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With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC)
using deep learning (DL) techniques has become very popular. (is is even more relevant for Internet of things (IoT)-assisted
wireless systems. (is paper presents a lightweight, ensemble model with convolution, long short term memory (LSTM), and
gated recurrent unit (GRU) layers. (e proposed model is termed as deep recurrent convoluted network with additional gated
layer (DRCaG). It has been tested on a dataset derived from the RadioML2016(b) and comprises of 8 different modulation types
named as BPSK, QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and WBFM.(e performance of the proposed model has been
presented through extensive simulation in terms of training loss, accuracy, and confusionmatrix with variable signal to noise ratio
(SNR) ranging from −20 dB to +20 dB and it demonstrates the superiority of DRCaG vis-a-vis existing ones.

1. Introduction

In the fifth generation (5G) and beyond (B5G) wireless net-
works, neural networks (NNs) have receivedmuch traction as a
viable alternative to traditional classification algorithms [1–3].
NN-based classifiers are feature-based classifiers and are widely
used for AMC problems in 5G and B5G wireless networks.
(eir application in IoT is especially promising due to their
comparatively lightweight and more versatile design [4, 5].
AMC is the process of classifying modulation scheme
employed in a signal. It is a core technique for noncooperative
communication and is an intermediary step between signal
reception and signal demodulation [6, 7]. Design of a mod-
ulation classifier mainly consists of two key steps: signal pre-
processing and selection of effective classification algorithm.
Preprocessing involves estimation of signal statistics consti-
tuting carrier frequency, signal power, and other statistical

signal information as per requirements of the classification
algorithm [8–10]. Modulation classification algorithms can be
considered either likelihood based or feature based [7, 10].
Likelihood-based classifiers compare the likelihood ratio of the
received signal against a predetermined threshold to decide the
modulation. (ese classifiers have merit in minimising the
probability of a false classification, but are computationally
complex making hardware implementation challenging. Fea-
ture-based classifications operate in two phases, (a) feature
extraction phase, which can be considered a preprocessing step,
and (b) classification. Such methods estimate specific features
of the received signal to classify the signal [11]. Although recent
feature-based classifiers are DL based and optimum in per-
formance, they reduce computational complexity substantially
and are thus suitable for hardware implementation with apt
design [12, 13]. (e role of convoluted neural network (CNN)
and recurrent neural network (RNN) for AMC in wireless
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communication has been widely investigated in [7, 14, 15]; the
models focus mainly on feature extraction, computational
complexity, and accuracy. A plethora of researches have been
carried out in feature-based AMC. Direct applications of DL
algorithms on the received signal eliminate the feature ex-
traction step. (is approach further reduces computational
complexity associated with AMC [16, 17]. (e application of
convoluted neural network (CNN) and recurrent neural net-
work (RNN)-based classifiers in AMC has shown promising
accuracy [7, 18]. Such classifiers usually provide acceptable
performance at reduced computational complexity [15]. It
explores the role of DL and NN to solve problems in wireless
communication domain. NNs have shown promising per-
formance in multiple radio access technologies and spectrum
management. DL has a wider scope of possible applications in
IoT networks, vehicular network design, and smart cities
[1, 15, 19]. In the realm of 5G and sixth generation (6G)
communication, DL applications include but are not limited to
channel estimation, multi-input multioutput (MIMO) detec-
tion, signal classification, and encoding and decoding problems
[3].

(e role of NN in AMC has been explored in greater
detail in [7]. (e use of both CNN- and RNN-based models
for AMC with their potential advantages and disadvantages
has been discussed in [14, 20]. Such models demonstrated
mixed results with average accuracy along with a more
complex feature extracting preprocessing step. With the
potential of DL in AMC, research targeted towards more
efficient and accurate models design for IoT applications is
obvious [21]. It would require customized model design as
per the unique requirements of wireless system under
consideration. More computationally demanding models
have been proposed as viable alternatives with improved
accuracy. (ese models have the trade-off between complex
preprocessing steps and improved accuracy, which restricts
the versatility of such models in general, as well as their
use in power constrained IoT systems [4, 5]. (e outputs of
DL-based classifiers generally showed mixed results with the
models showing middling accuracy or requiring a more
complex feature extracting preprocessing step. (e potential
of DL in AMC problems is sufficiently evident but will
require the design of more efficient and accurate models as
per the unique requirements of that particular wireless
system. (e work of current paper has been carried out
based on the following objectives and fulfills the same:

(i) (e first objective of this work is to perform a
comparative study of popular deep learning ar-
chitectures in the literature to try and understand in
which specific design characteristics are best suited
for the problem under consideration. Based on the
related work on various DL-based approaches for
modulation classification, models are to be devel-
oped and tested to compare features and results.

(ii) (e main focus has been in exploring the possibility
of developing a novel deep learning classifier for
IoT-based systems. (e prime focus is in a robust,
lightweight design with a lower computation and
training cost.

(iii) After the thorough study, an original classifier has to
be designed based on the specific requirements of
accuracy and overall performance.(emodel has to
be designed, coded, and tested to meet up to the
predefined standards.

(ough a few researches have approached AMC in 5G
and B5G recently, yet this paper pioneers ensemble learning
models targeted specifically for IoT-assisted wireless net-
works. In addition, the proposed model employs only fea-
ture extraction phase making it lightweight and suitable
candidate for IoT-assisted wireless network applications.
Following this introduction, the remaining paper is orga-
nized as follows: Section 2 presents the system model and
articulates the problem formulation. Section 3 presents the
proposed ensemble approach-based model for AMC. (e
simulation results are presented in Section 4.(e concluding
remarks are presented in Section 5.

2. System Model and Problem Formulation

Internet of things (IoT) is a system of interconnected objects
with innate ability to collect, record, store, and share in-
formation over the Internet [4]. Emerging trends and suc-
cesses within this technology lies in its ability to
communicate and transfer data within the network allowing
for it to create a more efficient and “smart” solution to a
multitude of traditional problems [22].

A typical IoT system considered here is presented in
Figure 1.(e system consists of end nodes which are sensors
or smart devices with embedded systems consisting of
processors and other communication hardware. Addition-
ally, IoT networks also consist of network gateways, one or
more central hubs for the data analysis to aid decision
making. IoT architectures are application specific, thus ex-
hibit great levels of diversity based on specific requirements.
One of the challenges within the network layer in IoT
systems is effective wireless communication between con-
stituent devices. (e nature and architecture of the system
often require the use of diverse modulation formats leading
to classification challenge at the receiver. All these together
affect overall complexity of the network [5]. (is work at-
tempts to address a crucial limitation of power constrained
IoT-based communication system, with a pretrained light-
weight DL-based ensemble classifier.

(e system under consideration is designed to work with
8 different modulation types. (e received base-band signal
envelope in accordance with Nyquist criterion is considered.
If y is the received signal, A is the amplification coefficient, x
is the original modulated signal, and n is the additive white
Gaussian noise (AWGN) with a zero mean introduced by
the channel, then kth received signal sample can be repre-
sented as

y(k) � A e
jψ

x(k) + n(k), (1)

where y � y(k) 
K

k�1 is the set of complex valued base-band
signal with phase offset ψ. (e received signal comprises of
time domain real in phase I and imaginary quadrature Q

components. (erefore, the I, Q samples can be given by
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I � R[y(k)]
K
k�1,

Q � I[y(k)]
K
k�1,

(2)

respectively, where R[·] and I[·] are the real and imaginary
parts of the complex base-band signal. Based on this signal
model, the experimental work has been presented in Section 4.

3. Deep Recurrent Convoluted Network with
Additional Gated Layer (DRCaG)

3.1. Existing Models for Proposed Work

3.1.1. Convoluted Neural Network. (e benchmark perfor-
mance comparison was setup with two separate CNN
models described in literature [7, 23] for AMC. (e first
model is a two layered CNN model with intermittent zero
padding, dropout layers, and a final dense layer. (e model
comprises a total of 2,85,272 trainable parameters. Further,
two additional convoluted layers (i.e., 4-layered CNN) with
4,54,184 trainable parameters have been included to im-
prove the performance. (is inclusion nearly doubles the
tunable parameters compared to two-layered CNN. (e
model picked up detailed correlations within the data. (e
model suffered a slightly longer training trade-off. (is 4-
layered CNN model is tested in a standardised environment
and performance results have been discussed in Section 4.

3.1.2. Long Short Term Memory and Gated Recurrent Units.
Two different versions of adopted RNN models [14] are
discussed here. A long short term memory (LSTM) model
with two LSTM layers, a fully connected dense layer, and

final output layer are considered. For comparison, a gated
recurrent unit (GRU) model is developed by replacing both
the LSTM layers as a possible alternative to the otherwise
identical architecture. Both LSTM and GRU-based RNN
models are capable of picking up sequential correlations
within the time series data and require lower training time as
expected. Both models exhibited slight difference in per-
formance for the dataset under consideration, therefore only
the performance of LSTM-based existing model has been
used in this study.

(is work aims to explore the possible applications of
ensemble-based learning for AMC. In order to solve
modulation classification problem for IoT-assisted 5G
network, a novel DL model based on ensemble approach has
been proposed. (e model considers computational limi-
tations and nature of signal information in typical IoT
networks. (e focus was on developing a lightweight and
robust DL model which can best perform under the com-
putational limitations and can address the communication
challenges in an IoT-based system.

(e advantage of DL-based classifiers is in its relatively
low memory requirements and low algorithm complexity
leading to reduced computational cost, making it an ideal
candidate for low-cost, real-time hardware implementa-
tions. Figure 2 represents the proposed ensemble approach-
based deep recurrent convoluted network with additional
gated layer (DRCaG) model for AMC. (is model has been
developed specifically for the system under consideration.
As discussed, CNNs have strong property in extraction of
spatial feature information and classification problems [7].
(is property translates reasonably well in signal classifi-
cation as well, particularly when it is employed to identify
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Figure 1: Network architecture of a typical IoT-assisted wireless system.
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and extract spatial features of time domain signal in order to
perform the final classification. RNN-based models, such as
LSTM and GRU described in Section 3.1.2 specialise in
extracting the temporal information.(erefore, such models
are extensively used in time series forecasting problems.(is
property of RNNs rendered effectively for the current
problem where it can be used to find strong correlations in
the sequential time series data under scrutiny. (erefore, a
DRCaG model with two convoluted layers, one LSTM layer,
and an additional gated layer is proposed.

As demonstrated in Figure 2, the input data stream is
first fed into a convoluted layer with (4× 256) kernels.(is is
followed by the first dropout layer.(e output data from this
feeds into the second convoluted layer with (4× 64) kernels.
Similar to the first layer, the output is fed into a second
dropout layer. (e third layer uses a LSTM model with
(2× 256) units followed by the third dropout layer. Finally,
this feeds the gated recurrent unit layer with 256 units and
the fourth dropout layer. A final dense layer then generates
the final prediction. (e convoluted layers, the LSTM and
the GRU, use a rectified linear unit (ReLU) activation
function, whereas the final dense layer uses a 10-way
SoftMax function.

Since the dataset is of time series I/Q samples of 8
different signal modulation types, the sequential nature of
time series signal information means recurrent neural
network-based models such as the LSTM and GRU ought to
perform better for this particular classification problem.
Convoluted neural networks however perform much better
at feature extraction from two-dimensional information as
seen in image classification problems. (e proposed model
aims to combine the shared capabilities by using two
convoluted layers to extract I/Q features which are then fed
into an LSTM followed by a GRU layer to extract temporal
dependencies from the time series signal data. (e final
classification is then performed by a FC dense layer for the
output. (e model has been trained and tested under
identical parameters similar to models described in the
previous section.

4. Simulation Results and Discussion

(is section discusses the experimental setup, simulation
results of DRCaG model, and its performance compared

with network.(e efficacy of the proposed work for problem
under consideration is also evaluated.

4.1. Experimental Setup. Based on the signal model, a dataset
derived from the RadioML2016 [24] has been created for
comprising of 8 different modulation types named as BPSK,
QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and
WBFM. (e dataset is tested for a wide range of signal to
noise ratios (SNR) over −20 dB to +20 dB [7]. (e entire
dataset comprises of 4,80,000 samples, out of which 70% was
used for training and 30% for testing. A standard 70%–30%
split was considered to maintain consistency with the lit-
erature and reduce the likelihood of an overfitted model.(e
simulations have been performed with Jupyter notebook and
computing system having Intel(r) Xeon(R) W-2104 CPU
@3.20GHz processor, 32GB RAM, and 2 NVIDIA Quadro
RTX 500 GPU cards each having memory of 6GB. In this
simulation, only one GPU card has been used. (e dataset
was first tested with existing CNN and LSTM models. To
maintain uniformity, all of the models were simulated in a
standardised environment with batch sizes of 512 and 150
training cycles with early stopping to prevent overfitting.

4.2. Simulation Results. Performance of the proposed
DRCaG model is explored as a viable alternative to existing
models such as 4-layered CNN and LSTM.(e performance
comparison of these models has been carried for training
loss and accuracy. Figure 3 presents the training loss and the
validation error of the 4-layered CNN, LSTM, and DRCaG
models. It can be seen from Figure 3 that as the number of
epochs are increased, the training loss and validation error
decrease for the models under consideration. Further, it is
also observed that the proposed DRCaG model has high
training loss and validation error compared to existing DL
models for lower number of epochs. Yet, it outperformed the
other models with high number of epochs.

(e accuracy results of the DRCaGmodel in comparison
to existing DL models are presented in Figure 4. It can be
seen from Table 1 that 4-layered CNN, LSTM, and the
proposed DRCaG models have accuracy of 82%, 83%, and
90% at higher SNRs, respectively. As expected, the LSTM-
based models however had shortest training time at about 18
minutes for 150 epochs. (e CNN and DRCaG had a
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Figure 2: Proposed ensemble DRCaG model.
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significantly larger training time at close to 30 minutes,
which can be a potential drawback when training on much
larger and expansive datasets. (e proposed DRCaG has a
marked improvement over the existing models and can be
used as a suitable alternative for low power applications.

Certain modulation signals are clearly more difficult to
classify due to signal characteristics. Figure 5 presents the
confusion matrix of the DRCaG model. It can be deduced
that all of the tested models along with DRCaG showed
noticeable false classification between the 8-PSK and QPSK
signal types. (is can be attributed to the similarities in the
I/Q sample trends because of the modulation algorithm they
employ.(is accuracy can be improved even further with the
use of a larger and more expansive dataset and further
microtuning of model hyperparameters. However, the
preliminary results clearly indicate the promise and po-
tential of the proposed DRCaG model for AMC framework
for IoT-assisted wireless networks.

4.3. Discussion on Computational Aspects of DRCaG Model.
(e greatest hurdle in deploying traditional classifiers in
IoT-based systems lies in their huge computational re-
quirements. (eoretically, likelihood-based classification
techniques provide the best accuracies but are compu-
tationally complex, thus difficult for lightweight imple-
mentation. Traditional feature-based classifiers are
sufficiently lightweight for IoT applications; however,
these classifiers suffer from nonlinear effects. Moreover,
features have to be selected keeping in consideration the
particular modulation types, which makes the classifier
less versatile in practical applications. DL-based classi-
fiers successfully tread the line between sufficiently high
accuracy and lower computational costs. Even here,
training more complex networks on larger datasets can
greatly improve performance but demand more com-
putational power and it can also lead to longer training
times.
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Figure 3: Training loss of models under consideration: (a) 4-layered CNN model; (b) LSTM model; (c) DRCaG model.
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(e proposed model offers a similar training and
computational requirement to the preexisting 4-layered
CNN model in our training and test environment. (is is
indicative of its sufficiently lightweight nature for the

scenario under consideration. DRCaG model noticeably
enhances the accuracy by around 7% without preprocessing,
which makes it an attractive candidate for wide variety of
IoT applications.
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Figure 4: Accuracy curves of models under consideration: (a) 4-layered CNN model; (b) LSTM model; (c) DRCaG model.

Table 1: Accuracy comparison.

SNR (dB)
Accuracy (%)

4-layered CNN (%) LSTM (%) DRCaG (%)
−20 13.00 14.00 15.00
−10 30.00 30.00 31.00
0 78.00 80.00 85.00
+10 82.00 83.00 88.00
+15 82.00 83.00 90.00
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5. Conclusion

(e rise of IoT-based systems in multiple fields of appli-
cation shows the tremendous potential within this domain.
(e nature of IoT architectures is such that often times the
challenge of noncooperative communication, with special
respect to signal classification, may arise. (e applications of
DL as averse to traditional feature-based signal classification
problems give a robust and computationally economical
alternative for AMC. (is in itself is of sufficient merit for
use of DL-based classifiers for IoT. An effective model for
this problem must balance a lightweight design with a
reasonably high accuracy. (erefore, the proposed DRCaG
model is a potential alternative to existing DL models in IoT
applications due to its lightweight architecture and im-
proved accuracy. (e efficacy of the proposed model in
terms of accuracy, confusion matrix, and complexity for
IoT-assisted wireless network has been discussed and
demonstrated through extensive simulation. It can be
concluded that the proposed model shows 7% superior
accuracy from the existing models for the system under
consideration. (e simulation results affirm that the pro-
posed model is a potential candidate for the AMC classi-
fication problem in IoT-assisted wireless networks. (e
proposed model can be employed as a substitute to tradi-
tional classification algorithms for potential applications in
IoT-assisted wireless systems.
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