
phenotypes [189].

The phosphorylation state of LXRα is associated with the
progression of NAFLD [190]. LXR activity can be enhanced
through deacetylation by sirtuin type 1 (SIRT1) [191]. Toll-
like receptor- (TLR-) LXR signal crosstalk works under the
regulation of transcription cofactor nuclear receptor coacti-
vator 5 (NCOA5) [192]. Then, activation of adenosine
monophosphate-activated protein kinase (AMPK) supports
the S6 kinase 1- (S6K1-) mediated inhibition of LXR activity
in lipogenic gene induction [193], while uncoordinated 51-
like kinase 1 (ULK1) has the opposite function by reducing
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NOCR1 nuclear uptake and its interaction with LXR, which
ends in a decrease in SCD-1 expression [194]. Fatty acid
intake may also impact the expression of LXRs and its
downstream targets ABCA1 and SREBP-1c [195].

However, some studies reported inconsistent experimen-
tal results about the role of LXRα in patients with NASH
[196, 197]. Besides improving lipid accumulation in the
liver, LXRβ-selective and LXRα/β-dual antagonism may
lead to hypercholesterolemia in nonhuman primates [198],
which represents a barrier to the development of LXR antag-
onist as a therapy for NAFLD.

3.2.6. Farnesoid X Receptor (FXR). FXR is widely expressed
in several tissues and has been demonstrated to be the pri-
mary sensor for modulating bile acids uptake and synthesis,
gluconeogenesis, and fatty acid oxidation [199]. Gain of FXR
function studies in nongastrointestinal tissues indicates that
FXR signaling improves various experimentally induced
metabolic and immune diseases [200].

Hepatic FXR expression can be upregulated by hypergly-
cemia and repressed by insulin. Our previous study showed
that FXR downregulation accounts for the aging-induced
fatty liver and ER stress represses FXR expression by inhibi-
tion of hepatocyte nuclear factor 1 alpha (HNF1α) transcrip-
tional activity in old mice [201]. Moreover, we found that
suppressing FXR expression by Yin Yang 1 (YY1) increases
obesity-associated hepatosteatosis [202]. Interestingly, lean
NAFLD patients have significantly higher FXR activity and
a distinct microbiota profile, but their favorable metabolic
profile not help resist hepatic lipid accumulation [203].

FXR agonists reduce lipogenesis by the interaction with
LXR and small heterodimer partner (SHP) [204]. FXR-null
mice show lower expression of SHP and higher serum and
hepatic triglyceride levels [205]. FXR negatively regulates
glycolysis and lipogenesis in the liver through inhibition of
ChREBP [206]. FXR increases the expression and secretion
of gene FGF21 [207]. Insulin sensitivity and glucose homeo-
stasis are also impaired in mice with FXR depletion [208].
FXR-SHP-LRH1 pathway represses bile acid biosynthesis
by targeting CYP7A1 [209]. Moreover, hepatic FXR medi-
ates the protective effect of AMPK activators on oxidative
injury and mitochondrial dysfunction induced by serum
deprivation [210]. Intestinal reclamation of bile salts also
works under the FXR-SHP-LRH1 pathway [211]. Interest-
ingly, intestinal FXR takes charge of bile acid uptake [212]
and changes hepatic lipidomics through the microbiome
[213]. Hepatic FXR contributes to lipid accumulation under
a cholesterol diet rather than intestinal FXR [214]. The pen-
tose phosphate pathway regulates the expression of FXR in
the liver, suggesting T2DM patients may suffer from lipid
and bile acid dysregulation due to hyperglycemia [215].

FXR integrates the protein kinases A (PKA) and the
forkhead box protein A2 signal in hepatic glucose produc-
tion [216]. Src-mediated FXR phosphorylation after a meal
maintains bile acid homeostasis [217]. The SUMOylation
of FXR is higher in HSCs from NASH patients than healthy
donors. Moreover, SUMOylation inhibitor can restore FXR
activity, thus synergizing with FXR agonists when treating
NASH [218]. FXR acetylation is regulated by SIRT1 and

p300, which constitutively elevated in metabolic syndrome
[219]. Besides the dysregulated acetyl/SUMO switch of
FXR [220], the glucose-sensing O-GlcNAcylation pathway
contributes to NAFLD in obesity [221].

Obeticholic acid, an FXR agonist, is approved by the
FDA for biliary cholangitis therapy but not for NASH reso-
lution. Nevertheless, FXR remains an attractive target for
NAFLD/NASH. It is not clear whether redox states or
ROS-derived compounds may directly regulate the FXR sig-
naling pathway. This topic needs more investigation.

3.2.7. Pregnane X Receptor (PXR). PXR is abundantly
expressed in the liver and gut, targeting metabolic enzymes
and transcription factors such as CD36 and PPARγ [222].
PXR ablation alleviates steatohepatitis in high-fat diet-
induced obesity mice and genetic obesity model ob/ob mice,
suggesting the therapeutic potential of PXR antagonists in
NAFLD [223]. PXR target gene Cyp3a11 was consistently
increased 3-4-fold in addition to the increased microsomal
Cyp3a enzymatic activity at all stages of NAFLD [224]. Fur-
ther, Di (2-ethylhexyl) phthalate- (DEHP-) induced ROS
production activates the Nrf2 and nuclear xenobiotic recep-
tor (NXR) system including aryl hydrocarbon receptor
(AHR), PXR, and constitutive androstane receptor (CAR)
in the development of liver injury [225]. Despite the promo-
tion of hepatic steatosis and insulin resistance, PXR also
shows antifibrotic and antiproliferative efficacy. Rifampicin
activates PXR in human hepatic stellate cell line LX-2 and
decreases the expression of fibrosis-related gene TGF-β1
and reduces the secretion of proinflammatory cytokine IL-
6 [226].

It is worth noting that the consequence of PXR activa-
tion on overall metabolic health has not yet been fully eluci-
dated, and varying experimental results on the effect of PXR
activation or deficiency on metabolic disturbance have been
reported [227]. Moreover, obese levels of parental mice
decrease the hepatic expression of PXR in offspring [228].
At present, PXR is not being targeted in clinical trials for
NAFLD therapy due to its uncertain role in hepatic
metabolism.

3.2.8. REV-ERBα/β and Retinoic Acid Receptor-Related
Orphan Receptor α (RORα). Circadian rhythm, in other
words, the sleep-wake cycle, regulates lipogenesis indepen-
dent of the fasting-feeding process [229]. Circadian oscilla-
tions are observed in the expression of Rev-ERBα/β and
RORα/β/γ in the liver. REV-ERBα/β binds to RORE to
recruit histone deacetylase 3 (HDAC3) and NCoR in rodent
models to inhibit lipogenesis during daytime, while RORs
bind to RORE instead of REV-ERBα/β at night [230].

REV-ERBα modulates the activity of SREBPs to main-
tain lipid homeostasis and regulates the expression of
CYP7A1 to balance bile acid metabolism [231]. A large pro-
portion of REV-ERBα target genes in hepatic lipid metabo-
lism also requires the presence of HNF6 to work correctly
[232]. Pharmacological activation of REV-ERBα by SR9009
attenuated hepatic steatosis, insulin resistance, inflamma-
tion, and fibrosis in mice with intestinal barrier
dysfunction-related disorders and NASH [233]. Compared
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with REV-ERBα knockout mice, REV-ERBα and REV-
ERBβ double-knockout mice exhibit more severe hepatic
steatosis, failing to recruit HDAC3 and NCoR in the liver,
justifying the collaboration of REV-ERBs in hepatic lipid
metabolism [234]. Hepatic REV-ERBα and Rev-ERBβ
double-knockout impairs daily rhythms of a subset of liver
genes and alters the diurnal rhythm of de novo lipogenesis
in mice. Moreover, the loss of hepatic REV-ERBs also
remodels the rhythmic transcriptomes and metabolomes of
nonhepatocytic cells within the liver [235]. In the light of
the loop feedback in Clock/BMAL1 and REV-ERBs, both
agonists and antagonists of REV-ERBs could be a potential
therapeutic approach to reestablish metabolic balance [236].

In contrast to REV-ERBs, RORα act as a transcriptional
activator and coordinate the circadian rhythms of lipid
metabolism and inflammation in the liver. RORα recruit
HDAC3 to PPARγ promoters as a negative regulator of lipo-
genic genes [237]. Moreover, RORα attenuates hepatic stea-
tosis through AMPK activation and LXRα repression [238].
Liver-specific knockout of RORα aggravates NASH develop-
ment by impairing mitochondrial function. The expression
level of PGC-α is positively related to RORα in patients with
NASH [239]. In mice models, RORα decreases lipid peroxi-
dation and inflammatory cytokine (TNFα, IL-1β) levels to
prevent NASH. JC1-40, a RORα activator, controls M2
polarization and reduces oxidative stress to improve symp-
toms of NASH [240, 241]. Targeting RORα is an effective
strategy for reducing ROS generation and increasing antiox-
idant capacity in endothelial cells and prepubertal cumulus
cells [242, 243]. Moreover, RORα regulates polarization in
liver macrophages, which plays a fundamental role in liver
fibrosis. RORα agonist SR1078 validates that by suppressing
HSC proliferation potently [244]. Whereas macrophage-
specific knockout RORα does not prevent insulin resistance
and NASH [245]. Thus, the roles of ROR in different cell
types need consideration. In addition, RORα may increase
its ligand maresin 1, which in return increases the expression
and transcriptional activity of RORα. This autoregulatory
circuit provides a new potential therapeutic target for the
NASH treatment [246].

In the liver of patients with NASH, RORα expression is
reduced [247]. The clinical application of targeting RORα
remains to be further investigated for NAFLD pharmacolog-
ical therapeutics.

3.2.9. Estrogen-Related Receptor (ERR). ERR family is com-
prised of ERRα, ERRβ, and ERRγ. Both in vitro and
in vivo models, regulation of ERRα activity via genetic or
pharmacological manipulation has been fundamental in
delineating the vital roles of ERRα in lipid and carbohydrate
metabolism, as well as in mitochondrial function under both
physiological and pathological conditions [248]. The expres-
sion of fatty acid synthesis genes (Acly, Fasn, and Scd-1)
shows a rise in ERRα-null mice, supporting the prominent
role of ERRα in rapamycin-induced NAFLD [96]. Inhibition
of ERRα decreases triglyceride biosynthesis and prevents
hepatic steatosis. Targeting glycerophosphate acyltransferase
4 and glycerolipid synthesis is an important mechanism for
ERRα-regulated NAFLD progression [249]. Moreover,

ERRα participates in the weakened lipid oxidative catabo-
lism after fasting-refeeding in mice [250].

In addition, liver-specific ablation of ERRγ normalizes
blood glucose levels in db/db mice. GSK5182, an inverse
agonist of ERRγ, may be a treatment option to inhibit
hepatic gluconeogenesis [251]. ERRγ directly regulates the
transcription of lipogenic gene srebp-1c via binding to an
ERR-response element. Consistently, GSK5182 significantly
improved NAFLD in chronically alcohol-fed mice by inhi-
biting SREBP-1c-mediated fat accumulation [252]. More-
over, the expression levels of ERRγ and fibrotic genes are
elevated in liver tissue of obese patients. Overexpression of
ERRγ increased fibrinogen expression in hepatocytes [253].

Given the experimental evidence, targeting hepatic
ERRα activity may have therapeutic potential. The complex
interplay of the three ERRs in the development of NAFLD
and metabolic syndrome should be considered in future
research and drug development.

3.2.10. Small Heterodimer Partner (SHP). In 1996, Seol and
his colleagues reported that SHP is an orphan member of
the NR superfamily that contains the dimerization and
ligand-binding domain found in other family members.
However, the conserved DNA binding domain is lacking in
the SHP gene. In general, SHP is a negative regulator in
receptor-dependent signaling pathways by inhibiting trans-
activation induced by the superfamily members with which
it interacted [254]. In the liver, SHP involves the pathogen-
esis of steatosis by regulating the transcriptional activity of
SREBP-1c [255]. SHP knockout mice show decreased
expression of genes involved in lipogenesis (PPARγ and
ACC) and increased expression of genes involved in lipid
oxidation and export (PPARα and VLDL) [256]. A new
study reported that SHP overexpression in mice inhibits
lipogenesis in a DNA methyltransferase-3a- (DNMT3A-)
dependent manner [257]. Moreover, SHP expression is reg-
ulated by other NRs in livers. Our previous study found that
in obese mice, SHP deficiency blunted the effect of estrogen
in improving hepatic steatosis [258]. FXR can bind to the
SHP promotor region and induce its expression. FXR-SHP
axis is closely associated with bile acid and lipid metabolism
and represents a promising target for treating NAFLD. New
evidence has shown that miR-802-mediated defective FXR-
SHP regulation promotes insulin resistance and the develop-
ment of fatty liver [204, 259]. However, the expression level
of FXR, but not SHP, was decreased in the liver tissue of
patients with NAFLD [260]. Notably, SHP may serve as a
ROS-sensitive regulator in the effect of glycochenodeoxy-
cholic acid (GCDCA) treatment on improving cell death
and oxidation stress [261]. At present, the role of SHP in
the diagnosis and treatment of NAFLD in humans remains
unclear, and the data of related clinical trials are lacking.

3.2.11. Liver Receptor Homolog-1 (LRH-1). LRH-1 is
expressed in the intestine, liver, pancreas, and ovary. In met-
abolic fields, LRH-1 regulates bile acid biosynthesis and
reverses cholesterol transport [262]. SUMOylation, a kind
of posttranslational modification, is primary for LRH-1 reg-
ulation. SUMO-deficient LRH-1 knock-in mice have better
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lipid metabolism and are less likely to develop atherosclero-
sis because of the inhibition of a set of genes linked to
reverse cholesterol transport [263]. LRH-1 mutant mice
have defects in SUMOylation and represent enhanced
SREBP-1 expression and promoted DNL in high-fat diet or
high sucrose diet [264]. Hepatic LRH-1 deficient mice show
reduced hepatic glucose fluxes followed by a reduction in
DNL because of the direct inhibition of glucokinase in tran-
scription level by LRH-1, indicating LRH-1 plays a role in
glucose-sensing in postprandial glucose and lipid metabo-
lism [265]. Besides the glucose sensor, LRH-1 also functions
as a phospholipid sensor to maintain the hepatic arachido-
noyl phospholipids pool [266]. Coimmunoprecipitation
confirms the synergy of FXR and LRH-1 in the activation
of Cyp7A1 and fasn promoters in mice liver [267]. LRH-1
ligand dilauroyl phosphatidylcholine (DLPC) activates
phosphatidylcholine signaling pathway and displays antidia-
betic and lipotropic effects in mice [268]. LRH-1 agonist
BL001 impedes β cell apoptosis in T2DM while it favors
insulin secretion [266]. Notably, in the livers of LRH-1-
knockout mice, the NADPH/NADP+ and GSH/GSSG ratios
are decreased, supporting the role of LRH-1 in facilitating
NADPH generation [269, 270]. In addition, evidence has
shown that ROS production induced by a high concentra-
tion of palmitate in hepatocytes is reduced after LRH-1 ago-
nist RJW101 intervention [271]. Thus, LRH-1 participates in
metabolic processes to govern liver physiology and pathol-
ogy. However, more clinical studies are needed to clarify
the role of LRH-1 in treating NAFLD.

4. Clinical Research Findings Involving
Metabolic Therapeutic Targets

We have briefly presented how NRs participate in modulat-
ing metabolic adaption and NAFLD/NASH progression.
Given these findings, selecting transcription factors for the
treatment of metabolic disorders is on the agenda. Here,
we introduce the compounds ongoing in clinical trials.

4.1. PARs. PPARα has been proposed as a promising thera-
peutic target based on its function in lipid and apolipopro-
tein regulation and inflammation and fibrosis resolution
[272]. PPARα agonist fibrates were introduced more than
35 years ago to improve the serum lipid profile and reverse
atherogenic dyslipidemia [273]. In the obese animal models,
fenofibrate treatment markedly improves hepatic oxidative
stress and steatosis, ameliorates dyslipidemia, and improves
insulin resistance [274, 275]. In addition, bezafibrate reduces
plasma triglycerides (-49%) and hepatic triglycerides (-78%)
in fructose-enriched diet- (FED-) treated rats [276]. How-
ever, the side effects of PPARα agonist, including hepato-
megaly and aminotransferase abnormalities, were observed
in the animal studies need to be emphasized.

PPARγ agonist pioglitazone belongs to thiazolidinedi-
ones. Thiazolidinediones improve insulin sensitivity by
enhancing the differentiation of adipocytes. Pioglitazone
30mg shows slight improvement in fibrosis in a 24 months
clinical trial (NCT00063622)[277]. Thickened subcutaneous
adipose tissue is frequently observed in thiazolidinediones,

and pioglitazone is no exception. Heart failure, cardiogenic
edema, and bone fractures in females [278] remain barriers
for further clinical application.

PPARδ agonist seladelpar decreases liver enzyme levels,
inflammation marker levels, insulin resistance, circulating,
and atherogenic dyslipidemia. It also reduces hepatic TGs
[279]. However, it has been recently reported that seladelpar
fail to decrease liver fat as quantified by magnetic resonance
imaging in a phase 2 trial (NCT03551522).

Dual PPARα/δ agonist elafibranor (GFT505) shows pos-
itive effects in glucose and lipid metabolism and reduces
inflammation in NASH patients in a phase 2 clinical trial.
Although elafibranor mildly increases serum creatinine, it
is well-tolerated and does not exacerbate liver fibrosis
[280]. A phase 3 clinical trial for patients with NASH is in
progress (NCT02704403).

Dual PPARα/γ agonist saroglitazar was first launched to
treat diabetic dyslipidemia, uncontrolled by statins [281]. In
NASH mice models, saroglitazar dose a better job than pio-
glitazone and fenofibrate in improving liver histopathology
and biochemistry [282]. A phase 2 clinical trial
(NCT03061721) of saroglitazar magnesium was finished in
April 2020, aiming at lowering the serum ALT level in
NASH. Current data showed that saroglitazar magnesium
also improves the histological appearance in NASH. The
drug firm Zydus Cadila has filed a new drug application of
saroglitazar magnesium in NASH.

Pan PPARα/δ/γ agonist lanifibranor shows positive
effects on histology with a significant benefit over placebo
for resolution of steatohepatitis, regression of fibrosis, and
the combination of both [283]. A phase 2 clinical trial for
patients with T2DM and NAFLD is in progress
(NCT03459079).

4.2. FXR. FXR plays a critical role in maintaining bile acid
and cholesterol homeostasis and regulating hepatic glycogen
synthesis. FXR is a promising target for NAFLD/NASH
[284]. FXR agonists targeting the gut-liver axis are promis-
ing for NAFLD/NASH for they not only relieve hepatic ste-
atosis but also resolve fibrosis at histology level by
antagonizing NFκB [285, 286].

FXR agonists GW4064, GSK2324, chenodeoxycholic
acid (CDCA), and fexaramine (Fex) have been tested in
rodent models. GW4064, a synthetic agonist of FXR, lowers
blood glucose and improves hepatic glycogen storage in nor-
mal and db/db mice regardless of whether they are fasted or
fed [287]. GW4064 suppresses hepatic apolipoprotein CIII
and apolipoprotein A-I [288] expression to prevent mice
from coronary heart disease. FXR activation with the FXR
agonist GSK2324 controls hepatic lipids via reduced absorp-
tion and selective decreases in fatty acid synthesis. The
results in tissue-specific FXR KO mice show that hepatic
FXR controls lipogenic genes, whereas intestinal FXR con-
trols lipid absorption [289]. FXR activation by chenodeoxy-
cholic acid (CDCA) in Zucker (fa/fa) obese rats reverse
insulin resistance and hepatic steatosis [290]. Intestine-
selective FXR inhibition by glycine-β-muricholic acid (Gly-
MCA) improves metabolic dysfunction by reducing
intestinal-derived ceramides [291]. Gut-restricted FXR
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agonist fexaramine (Fex) induces browning white adipose
tissue, increases the metabolic rate in brown adipose tissue,
alters bile acid composition, and improves hepatic steatosis
and insulin sensitivity [213]. Fex improves FXR-gut micro-
biota-TGR5-GLP-1 signaling and increases FGF15 secretion
without changing appetite in mice [292].

FXR agonist obeticholic acid successfully lowers serum
markers representing hepatocellular injury (ALT, AST) and
oxidative stress (GGT) in mice. Obeticholic acid also lowers
serum LDL-C and increases liver LDLR expression [293]. In
human patients, obeticholic acid (trade name Ocaliva) was
first approved to treat primary biliary cholangitis for its
function in reducing alkaline phosphatase and bilirubin
levels to prevent cirrhosis [294]. Besides the anticholestatic
and antifibrotic effects, obeticholic acid shows great poten-
tial in treating NAFLD. Obeticholic acid shows efficacy in
improving the insulin sensitivity of NAFLD and T2DM
patients. However, it also causes an increase in LDL and a
reduction in HDL [162]. Biopsy proved the histologic
improvement by obeticholic acid in parallel to the change
of aminotransferases [295]. In the interim analysis from a
phase 3 clinical trial, obeticholic acid 25mg daily signifi-
cantly improved histological endpoints in advanced fibrosis
due to NASH compared to the 10 mg low dose group or pla-
cebo [296]. Side effects like pruritus can be conquered by
symptomatic treatment, and elevated LDL cholesterol levels
can be treated with lipid-lowering agents like statins. Obeti-
cholic acid is the first drug application for NASH-related
liver fibrosis accepted by the FDA.

Nonsteroidal FXR agonist cilofexor (GS-9674)
(NCT02854605) [295], nonbile acid FXR agonist tropifexor
(LJN452) (NCT02855164) [297], and nidufexor (LMB763)
(NCT02913105) [298] are undergoing phase 2 clinical trial
in NASH patients.

5. Hormones Affecting the Expression of NRs in
the Hepatic Lipid Metabolism

5.1. Thyroid Hormones. Thyroid hormones 3,5,3′-triiodo-
thyronine (T3) and 3,5,3′,5′-tetraiodothyronine (T4) play
essential roles in developmental process, differentiation,
growth, and metabolism in cells through the genomic or
nongenomic pathways. The genomic action occurs through
their interaction with nuclear receptors TRα and TRβ,
together with coactivators or corepressors to modulate gene
expression and protein synthesis [299]. Thyroid hormones
are potent regulators in body weight, lipogenesis, lipid
metabolism, and insulin resistance. Evidence confirmed that
the liver is a significant target for thyroid hormones [300].
Moreover, TRβ is mainly expressed in the liver tissue, and
TRα is more common in bone and cardiovascular organs.
Mice with a dominant-negative mutation in TRβ
(ThrβPV/PV) develop hepatic steatosis and have larger livers.
Moreover, these mutated mice exhibit upregulated activa-
tion of PPARγ signaling and reduced fatty acid β-oxidation,
leading to the development of steatosis [301]. In addition,
thyroid hormones also regulate the expression and activities
of many NRs involved in lipogenesis, such as LXR [222].

HMG-CoA reductase, the limiting enzyme of cholesterol
synthesis, is inhibited by thyroid hormones [302]. Mean-
while, liver fibrosis begins with injury and mitochondrial
dysfunction in cells. The increased free fatty acids and ROS
induce lipid peroxidation and activate HSCs. Under liver
injury, the dominant hormone receptor becomes TRα
instead of TRβ. TRα produces a more robust wound-
healing response in the fibrogenic process [303].

5.2. Melatonin. The pineal hormone melatonin is synthe-
sized from tryptophan via 5-hydroxytryptamine and is con-
sidered a potent regulator of oxidative damage in different
vertebrates [304]. Melatonin acts through specific receptors,
including melatonin 1 (MT1), MT (2), and MT (3) receptors
as well as a nuclear receptor belonging to the orphan nuclear
receptor family. M1 is the one mainly expressed in the liver
tissue. Exciting, therapeutic effects of melatonin on improv-
ing fatty liver are observed in obese rats by inhibiting oxida-
tive damage [305]. Moreover, in diabetes and obesity,
melatonin supplementation has been found to protect liver
function by recovering mitophagy via blockade of nuclear
receptor 4 A1 (NR4A1) [108]. In hepatocytes exposed to
H2O2, melatonin treatment reduces the levels of oxidative
stress and ROS generation, thereby improving liver damage
[306]. Meanwhile, melatonin induced a dose- and time-
dependent inhibition on the proliferation of hepatocytes
[307]. Chronic CCl4 exposure induces collagen deposition
and oxidative stress, while melatonin protects against liver
fibrosis via increased mitophagy and mitochondrial biogen-
esis [308]. Therefore, melatonin is considered a potent anti-
oxidant drug to improve fatty liver [309].

6. Summary and Outlook

The onset of NAFLD is characterized by changes in redox
status in the hepatocellular system that lead to ROS genera-
tion and impaired hepatic metabolism. Oxidative stress is
also a causative factor in the pathologies of the fatty liver.
The molecular mechanisms accounting for these alterations
are not entirely understood, but activation of NRs plays a
vital role in regulating the redox status and the metabolic
network. Antioxidant molecules favorably modulating the
cellular redox environment may also regulate NRs that play
a role in lipid metabolism. This autoregulatory circuit pro-
vides more potential therapeutic strategies for NAFLD/-
NASH treatment.

Nuclear receptors have largely maintained their domi-
nance of the drug target space for human use [310]. Based
on the vital role of NRs in regulating hepatic metabolism
and on the promising results observed in animal models
with NAFLD, drugs which interfere with NRs are among
the strongest candidates for NAFLD therapy. However, sev-
eral clinical trials utilizing pharmacological manipulation of
NRs have yielded conflicting results about the efficacy and
safety of these drugs. Despite specific favorable metabolic
effects, PPARα activator fibrates have failed to improve
hepatic steatosis or NASH in humans [311, 312]. PPARγ
agonist rosiglitazone has shown the impact of resolution
on hepatic steatosis but not on NASH. It might increase in
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bone fractures, fluid retention, and cardiac decompensation
[313–315]. In practice, considering drug safety, pioglitazone
is the only thiazolidinedione (TZD) in use clinically today
for the treatment of T2DM. Although previous studies have
indicated a limited efficacy of activating individual PPARs,
ongoing clinical trials show that dual and pan-PPAR ago-
nists might serve as promising strategies for NASH therapy.
Moreover, the FXR agonist obeticholic acid shows signifi-
cant benefit in phase 3 interim results and remains the can-
didate for first conditional approval as a NASH therapeutic
[316]. Additional research is needed to confirm this promise
and address concerns about tolerability and side effects.

Drug discovery programs targeting NRs have been
greatly facilitated by the emergence of ligand-binding
domains and the resulting opportunities to identify new
chemical activators/inhibitors. NRs act directly on the
genome to control transcription. Unlike targeting traditional
drugs, targeting transcription factors and their cofactors
results in less drug resistance but is more likely to have other
side effects. For instance, PPARγ agonist rosiglitazone
treatment-induced adverse events such as bladder cancer
and heart failure have become highly aware in clinical appli-
cation. Thus, selective inhibition/activation of a transcrip-
tion factor may require a low dose with minor side effects.
Moreover, it seems that the next-generation dual-PPAR or
pan-PPAR agonists are presently the most promising strate-
gies, addressing the therapeutic benefits of targeting more
than one PPAR subtype in the treatment of NASH [146].
In addition, given the diverse actions of NRs in multiple
organs and how they affect metabolic crosstalk with various
layers of complexity, clarifying the tissue-specific and cell-
type-specific roles of NRs is essential for precise pharmaco-
logical treatments. Nowadays, the advancements made to
the development of “human-on-a-chip” models seem as
effective strategies for testing novel drug candidates. The sys-
tem provides a simple but unique platform to evaluate pre-
clinical drug efficacy and reassess human dosing regimens
[317, 318]. Moreover, by implementing in these chips,
patient-derived stem cells carrying high-risk genetic back-
grounds for developing NASH, the evaluation of personal-
ized therapies might ever become a reality [319].
Furthermore, some natural compounds have been reported
to treat NAFLD by acting on NR-targeted pathways with
fewer adverse reactions, presenting a promising therapeutic
prospect [320]. These drugs are naturally present in the
human body and function by stimulating the physiological
status. Notably, in addition to hepatocytes, targeting NRs
should include anti-inflammation/fibrosis in nonparenchy-
mal cells. NR ligand-based therapies are not the only strat-
egy for NAFLD. Targeting posttranslational modifications
such as acetylation of NRs and coregulators is also a prom-
ising direction for dealing with changes in the redox-
microenvironment. Therefore, targeted redox-dysregulated
NRs is a promising strategy for treating NAFLD.
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