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Sign language plays a pivotal role in the lives of impaired people having speaking and hearing disabilities. �ey can convey
messages using hand gesture movements. American Sign Language (ASL) recognition is challenging due to the increasing intra-
class similarity and high complexity. �is paper used a deep convolutional neural network for ASL alphabet recognition to
overcome ASL recognition challenges. �is paper presents an ASL recognition approach using a deep convolutional neural
network. �e performance of the DeepCNNmodel improves with the amount of given data; for this purpose, we applied the data
augmentation technique to expand the size of training data from existing data artificially. According to the experiments, the
proposed DeepCNN model provides consistent results for the ASL dataset. Experiments prove that the DeepCNN gives a better
accuracy gain of 19.84%, 8.37%, 16.31%, 17.17%, 5.86%, and 3.26% as compared to various state-of-the-art approaches.

1. Introduction

Sign language alphabets (SLAs) are created through facial
and hand gestures. Ordinary people may not understand
sign language; that is why it is used to express the feelings
and thoughts of disabled people to normal people. Hand
gestures have been used in verbal communication since the
inception of the human race. It is used vastly in the medical
domain and sign language interpretation [1]. Sign language
is used by nearly 2500000 people from all around the world.
�ere are various approaches developed to help disabled
people speak and hear. It is not easy for them to find help and
a translator in their daily activities. A novel approach can
overcome this problem and initiate communication between
disabled and normal people. �ere are about 100 different
sign languages used for various purposes like classification
and understanding the thoughts of disabled people. Some of
these are American Sign Language (ASL), Indian Sign
Language (ISL), Italian Sign Language, etc. Sign language is

India’s primary mode of communication for millions of
people. �e ASL is a highly used language for sign language
alphabet recognition [2]. More than 30 nations utilize the
ASL. A million people in the USA used ASL as their mode of
communication. �e ASL is a complex and highly used
language, and it is created by using fingers, actions, and hand
and facial gestures to convey the thoughts of the disabled
population. Also, it spreads happiness and hopes amongst
disabled humans [3, 4]. �e ASL consists of 26 gestures. It is
known as AmericanManual Alphabet. It represents different
words presented in the English dictionary. �e 26 ASL al-
phabets consist of 19 different handshapes used to com-
municate in ASL. �ere are fewer hand shapes, so some of
the handshapes express different alphabets if the position of
the specific hand shape is changed like “P” and “K” letters.
Most of the hand gestures are utilized to represent the
numbers from “0” to “9,” but no hand gesture belongs to the
specific terms or nouns [5, 6]. �ere are different hand and
facial gestures used to present various English words.
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Figure 1 shows the gesture signs of every single English
alphabet from A to Z.

�e gesture recognition is further divided into two parts.
�e first one is static, and the second is dynamic [7]. �e
pattern recognition problem [8–10] belongs to the static
gesture recognition, where the feature extraction is the part
of preprocessing step [11, 12]. Feature extraction is an es-
sential step in every conventional pattern recognition task.
�e static gestures require only a single image for processing
input to the classifier, and it takes less computational cost.

On the other hand, the dynamic gesture is the most
challenging task in computer vision [13]. It requires that a
sequence of images and gestures are recognized based on
features extracted from the proposed feature extraction
algorithm [14–17]. �e deaf people mainly focus on learning
the hand gestures for alphabets and digits to interact with
others; hence, this study shows a precise analysis between
different classes to identify the correct hand gestures letters
of ASL [18]. Twenty-four different gestures of the ASL
MNIST dataset were used for classification; some of them
have significant inter-class similarities. A deep neural net-
work is commonly used for ASL recognition. �e
DeepCNN-based algorithm is used for ASL alphabet
recognition.

�e main contributions of this work are as follows:

(i) Propose a deep learning-based DeepCNN algorithm
to recognize 24 alphabets from ASL data.

(ii) Expand the data size using the data augmentation
technique for better training and use a trained
model for prediction.

(iii) Evaluate the performance of the proposed approach
using recognition accuracy, which outperforms the
existing state-of-the-art approaches with the highest
gain of 19.84%.

�e rest of this article is organized as follows. Section 2
contains an overview of the available relevant literature.
Section 3 gives a full description of the dataset. Section 4
explains the recommended technique. Section 5 presents the
experimental results and a comparison with the baseline.
Finally, we conclude this study in Section 6, along with
future work directions.

2. Related Work

Various techniques have been utilized to solve the problem
of sign language gesture recognition [18]. Many previous
works have used SVM to classify gestures in ASL [19]. �e
hidden Markov model (HMM) and SVM for ASL recog-
nition were also used. �e proposed approach was used to
classify sign language alphabets with a success rate of
86.67%. Furthermore, multiple kinds of research have shown
interest [20–22] in recognition of dynamic hand gestures. It
is challenging to identify dynamic hand gestures, and re-
searchers have been putting efforts into it during the last
decade. Sometimes different people use the same sign, but it
appears different. �e authors in [23] proposed a deep
learning-based approach for the classification of ASL. �ey

also used their self-generated dataset for sign language
recognition. �ey achieved a classification accuracy of
82.5%.

Several methods have been used for ASL recognition
based on motion gloves, image processing, and leap
motion controllers. �e authors in [24] proposed an
ANN-based model to identify the 3D motion based on 50
ASL words. It consumes much time and is computa-
tionally expensive approach [25–27]. Many researchers
developed multiple approaches for ASL recognition, but
due to the inter-class variations, sign complexity, and
high inter-class similarity, it is still a challenging task
[28, 29]. �e authors in [30] proposed an ASL recognition
system. �e proposed system used a 3D motion sensor.
�ey used K-nearest neighbor (KNN) and support vector
machine (SVM) to classify 26 English alphabets. �ey
used five palm and four-finger features derived from
sensory data. �e KNN model achieved 72.78% accuracy,
while the SVM model achieved an accuracy of 79.83%.
�e ASL gesture recognition for real life is such a chal-
lenging task. It is not easy because it requires robustness,
efficiency, and accuracy.

�e authors in [31] presented an effective hand gesture
recognition system named LMC to obtain multiple infor-
mation. �ey used the proposed system to identify several
fingers, fingertips, and hand positions. Furthermore, they
used these gestures for sign language recognition. �ey used
the SVM model as a classification algorithm. �is classifier
evaluated the highest confidence class. �is class is further
assigned for the hand gesture. �e 28 static hand gestures
from arce are used. �e proposed SVM algorithm is used to
recognize these static hand gestures. �is approach suc-
cessfully recognized 28 hand gestures and 0–9 digits with an
accuracy rate of 91%.

Furthermore, Chong and Lee [32] presented an ap-
proach for ASL recognition. �ere were 26 sign language
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Figure 1: Hand poses for each English alphabet.
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alphabets and ten digits used in the leap motion controller.
�e features are divided into six sets of combinations with 23
features. �e findings indicate that the distance between the
two adjacent fingertips is significant. �ey used DNN-based
algorithm for sign language recognition.�e proposed DNN
algorithm performed well on both 26 and 36-class ASL
datasets but did not perform well on digits because of the
high inter-class similarity between letters and digits.
Compared to all of the mentioned works, the proposed
approach is very efficient for ASL recognition. We used 24
ASL alphabets and fine-tuned deep CNN algorithm for sign
language recognition and provided better performance than
all the works mentioned above.

3. Dataset Description

To effectively evaluate the overall performance of the pro-
posed approach, we perform experiments using a vastly used
publicly available sign language dataset from Modified
National Institute of Standards and Technology (MNIST)
database that consists of ASL alphabetic letters of hand
gestures. Utilizing the Sign Language MNIST dataset from
Kaggle (https://www.kaggle.com/datamunge/sign-language-
mnist), we assessed models to arrange hand signals for each
letter of the letters in order. Because of the movement as-
sociated with the letters J and Z, these letters were excluded
from the dataset. Nonetheless, the information incorporates
roughly 35, 000 28x28 pixel pictures of the remaining 24
letters. Like the first MNIST hand-drawn pictures, the in-
formation contains various grayscale values for the 784
pixels in each picture. �e dataset is divided into training,
validation, and testing.

�e training and testing dataset consists of labels (0 −

25) representing each alphabet from A − Z except 9 − j and
25 � Z due to its gesture motions. �e number of training
samples of each label is presented in Figure 2.

Initially, we had 27,455 training cases and 7172 test cases.
In the study, we further divided the original training set into
a new training set, which consisted of 24,710 cases and the
validation dataset contains 2745 cases, and the test dataset
contains 7172 cases with a row of attributes starting with
pixel1, pixel2 up to pixel784, representing 28 × 28-pixel
image with 0–255 grayscale image value. An example of sign
language MNIST is represented in Figure 3.

4. Proposed System

We propose a CNN-based architecture for sign language
alphabet recognition. �e proposed CNN-based archi-
tecture is very effective for sign language alphabet
recognition.

�e convolutional layers of the CNN model get the
feature map by executing convolution on input with dif-
ferent filter sizes and kernels. It is defined in the following
equation:

a
j
1 � f 

i∈Mj

a
1−1
i ∗ k

1
ij + b

i
j

⎛⎜⎝ ⎞⎟⎠, (1)

where i represents the layer number, j counts the total
number of output maps, ∗ represents the convolutional
operation, and a

j
1 represent the output features where the

input is represented by Mj. �e kernel size is represented by
k1

ij at the i − th layer in the CNN. �e bias factor is rep-
resented by bi

j, and f shows the activation function. �e
max-pooling is a part of the subsampling layer. It calculates
the mean and max value over the divided features into
different regions. �e subsampling layer is defined in
equation (2). Here g shows the subsampling layers, and the
subsampling region is represented by Rj.

a
j
1 � g a

(1−1)
i , ∀i ∈ Rj. (2)

Figure 4 shows the proposed architecture of the
DeepCNN model for ASL recognition. �e proposed fine-
tuned CNN architecture contains multiple convolutional
layers, max-pooling, dropout, and dense (fully connected).
�e input data need to be augmented, which involves
augmenting the existing dataset with perturbed current
images, including scaling and rotating. �is is used to
expose the neural network to a variety of variations. �is
way, the neural network is less likely to identify unwanted
characteristics in the dataset. �e architecture has three
main blocks with different parameter settings. �e first
block has 32 filters with 3∗ 3 kernel size, and the ReLU is
used as an activation function. In the next layer, the 2 ∗ 2
max-pooling layer is used with half padding, which pro-
gressively reduces the spatial size of the representation to
the reduced number of parameters and computation in the
model. 128 filters use the 3∗ 3 kernel size with the ReLU
activation function in the second block. After that, a 2∗ 2
max-pooling layer is used with half padding. In the third
block, 512 filters use the 3∗ 3 kernel size with the ReLU
activation function. Again in the third block 2∗ 2, the max-
pooling layer is used with half padding. From these three-
block models, learn features properly. �ese features were
flattened by using flatten layer, which converts data to a
vector before being connected to a group of the fully
connected layer. In the last, two dense layers are used with
ReLU activation function with 1024 and 256 units
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Figure 2: Training samples of each label.
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respectively than dropout layer with the value of 0.5 to
control overfitting. Finally, we used 25-unit dense layer
(fully connected layer) as an output layer and used a
softmax function to predict the gesture of the ASL alphabet.

Figure 5 shows the overview of the proposed approach
for ASL recognition. In the first stage, the input images are
split into training, validation, and testing data and then
training data are augmented. We used an image data gen-
erator, expanded the training dataset’s size, and created a
modified version of images in the dataset. �e augmented
data are passed to train the fine-tuned CNN model. In the
second stage, features are extracted by passing the data
through three blocks, as shown in Figure 4. After applying
the softmax activation function, these features classify the
ASL alphabets in the next stage. �en, the next stage is to
predict the unseen test data. We use unseen test data to
testify the model’s capability for ASL recognition. Finally,
the data are classified, and the predicted output is achieved.

Figure 6 shows the parameters and output shape of each
layer used in the CNN architecture. �e total number of
trainable calculated parameters is 2,994,649. �e proposed
CNN model learns the hand gesture in the training stage.
�e model is allowed to check all the pixels in the images. In
the testing phase, we use an unseen hand gesture dataset. If
any pixel has the hand gesture Hi, the output layer node Oi

returns the maximum response.�emodel will return “1” or
“on” state. Suppose there are Pj pixels P1, P2, P3, . . ., PPj in
the image Ij (where j� 1, 2, 3, . . ., 9000). When a pixel Pk is
passed to the CNN, it will return the output as
O � O1, O2, O3, . . . , O24. Algorithm 1 shows the testing
phase of the proposed approach.

5. Experimental Results and Analysis

�eprimary goal of this research is to assess the classification
performance of a proposed CNN classifier for the
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Figure 3: Sign language letters.
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recognition of sign language alphabets. To properly assess
the overall effectiveness of the suggested technique, we
conducted experiments with a widely used publicly acces-
sible sign language dataset from the Modified National
Institute of Standards and Technology (MNIST) database,

which comprises ASL alphabetic letters of hand movements.
We performed experiments using the CNN model on the
Sign Language MNIST dataset. Following the experimental
results, we compare them with several state-of-the-art
methodologies. We identified the suggested model’s
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Figure 5: System flowchart.
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Input: Image Ij � Pixel sandHandGesture � Hi

Output: 0 or 1
Require: Trained CNN

(1) k←1
(2) Output←0
(3) while Output≠ 1 do
(4) FeedForward Pk through trained CNN
(5) if argmax(O)� i then
(6) Output←1
(7) end if

k←k + 1
(8) end while
(9) if Output � 1 then
(10) Hand Gesture Activated
(11) end if

ALGORITHM 1: Testing phase.

Table 1: Proposed results for sign language recognition.

Epoch Lr_reduced Accuracy Loss Val_accuracy Val_loss
1 0.00075 0.2337 2.4592 0.7909 0.5520
8 0.00050 0.9869 0.0457 0.9883 0.0502
12 0.00025 0.9951 0.0151 0.9971 0.0060
16 0.00012 0.9990 0.0043 0.9996 0.0016
18 6.25000 0.9995 0.0016 1.0000 9.8659
20 3.12500 0.9997 7.7924 1.0000 7.0703
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Figure 7: Training and validation results.
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capabilities using several evaluation metrics. Precision, re-
call, and F1-score are the evaluation measures used in this
study. We divided the data for experimentation into two
parts: 90% for training and 10% for validation. 70% of the
data are utilized for training, and we used 20% data for
testing. We also partition the training set into test and train
datasets.

5.1.Results. In this research work, we employed the MNIST
dataset, which contains ASL alphabetic letters of hand
movements, and analyzed the performance using the given
evaluation metrics (accuracy, precision, recall, and F1-
score). We employed the proposed CNN to classify data for
recognizing sign language alphabets. �e Sign Language
MNIST dataset has 24 classes (excluding J and Z). �e

testing data are accessible separately in the experiments,
with 7172 images. �e Python, Keras, and TensorFlow li-
braries were used for the analyses. �e proposed model is
trained on a dataset of 34,627 images using an NVIDIA
GTX 1060 GPU. �e classification results of the proposed
CNN model for sign language recognition are shown in
Table 1. We repeated the experiments almost six times,
changing the learning rate. For the first time, we use the
0.00075 learning rate to achieve a training accuracy of
23.37%, which is very low accuracy, and a validation ac-
curacy of 79.09%; then, we change the learning rate to
0.00050, and the training and validation accuracy increase
to 98.69% and 98.83%, respectively. During training, each
epoch measures validation accuracy, and if there is no
change in validation loss between two epochs, learning rate
reduction decreases the learning rate automatically. At the

0

0 5 10 15
Predicted: G

20 25

5

10

15Tr
ue

: G

20

25

0

0 5 10 15
Predicted: F

20 25

5

10

15Tr
ue

: F

20

25

0

0 5 10 15
Predicted: K

20 25

5

10

15Tr
ue

: K

20

25

0

0 5 10 15
Predicted: A

20 25

5

10

15Tr
ue

: A

20

25

0

0 5 10 15
Predicted: D

20 25

5

10

15Tr
ue

: D

20

25

0

0 5 10 15
Predicted: V

20 25

5

10

15Tr
ue

: V

20

25

0

0 5 10 15
Predicted: K

20 25

5

10

15Tr
ue

: K

20

25

0

0 5 10 15
Predicted: O

20 25

5

10

15Tr
ue

: O

20

25

0

0 5 10 15
Predicted: D

20 25

5

10

15Tr
ue

: D

20

25

Figure 8: Prediction results on test data.

Computational Intelligence and Neuroscience 7



16th epoch, the highest validation accuracy was 99.96%.
Simultaneously, the maximum training accuracy of 99.97%
was obtained at the 20th epoch. �e training and validation
results are shown in Figure 7. �e training accuracy,

training loss, validation accuracy, and validation loss are all
displayed on the learning curves. �e model has been
correctly trained after examining the learning curves of
training and validation.
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�e trained model was assessed on unseen data and
gave 99.67% accuracy, indicating that our proposed model
correctly detects ASL alphabets. �e model prediction is
depicted in Figure 8. It demonstrates that the suggested
trained model performed well on unseen data and correctly
predicted all classes. On unseen data, we additionally
calculate the accuracy, recall, and F1-score. On test data,
the accuracy, recall, and F1-score are all 99%, 99%, and
99%.

In the end, per class, confusion matrices for unseen data
were generated as shown in Figure 9. It is transformed into
matrices of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) [33]. Furthermore, we
calculate accuracy, sensitivity, and specificity as a result. To
testify the model’s capabilities, we calculated accuracy,
sensitivity, and specificity for each alphabet as shown in
Figure 10. �e per-class precision, recall, and F1-score are
calculated. Over 97% score implies that the model achieves a
higher probability of incorrectly identifying negative results
in each of the 24 classes, and the proportion of accurately
identified classes would be higher.

5.2. Comparative Analysis with Baseline Approach. We an-
alyze the proposed approach to compare the results with
different state-of-the-art studies. �e proposed approach
performed very well as compared to all the baseline ap-
proaches. Table 2 provides an overview of comparative
analysis of this study with multiple baseline approaches. For
ASL MNIST dataset baseline approach, the method in [30]
achieved 79.83% accuracy using the SVM model on 26 ASL
gesture dataset. �e study in [31] also used the SVM ap-
proach on ten digit ASL gesture dataset and achieved an
accuracy of 91.30%. �e study in [34] used ten selected
gestures for experimentation and got an accuracy of 83.36%
using the SVM model.

Another study in [23] used deep CNN to classify 24
ASL gesture datasets and attain the accuracy of 82.5%.
Furthermore, the study in [32] used 26 ASL gesture (A–Z)
and 36 ASL gesture (A–Z, 0–9) datasets for experimen-
tation using the DNN approach and got an accuracy of
93.81%. In the end, we compare our results with the work
in [32], which used 30 ASL gestures (12 dynamic signs and
18 static signs) for experiments and performed classifi-
cation using the RNN approach and achieved the accuracy
of 96.41%. Compared to baseline approaches, the pro-
posed approach outperforms all the existing approaches
with the accuracy gain of 19.84%, 8.37%, 16.31%, 17.17%,
5.86%, and 3.26%.

6. Conclusion

Several researchers have tried to overcome hand gesture
recognition in real life. It is challenging due to its different
efficiency, robustness, and accuracy requirements. In this
study, we proposed a robust ASL recognition approach that
involves 24 alphabets that are used as a sign language. �e
proposed approach is based on deep convolutional neural
networks to recognize the sign language alphabets. �e
proposed DeepCNNmodel can recognize the ASL alphabets
with an accuracy rate of 99.67% on unseen test data. Initially,
we utilized a single convolutional layer that overfits the data.
We added two more convolutional layers to handle this
problem, resulting in the better performance of the proposed
algorithm. In the future, we plan to extend this work for real-
time sign recognition data provided by the leap motion
controller. We also intend to recognize sign language ges-
tures through video frames, which is a challenging task.

Data Availability

�e dataset used in this work can be found at “https://www.
kaggle.com/datamunge/sign-language-mnist.”
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