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Coastal wetlands (CW) are the junction of the terrestrial and marine ecosystems 
and have special ecological compositions and functions, which are important for 
maintaining biogeochemical cycles. Microorganisms inhabiting in sediments play 
key roles in the material cycle of CW. Due to the variable environment of CW 
and the fact that most CW are affected by human activities and climate change, 
CW are severely degraded. In-depth understanding of the community structure, 
function, and environmental potential of microorganisms in CW sediments 
is essential for wetland restoration and function enhancement. Therefore, this 
paper summarizes microbial community structure and its influencing factors, 
discusses the change patterns of microbial functional genes, reveals the potential 
environmental functions of microorganisms, and further proposes future 
prospects about CW studies. These results provide some important references 
for promoting the application of microorganisms in material cycling and pollution 
remediation of CW.
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1. Introduction

CW are the transitional regions between the terrestrial and marine ecosystems, mainly 
including shallow seas, estuaries, mangroves, salt marshes, deltas, etc. CW have the vegetated 
zones (mangroves, salt marshes, and seagrass beds) and non-vegetated zones (mudflats and 
sandy beaches), which are critical areas connecting land, freshwater habitats, and the ocean 
(Levin et al., 2001). CW can provide many facilities for human activities such as fishing and 
breeding (Zhang and Shao, 2013), and also protect coastal zones in flooding (Narayan et al., 
2017). Moreover, CW richen in biodiversity, material cycling, energy flow, and species migration 
and evolution, with high primary productivity (Cui et al., 2016). CW are the most vulnerable 
ecosystems due to ocean dynamics, river disturbance, and human activities (Wang et al., 2022), 
and its degradation (such as biodiversity decline, ecosystem function loss, and coastal vegetation 
reduction) may lead to biological invasions, water quality deterioration, and reduced coastal 
protection from flooding and storm events (Barbier et al., 2011).
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Microorganisms are an important component of wetland 
ecosystems and play key roles in biogeochemical cycles (DeLong et al., 
2006). Microbial community structure has significant differences 
depending on different soil properties and vegetation types. Soil 
properties and plant types are the main determinants of microbial 
community structure (Yu et al., 2014). The interdependence between 
plants and microorganisms has a critical role in regulating ecosystem 
services such as nutrient cycling, productivity, and pollutants 
degradation (Abdu et al., 2017). Microorganisms can decompose soil 
organic matter, promote sulfate reduction, sulfide/sulfur oxidation, 
iron reduction, nitrification, pollutant degradation, and help improve 
soil structure and enhance ecosystem stability (Behera et al., 2017). 
CW exhibit strong nutrient and salinity gradients due to freshwater 
and seawater interactions, affecting soil microbial composition. 
Furthermore, these changes in microorganisms can lead to the 
variations of the function and structure of CW (Webster et al., 2015).

Despite the importance of microorganisms in CW (Figure 1), few 
studies have reviewed and summarized them. Therefore, the purpose 
of this study is: (1) to provide an overview of microorganisms in CW 
sediments; and (2) to identify future research directions and possible 
difficulties. In this paper, we summarize the community structure 
characteristics, functional genetic variation and potential 
environmental functions of microorganisms in CW.

2. Microbial community structure in 
CW

The special soil characteristics and hydrological conditions of CW 
constitute a unique microbial community (Peralta et  al., 2010). 
Linking microbial communities to physical, chemical, and biological 
factors can explore the drivers of microbial community formation 
(Fierer and Jackson, 2006), which is important for the restoration of 
environmental functions in wetland ecosystems.

2.1. Microbial community composition

Microbial species are abundant in CW, which are mainly divided 
into bacteria, archaea, and fungi (Table 1). Among them, bacterial 
communities have the highest richness, followed by archaeal and 
fungal communities (Cheung et al., 2018). Although the composition 
is the same at community level, there is some variation in microbial 
composition among different CW and different times of wetlands 
(Adame et al., 2012).

Proteobacteria is the most abundant bacterial phyla in CW 
sediments (Ling et al., 2015), and mainly includes α-, β-, γ-, δ-, and 
ε-Proteobacteria (Hu et  al., 2014), and their composition varies 
somewhat in different wetland types. For example, γ-Proteobacteria 
dominates in coastal zone of Yellow River Delta, whereas γ- and 
δ-Proteobacteria dominate in brine-freshwater zone (Hu et al., 2016). 
ε-Proteobacteria is dominant Proteobacteria in Jiuduansha Wetlands 
of Yangtze Estuary, while γ- and β-Proteobacteria are abundant in 
Jiangyanan Shoal of the river (Fei Xi et al., 2014). On the contrary, 
Firmicutes is the dominant phylum near salt flats of the Yangtze River 
Delta (Zou et al., 2020). In addition to Proteobacteria, Actinobacteria, 
Chloroflexi, Bacteroidetes, Firmicutes, Acidobacteria, and 
Planctomycetes are also the main phyla in CW (Zhang et al., 2017; An 

et al., 2019). Although bacterial compositions are relatively similar, 
there are some differences in different wetlands types. Moreover, 
archaea are also an important component of microbial communities 
and play an important role in biogeochemical cycles of CW (Narrowe 
et al., 2017). The dominant phyla of archaea are mainly Euryarchaeota, 
Thaumarchaeota, Bathyarchaeota and Grenarchaeota (Zhao et  al., 
2020; Chi et al., 2021a,b,c,d). Fungi as an important component of 
microorganisms and its community are essential for maintaining soil 
versatility (Li H. et al., 2019). Ascomycota and Basidiomycota are the 
dominant taxa in CW (Mohapatra et  al., 2021). Among them, 
Dothidomycetes and Sordariomycetes are the dominant classes, and the 
dominant orders include Pleosporales, Agaricales, and Capnodiales (Ye 
et al., 2022). Moreover, many fungi cannot be attributed to the known 
phyla (Cheung et al., 2018).

2.2. Factors shaping microbial community

2.2.1. Soil characterizations
Microorganisms in CW sediments are influenced by soil 

physicochemical properties, including salinity, pH, and nutrients 
(Jackson and Vallaire, 2009). These properties can affect microbial 
growth and metabolism as well as microbial activity (Figure 2).

Salinity can directly affect abiotic and biotic processes, and is 
considered as a major driver of ecosystem structure and function 
(Brucet et  al., 2012). Previous study showed that salinity affected 
microbial communities and the associated biogeochemical cycles 
(Chambers et al., 2011). In general, salinity elevation usually has a 
negative impact on microorganisms, and low salinity environments 
are suited for microbial growth (Hu et al., 2016). High salinity can 
affect CW ecosystems through inhibiting plant growth and 
heterotrophic metabolism, and reducing soil quality and heterotrophic 
bacterial diversity (Abed et al., 2007). Microbial community structure 
varies along salinity gradients (Yang et al., 2018). It was found that 
halophilic bacteria such as Fodinibius, Alkalilimnicola, Phycisphaera 
and Gp21 were abundant in high-salinity zone of the Yangtze River 
Delta, and the dominant genera in the transition zone were 
Rhodocyclus, Flavobacterium and Shin (Shinell; Li J. et al., 2019).

pH has a significant effect on microbial community (Rousk et al., 
2010). The bacterial composition and diversity in various ecosystems 
respond strongly to soil pH (Shen et al., 2013). Nitrospirae was lower 
in saline wetlands with high pH than in freshwater wetlands with low 
pH, and Nitrospirae was significantly negatively correlated with pH 
(Chi et al., 2021a,b,c,d).

Nutrients can also affect microbial growth. Total organic matter, 
total nitrogen and total phosphorus in the samples are usually tested 
as quantitative indicators of nutrient content when conducting 
experiments (Wang et al., 2012). The content of available nutrients 
affects microbial activity, and the addition of nutrients can effectively 
increase the abundance of bacterial strains (Meng et al., 2016). The 
unique structural composition of microbial communities in intertidal 
sediments of the Yellow River Delta is nutrient-related, and many 
saprophytic microorganisms are enriched (Zhang et al., 2017).

2.2.2. Vegetation types
Vegetation has important influences on microbial community. 

Plants can create a unique environment for rhizosphere 
microorganisms (Grayston et al., 1998). Studies have shown that 
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nutrient acquisition strategies of plant can drive the structural and 
functional formation of soil surface microbes and that changes in 
vegetation lead to changes in soil microbial diversity and function 
(Bahram et al., 2020). Root-mediated changes in soil can provide 
oxygen or other substrates for soil microbes (Noll et al., 2005) and 
also alter microbial community (Lipson et al., 2015). Plants alter the 
physicochemical conditions of sub-canopy soils (Menon et  al., 
2013), such as leaf litter can improve soil fertility and plant roots 
can release a variety of compounds into the surrounding soils 
(Garbeva et al., 2004). Roots of woody plants, such as mangroves, 
have different chemical (Perry and Mendelssohn, 2009) and 
physiological properties (Skelton and Allaway, 1996), and can 
transport different root secretions (Bertin et al., 2003). Differences 
of microbial community composition in mangrove- and swamp-
dominated soils in Florida may be  due to differences in root 
secretions or oxygen availability between vegetation types (Barreto 
et al., 2018). The photosynthesis of plants lead to the adsorption of 
cyanobacteria on plant rhizomes with more than 50% abundance 
in Yellow River Delta (Li et al., 2021).

3. Microbial functional genes in CW

3.1. Nitrogen cycle-related genes

Microbially mediated nitrogen cycle is one of the important 
components of biogeochemical cycles in CW (see Figure 3A). Among 
them, denitrification and dissimilatory nitrate reduction to ammonia 
(DNRA) processes are particularly important, and the end-products 
of these pathways have different effects on ecosystem nitrogen 
effectiveness (Morina and Franklin, 2022).

Denitrification plays a key role in nitrogen removal (van Breemen 
et  al., 2002), and there are some important metabolic enzymes, 
including nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide 
reductase (Nor), and nitrous oxide reductase (Nos; Levy-Booth et al., 
2014). Among these, Nir catalyzes the rate-limiting step in 
denitrification, encoding by the nirK and/or nirS genes. A previous 
study found that the enzyme genes associated with denitrification 
decreased with increasing distance from the river bank of Yellow 
River, and reached their highest levels at distances of 0–50 m (except 
0 m; Li W. et al., 2019). Saline plants had no significant effect on the 
abundances of denitrification genes nirK, nirS, and nosZ in Suncheon 
Bay, South Korea (Chaudhary et al., 2018). Mesosaline soils affect 
negatively on nirS and nirK genes compared to freshwater soils in the 
east coast of the United States (Morina and Franklin, 2022). Moreover, 
the diversity of nirS genes in Chinese CW exhibited significant 
latitudinal heterogeneity, and it is speculated that temperature rather 
than salinity contributes significantly to the latitudinal distribution of 
nirS-based denitrifying bacteria (Gao et al., 2016).

DNRA can convert nitrate nitrogen to ammonia nitrogen, and is 
one of the potentially important nitrogen cycling processes in CW. The 
reduction of NO2

− to NH4
+ in DNRA is catalyzed by nitrite reductase, 

encoding by the nrfA gene. The abundance of nirS denitrifying 
bacteria is much greater than that of nrfA-DNRA microorganisms in 
the Chesapeake Bay watershed of United  States, suggesting that 
denitrification is the primary nitrate reduction process (Franklin et al., 
2017). The abundance of nrfA genes was low in tidal freshwater 
marshes in South Carolina of United States, suggesting weak DRNA 
process (Minick et al., 2019).

Nitrification and anammox are also important processes in the 
nitrogen cycle (Kuypers et  al., 2018), but these two processes are 
weakly in CW ecosystems (Zhang X. et al., 2019). Functional genes 

FIGURE 1

Location of CW studied by various groups for their microbial distribution.
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associated with nitrification are mainly genes encoding ammonia 
monooxygenase (amoA/B/C) and hydroxylamine dehydrogenase 
(hao; Mohapatra et al., 2021), while those associated with anammox 

are mainly genes encoding hydrazine synthase (hszA; Harhangi et al., 
2012). The abundance of functional genes associated with nitrification 
in intertidal wetlands disturbed by crabs is increased compared to the 

TABLE 1 The dominant microbial phylum in CW.

Location Bacteria Archaea Fungi References

Asia

Yellow River Delta, China

Proteobacteria, Chloroflexi, 

Bacteroidetes, Actinobacteria, 

Gemmatimonadetes

Thaumarchaeota, Crenarchaeota, 

Euryarchaeota， Diapherotrites

Yu et al. (2012), Zhao et al. 

(2020), Lu et al. (2021) and 

Zhang et al. (2021)

Futian Mangrove Natural 

Reserve，China

Proteobacteria, Bacteroidetes, 

Firmicutes, Tenericutes, 

Chloroflexi

Tong et al. (2021)

Mai Po wetland, Hong Kong

Proteobacteria, Bacteroidetes, 

Chloroflexi, Gemmatimonadetes, 

Acidobacteria

Aenigmarchaeota, 

Bathyarchaeota， Euryarchaeota, 

Thaumarchaeota

Ascomycota, Basidiomycota, 

Chytridiomycota

Cheung et al. (2018)

Hangu District of Tianjin 

Municipality, China

Proteobacteria, Firmicutes, 

Bacteroidetes, Actinobacteria, 

Chloroflexi

Li et al. (2016)

Senmao farm in Rudong 

county, China

Bacteroidetes, Proteobacteria, 

Chloroflexi, Actinobacteria, 

Acidobacteria,

Bai et al. (2019)

Jiulong River Estuary, China

Bacteroidetes, Chlorobi, 

Chloroflexi, Proteobacteria, 

Firmicutes

Su et al. (2016)

Nalabana Island, India

Proteobacteria, Actinobacteria, 

Acidobacteria, Chloroflexi, 

Bacteroidetes

Euryarchaeota, Candidatus 

Bathyarchaeota, 

Thaumarchaeota, Crenarchaeota, 

Candidatus

Ascomycota, Basidiomycota, 

Mucoromycota, 

Chytridiomycota

Mohapatra et al. (2021)

America

Eastern Coast of Florida, 

United States

Proteobacteria, Chloroflexi, 

Acidobacteria Nitrospirota, 

Chlorobi

Barreto et al. (2018)

York River State Park， 

United States

Proteobacteria, Acidobacteriota, 

Desulfobacterota, Bacteroidota, 

Chloroflexi

Halobacterota, 

Thermoplasmatota, 

Nanoarchaeota

Morina and Franklin (2022)

Whitney Marine Laboratory, 

United States

Proteobacteria, Bacteroidetes, 

Actinobacteria, Firmicutes, 

Cyanobacteria

Ward et al. (2019)

Barataria Bay, United States

Proteobacteria, Bacteroidetes, 

Firmicutes, Chloroflexi, 

Acidobacteria,

Bae et al. (2018)

Mangrove in La Guajira, 

Colombia

Proteobacteria, Actinobacteria, 

Chloroflexi, Bacteroidetes, 

Firmicutes,

Torres et al. (2019)

Point Aux Pins peninsula, 

United States

Proteobacteria, Firmicutes, 

Actinobacteria, Bacteroidetes, 

Acidobacteria

Beazley et al. (2012)

Australia

East Trinity, Cairns, Australia

Proteobacteria， Chloroflexi, 

Bacteroidetes, Firmicutes, 

Acidobacteria

Crenarchaeota, Euryarchaeota

Ling et al. (2015)

Column “bacteria” selected the five phyla with the highest relative abundance.
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surrounding undisturbed sediments (An et al., 2021). Moreover, the 
copy number of nitrification genes is significantly higher in oily 
marshes (Bae et al., 2018).

3.2. Methanogenesis-related genes

Methane production is a major process in anaerobic carbon-cycle 
of CW, and methanogenic bacteria are the main microorganisms 
involved in this process, encoding by mcrA gene (see Figure  3B; 
Oremland et al., 1982). A previous study showed that the abundance 
of methanogenic genes in wetlands affected by runoff and tidal 
seawater increased with distance from the river bank, while gene 
abundance in tidal wetlands increased first and then decreased in 
Yellow River Delta (Chi et al., 2021a,b,c,d). The abundance of mcrA 
was significantly lower in oiled marshes compared to non-oiled 
marshes along the United States coast (Bae et al., 2018).

3.3. Organics degradation-related genes

A large number of organic pollutants from human activities are 
released into wetlands with industrial development, adversely affecting 
the surrounding ecosystems (Qian et  al., 2016). Petroleum 
hydrocarbons are the main pollutants that affect the material cycle and 
ecosystem function of wetlands (Yuan et  al., 2014). Indigenous 
microorganisms in wetlands can degrade petroleum hydrocarbons, 
and lots of hydrocarbon-degrading bacteria isolated from petroleum-
contaminated soils play key roles in petroleum hydrocarbons 
degradation (Tiralerdpanich et  al., 2018). Therefore, the level of 
petroleum hydrocarbon contamination in different wetland soils can 
affect microbial community, which leads to changes in metabolic 
functions (see Figure 3C).

Both alkB and CYP 153A1 genes encoding alkane hydroxylases 
are enriched in tidal marshs from the Coacheco River in the 
United  States under chronically contaminated petroleum 
hydrocarbons such as gasoline, n-hexane, and dodecane (Ní Chadhain 
et al., 2018). The gene alkB involving in aerobic alkanes degradation 
has high copy number in oil-bearing coastal salt marshes of the 
United  States, whereas bamA related to anaerobic aromatics 
degradation has low copy number (Bae et al., 2018). Genes associated 
with the degradation of alkanes, cycloalkanes, aromatic carboxylic 
acids, chlorinated aromatics, polycyclic aromatic hydrocarbons, and 
other aromatic hydrocarbons are significantly reduced in salt marshes 
of Gulf Coast during oil concentration reduction (Beazley et al., 2012). 
The initial dioxygenase and open-loop dioxygenase associated with 
phenanthrene (PHE) degradation were expressed under PHE 
contamination in CW, indicating the presence of aerobic PHE 
degradation (Chi et al., 2021a,b,c,d).

4. Environmental potential of 
microorganisms in CW

Microorganisms contribute significantly to ecological functions 
(e.g., carbon and nitrogen cycle processes) in CW (Figure 4), which 
are critical in retaining chemical contaminants (e.g., organic 
pollutants) and excess nutrients (Horton et al., 2019).

4.1. Functional indicator

Previous studies have shown that the species composition and 
spatio-temporal dynamics of soil microbial communities are related 
to habitat characteristics, plant types, and human interferences (Eddie 
et al., 2010). Microorganisms are highly sensitive to environmental 

FIGURE 2

Factors influencing microbial community composition in CW.
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FIGURE 3

KEGG pathway of nitrogen cycle (A), methanogenesis (B) and organics degradation (C) in CW.

changes and thus can be  an ideal indicator for environment 
monitoring (Santos et  al., 2010; Yang et  al., 2012). The indicative 
effects of microbial communities are various (Table  2). Fungal 
community composition in different habitats varies and could be used 
as a bioindicator to assess the restoration process of mangrove 
ecosystems in Jiulongjiang estuary (Yu et al., 2014). Fungi as indicator 
species of P. australis soils is found in restoration area of the Yangtze 
River Delta (Ma et al., 2017). Differences in microbial community over 
a short period in Florida suggest that they can serve as early warning 
signals for sea-level rise (Chambers et al., 2016). The ratio of ammonia 
to nitrate nitrogen in CW of Pearl River Delta significantly affect 
bacterial community composition, and thus anaerobic ammonia-
oxidizing bacteria is a bioindicator of terrestrial nitrogen input or 
pollution (Han and Gu, 2015).

4.2. Organic pollutant degradation

Microorganisms have become popularly alternatives for pollutant 
bioremediation because they are environmentally friendly and cost-
effective (Macaulay, 2015). Hydrocarbon-degrading microorganisms 
are ubiquitous in many environments (Head et al., 2006). Most studies 
on microbial hydrocarbon degradation have focused on environments 
highly exposed to hydrocarbons, such as areas surrounding oil 
deposits and hydrocarbon spills. Pseudomonas-type alkane-degrading 
bacteria are enriched in marshes nearby oil contamination, suggesting 
that oil degradation is important at this zone (Ní Chadhain et al., 
2018). Bacterial community in sediments of Mexican coastal zone can 
degrade toluene, naphthalene, chloroalkanes, and chlorinated alkanes, 
but has low removals of aromatics, fluorobenzoates, and xylenes 

(Reyes-Sosa et  al., 2018). Proteobacteria is responsible for the 
degradation of some phenolic compounds including bisphenol A 
(BPA) in mangrove of Shenzhen, and shows significant variation with 
BPA biodegradation (Tong et  al., 2021). The correlation between 
fungal abundance and phenol oxidase activities in the Mai Po wetlands 
of Hong Kong suggests that fungi can contribute to soluble phenols 
reduction (Luo et al., 2018). The relative abundance of hydrocarbon-
degrading bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes) 
in hydrocarbon-contaminated sediments increases in salt marshes 
along the Gulf of Mexico (Beazley et  al., 2012). PAHs-degrading 
bacteria (Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi) in 
mangrove increase under polycyclic aromatic hydrocarbons 
contamination in the Jiulongjiang estuary (Su et al., 2016).

4.3. Biogeochemical cycles

Functionally diverse microbial communities in CW contribute to 
the biogeochemical transformation of elements such as carbon (C) 
and nitrogen (N; Yuan et  al., 2014; Yang et  al., 2022), and these 
biological processes mainly include carbon formation and 
degradation, carbon fixation and nitrogen metabolism, methane 
metabolism, and exogenous biodegradation and metabolism 
(Mohapatra et al., 2021).

Halobacteria and Thaumarchaeota are found in Yellow River Delta 
which can fix CO2 (Hu et al., 2016). Compared to mangrove, invasive 
Spartina alterniflora significantly can increase CH4 emissions and 
decrease CO2 emissions (Han and Gu, 2015). CH4 production was high 
in soils with saline plants in Suncheon Bay, Korea (Chaudhary et al., 
2018). Nutrient transformation is related to highly active and adaptive 
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FIGURE 4

Potential environmental functions of microorganisms in CW.

TABLE 2 Summary of indicative effects of microbial communities in CW.

Location CW Indicative effect References

Jiulong River Estuary, China M
Microbial community structure could be bioindicator 

of the mangrove recovery

Yu et al. (2014)

Yellow River Delta, China P
Fungi could be bioindicator for soils under P. 

australis

Ma et al. (2017)

Pearl River Delta, China M

Anammox bacteria community structures could 

be bioindicator of the anthropogenic/terrestrial 

inputs

Han and Gu (2015)

Bohai Economic Rim, China P
Functional genes could be bioindicator of 

denitrification potential

Zhang X. et al. (2019) and Zhang Y. et al. 

(2019)

Quangang District, China M

The genera Mangrovibacterium and Mangrovimonas 

can both be potential bioindicators of wetland 

restoration

Lin et al. (2021)

Avicennia germinans, Columbia M

Firmicutes, Chloroflexi, Cyanobacteria and 

Gemmatimonadetes may be bioindicators of 

anthropogenic pollution

Torres et al. (2019)

Column “CW” defines the vegetation type in coastal wetlands: Mangrove (M) and Phragmites australis (P).
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bacterial metabolic channels in Chinese coastal zone (Zhang et al., 2022). 
When exposed to unstable substrates, microbial respiration is much 
higher and can produce more CO2 in mangrove and marsh soils along the 
east coast of Florida, United States (Barreto et al., 2018). In Liaohe River 
estuary of China, there is a positive correlation between soil respiration 
rates and Clostridia abundance, suggesting that anaerobic carbon 
decomposition is important in brackish wetland soils (Yang et al., 2018).

Changes in biomass and community structure may enhance soil N 
sequestration due to the abilities of special heterotrophic metabolism and 
refractory organics degradation of soil microorganisms (Tang et al., 2011). 
Denitrification is the main mechanism for nitrogen removal in CW of 
Bohai Sea (Zhang Y. et al., 2019), and ammonia-oxidizing archaea and 
bacteria are also important in global nitrogen cycle (Bai et al., 2019). 
Nitrate reduction rates are associated with denitrifying bacterial 
community in the protected area in Spain, suggesting that microbial 
communities are closely associated with N2O emissions (Bañeras and 
Ruiz-Rueda, 2012). Nitrogen and phosphorus additions can increase 
microbial denitrification in the absence of salinity (Chi et al., 2021a,b,c,d). 
Nitrification and denitrification rates are more higher in intertidal areas 
disturbed by crabs, and this process greatly contribute to N2O emissions 
(An et al., 2021).

5. Future prospects

Microorganisms in CW sediments are highly biodiverse and 
spatial heterogeneous, and play a key role in maintaining 
biogeochemical cycles. With the rapid development of molecular 
biology technologies, our understanding of microbial community and 
their potential functions has grown substantially. However, several 
major challenges remain in CW studies.

(1) Accurate identification of key factors affecting microbial 
community structure. Microorganisms in coastal wetlands are 
important for maintaining the normal biogeochemical cycle, so it is 
important to explore the factors affecting the community structure. 
The most studies about influencing factors focused on single factor, 
ignoring a combination of multiple factors. Therefore, it is important 
to elucidate the dominant factors affecting microbial community, 
which will help to maintain the stability of coastal ecosystems, prevent 
CW destruction, and restore degraded CW.

(2) In-depth reveal the potential functions of microorganisms, 
and decipher the relationship between functional stability and 
microbial biodiversity. Microorganisms are important for 
environmental management due to the community and functional 
diversities. The stable microbial community not only ensure the 
normal biogeochemical cycle, but also decompose complex pollutants 
into harmless substances through metabolic activities. Furthermpre, 
clarifying the coupling relationship between microbial diversity and 
functional stability and parsing the function of biological elements in 
habitat function ascension will help to maintain and improve the 
stability of CW function.

6. Conclusion

Microorganisms in CW have become important players 
involving in biogeochemical cycles and potential solutions for the 
treatment of difficult-to-degrade pollutants. Microbial 
community structure usually rapidly changes in response to 
environmental changes. Therefore, they can be used as indicators 
to detect changes in CW. Our studies discuss the changes in 
microbial composition of CW, summarize the effects of different 
factors on microbial community structure and the important 
functional genes, and further reveal the potential environmental 
functions of coastal microbes. Microbial communities involving 
in organic pollutant degradation and material cycling of CW have 
been well developed, but their functions and the relationship 
between functional stability and microbial biodiversity need to 
be further explored.
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