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Aedes aegypti continuously exposed 
to Bacillus thuringiensis svar. israelensis does 
not exhibit changes in life traits but displays 
increased susceptibility for Zika virus
Karine da Silva Carvalho, Duschinka Ribeiro Duarte Guedes, Mônica Maria Crespo, 
Maria Alice Varjal de Melo‑Santos and Maria Helena Neves Lobo Silva‑Filha*   

Abstract 

Background:  Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based 
larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been 
widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits 
of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. 
aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain.

Methods:  The biological parameters of individuals reared under controlled conditions were compared. Also, the viral 
susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 
14 or 21 days post-infection (dpi).

Results:  RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, 
developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females 
from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females 
showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: 
χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination 
at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and 
ZIKV viral particles produced statistically similar results for females from both strains.

Conclusions:  Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parame‑
ters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background 
of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. 
This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the 
primary larvicidal effect elicited by this control agent.
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Background
Infections caused by arbovirus dengue (DENV), chikun-
gunya (CHIKV) and Zika (ZIKV) are global public health 
threats, and their transmission to humans relies primar-
ily on Aedes aegypti and Aedes albopictus mosquitoes [1, 
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2]. Brazil is among the most severely affected countries 
and is hyperendemic for all DENV, and the introduction 
of CHIKV and ZIKV has amplified the burden caused by 
arboviruses in this country [3]. The major approach for 
interrupting the transmission of these diseases relies on 
vector control, as effective and accessible vaccines and 
therapeutic drugs are not available to date [4]. Control-
ling Aedes spp. has been a challenge, since these species 
display outstanding survival strategies that enable them 
to occupy, spread and establish in the environment suc-
cessfully [5–8]. Currently, emerging and conventional 
control methods can be integrated to fight Aedes, and the 
use of larvicides remains an important intervention that 
can be adopted in this context [9, 10]. These include envi-
ronmentally safe products with specific modes of action, 
such as Bacillus thuringiensis svar. israelensis (Bti)-based 
larvicides [11]. The active principle of these larvicides is 
an insecticidal crystal produced by Bti that contains four 
major protoxins (Cry11Aa, Cry4Aa, Cry4Ba and Cyt1Aa) 
that kill mosquito larvae [11]. Bti crystals act by ingestion 
and, after they are solubilized in the midgut, protoxins 
are released and processed into active toxins that interact 
with midgut receptors. After the toxins specifically bind 
to receptors, they cause pore formation and are internal-
ized in the cells, leading to osmotic lysis and larval death 
[12, 13]. Bti crystals display high larvicidal activity, but 
they have a selective spectrum, since they target only 
certain Diptera species, including those from the Aedes 
genus [11]. The three-domain Cry-type toxins from Bti 
(Cry11Aa, Cry4Ba, and Cry4Aa) can specifically bind to 
different membrane-bound receptors, such as cadherins, 
aminopeptidases and alkaline phosphatases that have 
been identified in Ae. aegypti larvae [12, 14, 15]. On the 
other hand, Cyt1Aa is a cytolytic toxin with the intrin-
sic ability to insert itself into the cell membrane and form 
pores [16, 17], and this toxin plays an important role in 
the mode of action of the Bti crystal. Cyt1Aa can act as a 
receptor for the other Cry toxins, binding and promoting 
their oligomerization, which enables them to bind to their 
midgut receptors with a higher affinity and form pores on 
the cell membrane [18–20]. The ability of Cyt1Aa to syn-
ergize with Cry toxins considerably reduces the selection 
of resistance caused by receptor alteration, which is the 
most common resistance mechanism reported for Bacil-
lus thuringiensis toxins [21, 22].

Therefore, Bti is one of the most effective recom-
mended larvicides for controlling Aedes spp. worldwide 
in view of its complex and safe mode of action, having 
been used over the last 4 decades [5, 7, 23–26]. Due to 
safety issues, only a few larvicides, including Bti larvi-
cides, remain authorized for mosquito control accord-
ing to the legislation of the European Union [27, 28]. In 
view of the increase in Bti utilization, the impact of the 

continuous exposure of mosquito populations needs 
to be assessed, particularly considering the scenario of 
endemic countries that conduct vector control actions 
throughout the year [29]. To date, most investigations 
have focused on resistance and environmental safety. 
These studies have indicated the absence of resistance to 
the Bti crystal [25, 26, 29–33] and showed its safety over 
almost those decades of use [34–36]. Notably, resistance 
to individual toxins has been reported using laboratory 
selection procedures but not resistance to the whole 
crystal, which is the active principle of Bti-based prod-
ucts [37–40].

Another important aspect, the influence of Bti expo-
sure on the life traits of target insects, has only rarely 
been investigated. Most studies have investigated the 
biological cost associated with mosquitoes that are 
resistant to chemical insecticides [41–43] and the vector 
competence that could affect their capacity to become 
infected and transmit pathogens to humans [44–46]. Our 
hypothesis is that, although continuous exposure to Bti 
did not elicit the selection of resistance, other parameters 
of vector biology could be modified in response to this 
condition and should be investigated to understand the 
consequences of the chronic exposure to this larvicide. 
The major goal of this study was to investigate whether an 
Ae. aegypti strain continuously exposed to Bti for 29 gen-
erations displays changes in life traits, such as fecundity, 
fertility, pupal weight, developmental time, emergence 
rate, sex ratio, haematophagic capacity and vector sus-
ceptibility for DENV and ZIKV. This local strain, RecBti, 
was first established in our laboratory to evaluate the 
selection of Bti resistance after exposing larvae to Bti 
for 30 generations under controlled conditions [33]. No 
resistance to Bti was detected, and RecBti larvae were 
also susceptible to other insecticidal compounds, such as 
temephos and diflubenzuron. Similarly, the activity of the 
detoxifying enzymes involved in the metabolism of insec-
ticidal compounds was unchanged. Taken together, these 
findings indicate that Bti use is compatible with other 
classes of insecticides with a low risk of resistance to Bti 
itself and of cross-resistance to other control agents [33].

Methods
Aedes aegypti strains
Two Ae. aegypti strains were used in this study, RecL 
and RecBti, which were maintained at the insectary of 
the Instituto Aggeu Magalhães (IAM)-FIOCRUZ at 
26 ± 1  °C, 70% humidity and a 14 h:10 h light:dark pho-
toperiod. Larvae were reared in dechlorinated tap water 
and fed cat food (Friskies®). Adults were fed a sucrose 
solution (10%), and females were also artificially fed defi-
brinated rabbit blood once per week. RecL and RecBti 
strains were founded using larvae from Recife city; 
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therefore, they share the same geographic origin. RecL is 
a local reference strain that has been maintained in the 
insectary without contact with any mosquito control 
agent since 1996 [47]. The test strain RecBti was estab-
lished in 2011, and larvae from each generation have 
been continuously exposed to a Bti-based larvicide for 
more than 30 generations and selection procedures were 
described in our previous study [33]. The selection pres-
sure imposed on the large samples of individuals from the 
RecBti strain, originated from Recife as the RecL strain, 
was strong and continuous using a commercial Bti-based 
product containing 37.4% Bti crystals/spores as active 
ingredient. Briefly, around 9,500 third-instar larvae from 
every generation were treated with Bti, and around 74% 
mortality was detected during the pre-imaginal phase. At 
least 2,000 adults that survived the Bti exposure per gen-
eration were used to compose the next parental genera-
tion. Bti exposure was carried during 30 generations and 
involved > 290,000 larvae, as fully described by Carvalho 
et al. [33]. Susceptibility bioassays performed using larvae 
from generations F5 to F30 demonstrated they were sus-
ceptible to Bti, despite continuous exposure to this agent, 
as shown by resistance ratios (RR at LC50): 1.6 (F1), 2.8 
(F5), 2.3 (F10), 1.5 (F15), 1.1 (F20), 0.9 (F25) and 1.5 at F30 
[33]. Individuals of the F30 generation were employed for 
this study and the last Bti exposure was performed on F29 
third-instar larvae. Therefore, F30 larvae were not treated 
with Bti before adult emergence because the goal of this 
study was to record the chronic response of the colony 
and not the induced response to a recent Bti exposure 
during the immature stage of the individuals analysed.

Mosquito maintenance for biological assessment
To assess such biological parameters as fecundity, fertil-
ity, pupal weight, developmental time, emergence rate, 
sex ratio and haematophagic capacity, individuals from 
both strains were kept in the insectary under controlled 
rearing parameters, as described in this section. First, fil-
ter papers containing stored eggs were subject to induced 
eclosion by setting them in a recipient with grass infusion 
(6  g/l) for 24  h. Samples of 100 first-instar larvae, col-
lected within 24 h after eclosion, were transferred to plas-
tic recipients (20 cm length × 16 cm width × 8 cm deep, 
3-l capacity) with 1 l tap water and fed 350 mg of cat food 
(Friskas®) provided on days 0 (100 mg), 4 (150 mg) and 5 
(100 mg) during the assays. After emergence, samples of 
20 females and 20 males (1:1 ratio) were set in a plastic 
container (12 cm height × 10 cm diameter, 2.3-l capacity) 
and fed sucrose solution (10%) ad libitum. Five days post-
emergence, a single meal of defibrinated rabbit blood 
was offered to females using an artificial feeding system 
for 1 h at 37 °C. This system consisted of a blood sample 
(8 ml) set in a Petri dish (6 cm height × 1.5 cm diameter) 

covered by a double layer of Parafilm® membrane, placed 
on each mosquito cage, and kept at 37  °C using heat 
packs. Immediately after the blood meal, only engorged 
females, selected by visual abdomen inspection, were 
transferred to cages and fed sucrose solution (10%) ad 
libitum. Three days after the blood meal, two recipients 
each with water and two sections of filter paper (7  cm 
length × 5 cm width) were placed in cages as a substrate 
for female oviposition for two days. After that step, fil-
ter papers containing eggs were collected and allowed to 
dry at insectary room temperature to complete embry-
onic development. After four days of storage, eggs were 
counted, subjected to eclosion and reared, as described 
above.

Assessment of life traits
The life traits of RecBti (F30) and RecL individuals reared 
according to the procedures described in the previous 
section were compared. For each parameter analysed, 
three replicates per colony were tested, and three inde-
pendent experiments were carried out. Fecundity was 
determined as the total number of eggs recorded on the 
filter papers available for the oviposition of a group of 
20 engorged females. Fertility was recorded as the total 
number of first-instar larvae that hatched from a sample 
of 2,551 eggs that were subjected to the protocol of eclo-
sion for 24 h. Pupal weight was determined by measur-
ing pools of 25 living pupae of each sex. For this purpose, 
pupae were collected until 14  h after the moult, water 
was drained, and samples were weighed and immediately 
placed back in their rearing containers, where they were 
kept until emergence. Adults obtained from these sam-
ples were used to evaluate adult rate, immature devel-
opmental time, sex ratio and haematophagic capacity, 
as described below. The adult rate was determined from 
a sample of 900 first-instar larvae that reached emer-
gence within 15  days. The sex ratio among these males 
and females was also recorded. The haematophagic 
capacity was determined by the percentage of engorged 
females after the artificial blood meal from the pools of 
20 females per cage.

Viral strains and sample preparation for vector 
susceptibility assays
The susceptibility of RecBti females to dengue serotype 2 
(DENV-2) and Zika (ZIKV) viruses was investigated and 
compared to RecL females based on three independent 
artificial blood-feeding assays. The viral stocks used in 
this study were generously provided by the Laboratory of 
Virology and Experimental Therapy from IAM-Fiocruz. 
DENV-2 strain 3808/BR-PE and ZIKV strain 243/BR-PE 
were isolated from patients during dengue [48] and Zika 
[49] outbreaks in Recife in 1995 and 2015, respectively. 
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These strains are able to infect and disseminate in RecL 
females as previously described [50, 51]. Viral stocks 
were then produced in C6/36 cells after five passages for 
DENV-2 and in VERO cells for ZIKV after four passages, 
and both were stored at − 80 °C until use. Prior to artifi-
cial blood-feeding experiments, DENV-2 viral stock was 
grown in C6/36 cells at a multiplicity of infection of 0.1 
for 5–6 days, and ZIKV viral stock was grown in VERO 
cells at a multiplicity of infection of 0.5 for 4–5  days, 
when the cytopathic effects were visualized, which 
allowed the use of those samples for the infection assays 
[50, 51]. Noninfected cell cultures were maintained under 
the same conditions. The mean virus titration for the 
three assays based on the Tissue culture infection dose 
at 50% (TCID50) for DENV-2 was 4.19 × 105 TCID50/ml 
while the determination by assay plaque for ZIKV was 
1.37 × 106 plaque-forming units, (PFU)/ml.

Oral artificial infection blood‑feeding procedure
Each experiment was carried out using nulliparous 7- to 
10-day-old females per strain starved for 24 h. A sample 
between 110 and 130 females from each strain was set 
in a cage (12  cm height × 10  cm diameter, 2.3-l capac-
ity) and fed defibrinated rabbit blood containing cultures 
infected with DENV-2 or ZIKV. Another sample of 30 
females per strain, set in another cage, was fed defibri-
nated rabbit blood containing uninfected cell cultures 
and used as the untreated control group. To prepare the 
blood meal, cell culture samples were subjected to a sin-
gle cycle of freezing and thawing to lyse the cells releas-
ing viral particles, allowing the use of comparable and 
reproducible titles [52]. To this end, cell culture flasks 
were kept at − 80 °C for only 11 min, thawed in running 
water and then mixed with defibrinated rabbit blood in a 
1:1 ratio. These samples were immediately used for feed-
ing all experimental groups simultaneously, and the virus 
suspensions were also quantified, as described in the 
previous section. After feeding, only engorged females, 
selected by visual abdomen inspection, were transferred 
to another cage. These females were maintained under 
standard conditions for 21 days for DENV-2 and 14 days 
for ZIKV experiments, as previously described [50, 51].

RNA extraction and virus detection
RNA was extracted from each head and body part 
from individual females per experimental point (n = 20 
females/point), and each sample was analysed in dupli-
cate [50, 51]. For DENV-2 infection assays, females were 
collected just after feeding (0) and at 7, 14 and 21 day(s) 
post-infection (dpi) [51]. For ZIKV assays, females were 
collected at 0, 3, 7 and 14 dpi [50, 53]. Females fed unin-
fected blood were collected just after the feeding proce-
dure (n = 5). Females were collected and killed in 70% 

alcohol at 2  °C for 2  s. Samples were washed twice in 
ultrapure water at 2  °C. Next, the body and head (with 
attached salivary glands) from each female were care-
fully dissected on a cold plate (2 °C). The dissected parts 
were immediately placed in separate DNase/RNase-free 
microtubes at 2 °C with 300 μl of mosquito diluent con-
taining 0.1  M phosphate-buffered saline-PBS (Na2HPO4 
7.7 mM, K2HPO4 1.1 mM, KCl 2.7 mM, NaCl 137 mM, 
pH 7.4) and supplemented with 10% foetal bovine serum 
(FBS) and 1% Fungizone® (Gibco #15290-018) [54]. Sam-
ples were stored at − 80  °C until RNA extraction. Total 
RNA extraction of the tissue homogenate (100  μl) was 
performed using Trizol® following the manufacturer’s 
protocol (Invitrogen #15596-026) with modifications 
as described in Guedes et  al. [50]. Samples were fur-
ther treated with Turbo DNase® (Ambion #AM2239) 
to prevent DNA contamination and stored at − 80  °C. 
Virus detection and quantification in the samples were 
performed by quantitative real-time polymerase chain 
reaction (RT-qPCR) using an ABI Prism 7500 SDS Real-
Time system® (Applied BioSystems). RT-qPCR assays for 
DENV-2 detection were performed using a SYBR Green 
RT-PCR Kit (QIAGEN #204245) according to previous 
protocols. The reaction contained the RNA sample (5 μl 
with an average concentration of 180 ng/μl), SYBR Green 
Master® mix 1X (10 μl), primers (0.2 μM) based on Kong 
et  al. [55] (Additional file  1: Table  S1), reverse tran-
scriptase (0.2 μl) and ultrapure water for a 20-μl final vol-
ume. Reaction cycling conditions were as follows: 50  °C 
for 30 min; 95 °C for 15 min to activate Taq; 40 cycles of 
94 °C for 15 s, 58 °C for 30 s and 72 °C for 30 s [51]. For 
ZIKV, those assays were performed using a QuantiNova 
Probe RT-PCR kit (QIAGEN #208352), and the reac-
tion mix contained the following: the RNA sample (5 μl 
with an average concentration of 180 ng/μl), QuantiNova 
Probe RT-PCR Master Mix (2X, 20  μl), QuantiNova 
Probe RT Mix (0.2 μl), ROX Reference Dye (0.1 μl) and 
primers [56] (100  μM) (Additional file  1: Table  S1) in a 
20-μl final volume. RT-qPCR cycling included a single 
cycle of reverse transcription for 15  min at 45  °C fol-
lowed by 5 min at 95 °C and then 45 cycles of 5 s at 95 °C 
and 45  s at 60  °C [50]. The viral RNA quantification of 
samples used for the assays was determined by absolute 
quantification using cycle threshold (Ct) values from a 
standard curve of known concentrations using a ten-
fold dilution (10–2 to 10–6) of purified viral transcripts 
included in each PCR plate [55]. Positive control samples 
were RNA extracted from infected culture supernatant, 
and negative control samples were RNA extracted from 
uninfected culture supernatant and samples of RT-qPCR 
reaction mix without RNA. Samples with a melting curve 
for the specificity of the amplified products (~ 78.6  °C) 
were considered positive for DENV-2 RNA. Positive 
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samples for ZIKV RNA were those with a Ct value ≤ 
38.5. The amount of DENV-2 and ZIKV viral RNA in 
each sample was calculated based on the Ct values from 
the standard curve of the viral RNA included in each 
PCR plate.

Statistical analysis
Life traits from the two strains were statistically analysed 
by Student’s t-test, with P < 0.05 being considered signifi-
cant. For virus susceptibility assays, two parameters were 
analysed based on the positive samples for the presence 
of virus RNA. The infection rate (IR) was calculated by 
the number of positive body samples divided by the total 
number of mosquitoes analysed. The disseminated infec-
tion rate (DIR) is the proportion of infected head samples 
considering the total number of infected body samples 
[57]. For statistical analysis, the Chi-square and Fisher’s 
test were used to evaluate the IR and DIR between the 
two strains tested. To compare the number of RNA viral 
copies, the Kruskal-Wallis and Mann-Whitney tests were 
used, considering a P-value < 0.05 to be significant. The 
percentage of females blood-fed and non-fed of cells with 
uninfected or infected cultures were statistically analysed 
by Student’s t-test, with P < 0.05 being considered to be 
significant.

Results
Life traits
To investigate whether the continuous exposure of Ae. 
aegypti larvae to Bti larvicide for 29 generations affects 
their biological performance, seven life traits from RecBti 
individuals were assessed and compared to those of the 
RecL reference strain (Table 1). The fecundity of RecBti 
females, based on > 8,988 eggs from a pool of 20 females, 
showed a similar average of 93.2 eggs/female compared 

with 86.5 eggs/female from RecL females (t(4) = 2.77, 
P = 0.432). A mean of 90.6% of eggs produced by RecBti 
females was viable, which was statistically similar to 
those of RecL females and indicated successful insemina-
tion. The pupal weight of a pool of 25 RecBti specimens 
weighed 69.1 mg and 122.2 mg on average for male and 
female pools, respectively, and similar measurements 
were found for RecL pupal pools. Considering the time 
of development of first-instar larvae to the adult phase, 
we found that emergence took an average of 10.4 and 
11.1  days for RecBti and RecL individuals, respectively, 
which were statistically similar (t(4) = 2.77, P = 0.093). 
From a sample of individuals analysed, the adult rate was 
notably high (96–97%); therefore, most first-instar lar-
vae from both strains achieved emergence. The sex ratio 
recorded using samples of > 800 adults per strain showed 
that an equal proportion of males and females (1.1: 0.9) 
was produced by both strains. The haematophagic capac-
ity of RecBti females was lower (80%) than that of RecL 
(89.2%) females, but this reduction was not significantly 
different (t(4) = 2.77, P = 0.170). The rates of blood-fed 
females from both mosquito strains shown in the next 
sections are in keeping with these findings, except for 
females blood-fed and non-fed from assays DENV-2 with 
cell culture uninfected (t(4) = 2.77, P = 0.033) (Additional 
file 2: Table S2). The parameters analysed in this section 
indicate that RecBti individuals exhibited characteristics 
similar to those of individuals from a reference colony.

Mosquito susceptibility to DENV‑2
To investigate whether exposure to Bti would have 
an impact on the susceptibility of the RecBti strain to 
DENV-2, blood-fed females were subjected to viral 
detection in their bodies (IR) and heads (DIR) by RT-
qPCR. Overall, a mean of 83.5% blood-fed females was 

Table 1  Life traits of Aedes aegypti from RecBti and RecL strains

a For P ≥ 0.05, the mean of each parameter was not significantly different according to Student’s t-test
b Number of 8988 and 8463 eggs laid by 96 and 108 blood-fed females, respectively
c Period from first-instar larvae to emergence

Parameters RecBti RecL Student’s t-testa

n Mean ± SD n Mean ± SD

Fecundity (mean no. eggs/female) 8988b 93.2 ± 3.3 8463b 86.5 ± 7.6 t(4) = 2.77, P = 0.43

Fertility (% first-instar larvae) 2551 90.6 ± 2.8 2526 89.9 ± 3.7 t(4) = 2.77, P = 0.79

Pupal weight (mg), per pool of 25 males 16 69.1 ± 3.4 16 67.3 ± 3.9 t(4) = 2.77, P = 0.15

Pupal weight (mg), per pool of 25 females 13 122.2 ± 7.4 12 121 ± 4.5 t(4) = 2.77, P = 0.61

Development time (days)c 864 10.4 ± 0.5 873 11.1 ± 1.1 t(4) = 2.77, P = 0.09

Adult rate (%) 900 96 ± 2.2 900 97 ± 2.1 t(4) = 2.77, P = 0.77

Sex ratio (male:female) 864 1.1:0.9 ± 0.1 873 1.1:0.9 t(4) = 2.77, P = 0.74

Haematophagic rate (% blood-fed) 120 80 ± 12.6 120 89.2 ± 8.0 t(4) = 2.77, P = 0.17



Page 6 of 13Carvalho et al. Parasites Vectors          (2021) 14:379 

recorded, considering both strains and blood condi-
tions analysed (Additional file 2: Table S2). The mortality 
among the blood-fed females recorded from the experi-
mental groups during all assays was < 4% (Additional 
file 2: Table S2). In females fed uninfected blood DENV-2 
was not detected. In females fed infected blood and col-
lected immediately after the oral infection, between 80 
and 100% were positive for DENV-2 for both strains, 
proving that females ingested the infected blood (Addi-
tional file 3: Table S3). At the other time points, 180 RNA 
samples from females of each strain derived from three 
independent assays were analysed to assess the presence 
of virus (Additional file 3: Table S3). The statistical analy-
sis of data from those three assays performed (Additional 
file  3: Table  S3) showed no differences; next, they were 
combined to represent the infection and dissemination 
profiles of these strains (Fig. 1, Additional file 4: Table S4). 
DENV-2 was found in body samples from both strains at 
each time point assessed (7, 14 and 21 dpi), with infection 
rates that were 35, 36.7 and 53.3% for RecBti against 36.7, 
40 and 45.0% for RecL samples, which did not differ sig-
nificantly (Chi-square: χ2 = 0, df = 1, P = 1.000, χ2 = 0.03, 
df = 1, P = 0.851 and χ2 = 0.53, df = 1, P = 0.465, respec-
tively) (Fig. 1a, Additional file 4: Table S4). DENV-2 was 
also detected in head samples from females whose body 
samples were positive from both strains and at all time 
points analysed, demonstrating virus dissemination in 
that tissue. The dissemination increased over time, ris-
ing from 27% to > 70% positive samples, for both strains 
(Fig.  1b). The dissemination in RecBti after 7 dpi (41%) 
and 14 dpi (82.6%) was higher than that recorded for 
RecL, which was 27.3% and 66.7%, respectively; however, 

these values were statistically similar (Fisher’s exact 
test: P = 0.511, OR = 0.62, 95% CI 0.13–2.92; P = 0.317, 
OR = 0.43, 95% CI 0.07–1.96, respectively) (Fig. 1b, Addi-
tional file 4: Table S4).

Viral quantification of DENV-2 in females samples 
varied from 3.6 × 108 to 2.7 × 1013 log10 RNA copies. 
The quantification of viral copies in the body (Fig.  2a) 
and head (Fig.  2b) was similar between RecBti and 
RecL females, which showed variability within samples 
among time points. DENV-2 copies increased particu-
larly in head samples from 7 to 14 dpi for both strains 
(Fig. 2b). Nevertheless, no significant differences regard-
ing the quantification of viral copies between strains were 
observed at any time point. Datasets from these assays 
showed that females of both strains were susceptible to 
DENV-2, and although an increased dissemination in 
RecBti females was recorded at two time points, these 
results were statistically similar.

Mosquito susceptibility to ZIKV
For ZIKV infection assays, a mean of 89.5% engorged 
females from both strains and conditions was recorded 
(Additional file  2: Table  S2). Samples from females 
engorged with uninfected blood were negative for the 
presence of ZIKV, as expected. The mortality in all 
experimental groups was negligible (Additional file  2: 
Table  S2). The presence of ZIKV RNA copies assessed 
immediately after oral infection was 100% in samples of 
both strains (Additional file  3: Table  S3). Data from the 
three ZIKV assays performed (Additional file 3: Table S3) 
were combined for this analysis (Fig. 3, Additional file 4: 
Table S4). The data showed that both strains were more 

Fig. 1  Detection of DENV-2 RNA in Aedes aegypti females from RecBti and RecL strains. a Infection rate. b Dissemination rate. Each experimental 
point was based on a sample of 60 individuals from three independent assays. Each column represents positives samples in absolute numbers. 
According to Chi-square and Fisher’s exact tests, the percentage between mosquito strains is not significantly different for P ≥ 0.05
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susceptible to infection using ZIKV than the DENV-2 
samples tested in this study, since approximately 60% of 
body samples were infected at 3 dpi. The comparison of 
ZIKV infection between the Ae. aegypti strains did not 

show a significant difference at this time point (Fig. 3a). 
Infection rates after 7 and 14 dpi reached 90–100% 
for RecBti and were significantly higher (Chi-square: 
χ2 = 7.27, df = 1, P = 0.006 and χ2 = 7.69, df = 1, P = 0.005, 

Fig. 2  Quantitation of DENV-2 RNA in Aedes aegypti females from RecBti and RecL strains. a Viral RNA in body samples. b Viral RNA in head samples. 
Experimental points represent positive individuals from three independent assays. According Kruskal-Wallis H-test, the percentage between 
mosquito strains is not significantly different for P > 0.05

Fig. 3  Detection of ZIKV RNA in Aedes aegypti females from RecBti and RecL strains. a Infection rate. b Dissemination rate. Each experimental point 
was based on a sample of 60 individuals analysed from three independent assays. Each column represents positive samples in absolute numbers. 
Asterisks indicate significant differences between values (**P ≤ 0.006; ****P < 0.0001), according Chi-square and Fisher’s exact tests
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respectively) than the 68.3% and 86.7% detected for RecL 
(Fig. 3a, Additional file 4: Table S4). ZIKV dissemination 
to head samples was more pronounced at 7 and 14 dpi 
(Fig.  3b). An increasing dissemination pattern through-
out the time points was observed for RecBti (8.1–93.3%) 
and RecL (5.3–86.3%) samples, which was statistically 
higher for RecBti at 7 dpi (Fisher’s exact test: P < 0.0001, 
OR = 0.11, 95% CI 0.03–0.32) (Fig. 3b, Additional file 4: 
Table S4).

The quantification of ZIKV RNA determined in head 
and body samples from females that were found to be 
positive for the virus showed a number of RNA copies 
ranging from 1.8 × 107 to 3.5 × 1014 log10 (Fig.  4). The 
number of RNA copies in the bodies of RecL and RecBti 
increased gradually over time, but no significant differ-
ence between strains was detected (Fig. 4a). In head sam-
ples, RNA copies increased primarily between 7 and 14 
dpi and remained similar between the RecBti and RecL 
strains (Fig. 4b). Overall, RecBti females exhibited higher 
infection and dissemination rates for ZIKV than did RecL 
females, although the viral quantification in the positive 
samples from both strains was similar.

Discussion
The prolonged exposure of Ae. aegypti larvae to Bti over 
29 generations had no impact on the life traits analysed 
from immature and adult phases, and this finding is com-
patible with the susceptibility status of this strain to Bti 
[33]. It is worth noting that RecBti strain was subjected 
to strong and continuous exposure of all larvae from 
each generation to the Bti crystals [33]. Therefore, the 
lack of resistance was not due to a low selection pres-
sure. Biological costs have often been associated with 
significant levels of resistance to chemical insecticides 
due to the requirement of allocating energetic resources 
to ensure this phenotype [58–60]. However, the reduc-
tion in insect fitness associated with resistance or expo-
sure to bacterial-based larvicides warrants further study, 
since contrasting results have been reported for Culex 
quinquefasciatus strains with a high resistance ratio 
(RR50 > 5,000-fold) to Lysinibacillus sphaericus-based 
larvicides, which exhibit only discrete alterations or no 
biological costs [61, 62]. An Ae. aegypti strain exposed to 
Bti for 22 generations without resistance to the Bti crys-
tal but with resistance to individual Bti toxins (Cry4Aa 
RR50 = 35, Cry4Ba RR50 = 11) showed a reduction in 
fertility rates, larval viability and increased larval devel-
opment time, while adult size, sex ratio, hatching time, 
longevity and survival were not changed [63]. Similarly, 

Fig. 4  Quantitation of ZIKV RNA in Aedes aegypti females from RecBti and RecL strains. a Viral RNA in body samples. b Viral RNA in head samples. 
Experimental points represent positive individuals from three independent assays. The percentage between mosquito strains is not significantly 
different, for P > 0.05, according Kruskal-Wallis H-test
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a Culex pipiens strain exposed to Bti for 20 generations 
and still susceptible to this agent (RR50 = 2.7) showed a 
reduction in its fertility rate, while its longevity and time 
of blood-meal digestion were not altered [64]. Other 
studies that investigated the effects of sublethal doses of 
Bti on adult traits from susceptible strains of Ae. aegypti 
and Anopheles coluzzii, have noted both advantages and 
reductions in different biological parameters evaluated 
[65–67].

Differences recorded among those studies may be 
attributable to variations in the genetic background of 
mosquito species and viral strains, besides selection and 
rearing procedures. The assessment of insect fitness 
in response to exposure or resistance to B. thuringien-
sis toxins, in general, can be based on a large number of 
parameters [68]; in addition, variations in the adopted 
methodologies can lead to different results [43]. Atten-
tion should also be directed to certain specific biological 
mosquito features, such as protandry, that require suita-
ble conditions for enabling the eclosion of larvae that will 
develop into males and females and their emergence [69]. 
Optimal conditions for immature development and adult 
maintenance are also critical for mosquito development. 
Therefore, under the controlled conditions of this study, 
Ae. aegypti from the RecBti strain did not exhibit changes 
in a number of major life traits analysed; however, other 
biological parameters might be affected, such as vector 
competence patterns.

Vector competence is the intrinsic ability of an insect 
to be infected with a pathogen and transmit it to another 
host. Few studies have investigated this feature in mos-
quito strains exposed to Bti, particularly after a long-term 
exposure period. In our study, Ae. aegypti RecBti females 
were determined to be susceptible to DENV-2 and ZIKV 
infection, as shown for the RecL reference strain previ-
ously assessed [50, 51]. Females from both strains were 
more susceptible to ZIKV than DENV, and this greater 
permissiveness of Aedes sp. to ZIKV agrees with the find-
ings of other studies [50, 51, 70–72]. The comparison 
between these Ae. aegypti strains showed that RecBti 
females had significantly higher infection (at 7 and 14 
dpi) and dissemination rates (at 7 dpi) for ZIKV than did 
the reference RecL strain at some time points. Notably, 
an increased dissemination in RecBti females was also 
observed for DENV-2, but this parameter was not sta-
tistically different that of from RecL females. Quantifica-
tion of viral copies was similar for both arboviruses in the 
mosquito strains; therefore, the increased susceptibility 
to ZIKV was related to the greater infection and dissemi-
nation rates only [51, 53, 73, 74].

To the best of our knowledge, our study is the first to 
report the effect of chronic exposure of Ae. aegypti to 
Bti during their larval phase (29 preceding generations) 

on the susceptibility of females for ZIKV. Most studies 
have investigated the arbovirus susceptibility of females 
exposed to sublethal doses of Bti during the larval phase 
but without a history of previous Bti exposure. Molt-
ini-Conclois et  al. [75] assessed the susceptibility of Ae. 
aegypti to DENV-1 and CHIKV in females from a suscep-
tible strain, a Cry4Aa-resistant strain (RR = 1018) and a 
composite Bti-selected strain (susceptible to Bti with var-
iable resistance from 5- to 14-fold to individual toxins). 
No alterations were observed for CHIKV, and enhanced 
susceptibility for DENV-1 was detected for Cry4A-
resistant and Bti-selected females treated with sublethal 
Bti doses, similar to larvae. However, this effect was not 
observed in females that were not treated during their 
larval phase [75]. This finding suggests that increased 
DENV-1 susceptibility could be related to recent Bti lar-
val exposure rather than to the previous status of Bti sus-
ceptibility of the strains tested. Another study showed no 
changes in DENV-1 susceptibility in Ae. aegypti females 
exposed as larvae to sublethal Bti doses [67]. Carlson 
et al. [76] investigated the carry-over effect of Ae. aegypti 
on susceptibility to ZIKV and DENV after larval and/or 
adult exposure to Enterobacter ludwiggi and to a B. thur-
ingiensis (ATCC #35646) crystal-producing strain that 
was not specified as Bti. Significant alterations were seen 
in females exposed to E. ludwiggi during either larval 
(lower DENV-2 infection) or adult phases (higher ZIKV 
infection). Females originating from B. thuringiensis-
treated larvae exhibited no alteration. Contrary to other 
published findings, our study showed an increased vec-
tor susceptibility to ZIKV not associated with an induced 
response related to the Bti exposure of tested individuals 
during their larval phase but rather a constitutive profile 
associated with the background of bacterial exposure 
during the 29 preceding generations.

The enhanced viral susceptibility of RecBti females 
might be further investigated, considering the role of 
the immune system and microbiota in modulating such 
responses, as reviewed by Caragata et al. [77], and few 
studies have investigated the role played by Bti in this 
process. An example was an Ae. aegypti strain exposed 
for 18 generations (RR50 = 2) that exhibited reduced 
expression of genes from the Toll signalling pathway 
and genes coding antimicrobial peptides [78]. The Toll 
pathway is widely known in the defence of Ae. aegypti 
to DENV-2 [79] and ZIKV [80], as well as JAK/STAT 
[81], since they can activate effector molecules that 
limit viral spread. Aedes aegypti antimicrobial peptides, 
such as defensins and cecropins, with antiviral action 
have also been reported [82]. The microbiota in the 
mosquito larval environment and in the larval midgut 
[74, 83] can provoke changes in adult traits, includ-
ing vector competence [74, 84]. Therefore, Bti, as a 
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bacterial pathogen present in the aquatic environment 
and ingested by mosquito larvae [11], might play an 
important role in these microbiota. Indeed, Ae. aegypti 
larvae from a laboratory-susceptible strain exposed to 
Bti for 25  h exhibited a reduction in the diversity of 
bacteria [85]. As previously described, the RecBti and 
RecL strains compared in our study derived from the 
same geographic area; they were maintained under 
identical and controlled conditions of insectary, except 
for the strong and continuous condition of Bti exposure 
imposed to the RecBti larvae. Although the reduced 
susceptibility to the arbovirus tested was found to be 
associated to this specific condition, those strains were 
not established in parallel; therefore, it is not possible 
to discard other factors that could have an influence on 
those findings.

It is important to note that the association of larval 
exposure to Bti and a higher susceptibility of Ae. aegypti 
females for the virus investigated in our study cannot 
be extrapolated to the epidemiological level. This find-
ing is observed because the process of virus transmis-
sion to humans is complex and depends on multiple 
factors. Some of these properties are very powerful, 
such as mosquito density and longevity [86], features of 
viral strains and the susceptibility status of the human 
population, which might overcome the consequences 
of reduced or increased vector competence. Previous 
investigations showed that the status of mosquito sus-
ceptibility, per se, displays a wide range of variations 
among populations [53, 57, 87–89] in addition to other 
conditions that also modulate arbovirus transmission.

Conclusions
Our studies show that the RecBti Ae. aegypti strain 
exposed to Bti for 29 preceding generations exhibited 
no altered life traits, but females showed an increase 
in the susceptibility status to ZIKV, associated with a 
greater dissemination. This feature was not induced by 
larval exposure of tested females, as shown by other 
studies, but it was rather a response associated with 
long-term and continuous exposure to Bti. This work 
paves the way for further research investigating other 
mechanisms and phenotypes associated with chronic 
exposure to this control agent, which is of strategic 
importance for its rational utilization.
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