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SYSTEMATIC REVIEW 

A Comprehensive Review of Various Machine Learning Techniques used 
in Load Forecasting 
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Abstract: Background: Load forecasting is a crucial element in power utility business load fore-
casting and has influenced key decision-makers in the industry to predict future energy demand 
with a low error percentage to supply consumers with load-shedding-free and uninterruptible 
power. By applying the right technique, utility companies may save millions of dollars by using 
load prediction with a lower proportion of inaccuracy. 

Aims: This study paper aims to analyse the recently published papers (using the New York Inde-
pendent System Operator's database) on load forecasting and find the most optimised forecasting 
method for electric load forecasting. 

Methods: An overview of existing electric load forecasting technology with a complete examina-
tion of multiple load forecasting models and an in-depth analysis of their MAPE benefits, chal-
lenges, and influencing factors is presented. The paper reviews hybrid models created by combin-
ing two or more predictive models, each offering better performance due to their algorithm's mer-
its. Hybrid models outperform other machine learning (ML) approaches in accurately forecasting 
power demand. 

Results: Through the study, it is understood that hybrid methods show promising features. Deep 
learning algorithms were also studied for long-term forecasting.  

Conclusion: In the future, we can extend the study by extensively studying deep learning methods. 
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1. INTRODUCTION

Forecasting is vital in many aspects of human activity,
including energy. Due to the rising usage of renewable ener-
gy sources and the integration of innovative grid technolo-
gies, it is necessary to utilise more efficient forecasting ap-
proaches to accomplish optimal planning, management, and 
operation of electric power systems [1]. Electric load fore-
casting is challenging due to seasonal, meteorological, socio-
economic, and random aspects [2]. Forecasting models are 
used in many industries, including finance, business, health 
care, and meteorology [3]. A power plant's regulation and 
exchange estimates are also required. In order to make better 
decisions, energy planners employ forecasting [4]. This re-
view paper focuses on identifying the best machine learning 
algorithm for optimized forecasting. 

Many variables make calculating the electric load com-
plicated. The season, weekday, and time of day all have an 
effect on how people respond to and react to events [5]. 

*Address correspondence to this author at the Department of Electrical &
Electronic Engineering, Karunya Institute of Technological Sciences, Co-
imbatore, India; E-mail: mdivyapriyadharshini@gmail.com

 There are four kinds of load forecasting studies based on 
the time needed [6]: 

• Long term: a forecasting window more significant
than a year

• Mid-term: forecasting from a week to a year
• Short-term: forecasting loads for the next few hours
Fig. (1) shows the different methods of forecasting. In

2011, Cai et al. came up with statistical models, fuzzy ap-
proaches, and machine learning algorithms that can be used 
to predict the STLF. 

2. MATERIALS AND METHODS

Experts use a variety of factors to anticipate future elec-
tricity usage. Along with weather and time information, this 
list may include economic data such as unemployment rates 
and power costs [7-9]. In addition, the deregulation of the 
energy market has increased the importance of electrical load 
forecasting [10]. Due to the difficulties of storing energy, ac-
curate load forecasting is required to maximise market interac-
tions, ensure supply continuity, and reduce waste [11, 12]. 
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STLF is the process of figuring out how much demand there 
will be every hour, week, or month [13-15]. 

The methodology used here is a systematic review of past 
studies. This research focuses on finding an optimised algo-
rithm for the NYISO database, so the study concentrates on 
the past research published with the mentioned database. For 
reference and comparative discussion, the summary of past 
studies includes a few studies outside the NYISO database. 
The paper begins with an introduction to load forecasting, 
factors influencing the forecasting algorithms, challenges 
faced, and benefits gained. The third part includes past stud-
ies based on the NYISO database, followed by other data-
bases. The study then has a discussion part that argues for 
the optimised algorithm to be used for long-term forecasting. 
It is understood that feed-forward deep learning algorithms 
(or hybridised deep learning algorithms) are the best-
optimized algorithms for long-term forecasting. The conclu-
sion part summarises the entire research paper. 

2.1. Data Collection 

The proposed study was initiated through online data col-
lection on various platforms that are repositories for peer-
reviewed journals. Various keywords were used in the data 
collection process to narrow down the available data to the 
scope of the study. Some of the keywords that were used in 
the study are listed below: 

• Load forecasting using AI 
• Electricity load prediction (EP) algorithms 
• Energy Forecasting (EF) using NYISO 
• Machine Learning (ML) algorithm 
• Hybrid AI and EP 

• Hybrid AI and EF 
• Hybrid ML and EP 
• Hybrid ML and EF 
• Review of load forecasting 
• Load forecasting using the NYISO database 
A plethora of results popped up for the search keywords, 

and only relevant articles from peer-reviewed journals and 
conferences were downloaded. After downloading the arti-
cles, a careful review was conducted to categorise the arti-
cles based on the study method. Our focus was on the ma-
chine learning algorithms used in load forecasting that were 
successfully tested using the NYISO database. 

The IEEE Xplore search console, when searched for the 
keyword "load forecasting using machine learning," dis-
played a result of 808 research papers. Collectively, when 
using Google Scholar, Science Direct, and IEEE Xplore pa-
per collections, a total of 3550 papers were generated. Of the 
10550 papers selected for the review, the study papers were 
narrowed down, as shown in Fig. (2). 

The common overfitting issues in the dataset are over-
come by the Holdout method. Instead of using all of our data 
to train, we may divide our dataset into training and testing 
sets. A usual split ratio is eighty percent training and twenty 
percent testing. Our model is trained until it performs well on 
both the training set and the testing set. This implies a high 
capacity for generalization since the testing set contains data 
not utilized for training. However, even after splitting, this 
method requires a suitably big training dataset. 

2.2. Factors Influencing Load Forecasting  

Load forecasting is vital for utility planning and opera-
tions. It requires accurate forecasting of electric load magni-

 
Fig. (1). Electric load forecasting applications and classification (Zor, 2017). 
 

 
Fig. (2). Selection of study papers. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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tudes and locations (often hours). The hourly total system load 
is essential in load forecasting [16-18]. Electrical engineering 
load forecasting has risen in importance. Power forecasts are 
required from both a production and budgetary standpoint. 
Predicting daily and hourly peak loads are vital [19, 20]. 

Even parametric nonlinear models struggle to describe 
the complex interplay of the electrical load and its influenc-
ing factors [21]. Short-term changes in the power network's 
architecture affect electrical loads. Weather, time, econom-
ics, and random disturbances are all important factors in de-
termining system load [22-25]. The elapsed time is critical in 
load forecasting, and it is essential to add the time of day, 
week, month, and season to the load curve [26, 27].  

Weather impacts household and agricultural consumers 
significantly because it is an independent element in load 
forecasting. The weather influences consumer behaviour [28-
30]. THI and WCI measure how hot and cold it is in the 
summer and winter [31, 32]. Economic factors, including 
electricity prices, load management, and industrialization, 
impact average system load and maximum demand. Factors 
like customer behaviour, tariff changes, and employment 
levels affect the accuracy of a projection [33-35]. These pa-
rameters are optimized using the grid searching method. Grid 
search is a technique for tuning hyperparameters that builds 
and evaluates a model for each combination of algorithm 
parameters supplied in a grid. 

2.3. Benefits of Load Forecasting 

Since the origin of energy generation, electric utilities 
have attempted to forecast energy demand for hours, days, or 
even a year [36]. Renewable energy sources have aided in 
resource management, but energy harvesting remains expen-
sive and time-consuming [37]. If load demand can be pro-
jected, it is used to determine optimal power distribution [38-
40]. This is where the term "load forecasting" originated. 
Apart from economic and environmental benefits, load fore-
casting has several other advantages [41]. Electric utilities 
may be better equipped by projecting future load demand, 
making more cost-effective decisions, and mitigating risk 
[42]. This helps plan for the costs of future power generation 
and transmission. 

Load forecasting enables the planning of future resources 
such as fuel for the generation and other resources necessary 
to guarantee that consumers get uninterrupted electricity, 
demonstrating that power can be generated efficiently and 
dependably [43-46]. Power generation plant load forecasting 
is critical for determining the size, location, capacity, and 
type of future generating facilities [47]. Finally, load fore-
casting ensures peak power plant performance by avoiding 
under-generation and over-generation, hence lowering fossil 
fuel consumption and greenhouse gas emissions [48, 49]. 

2.4. Challenges Faced in Forecasting 

Researchers have worked on an accurate forecasting 
model for electric power generating and distribution compa-
nies for a decade [50]. As a consequence, innovative ap-
proaches have emerged. Researchers have been attempting to 
improve these models' accuracy for years, but they have hit 
several barriers. Sadly, these impediments prevent the devel-
opment of the most realistic model [51]. Developing the best 

forecasting model has certain obstacles. The model's devel-
opers focused on numerous parts: acquiring random data, 
parameterizing algorithms, and choosing the most reliable 
model for load forecasting [52]. This section looks at the 
literature to address the six points stated below. 

• The drivers of the macro-economic environment  
• Deployment and development of new technologies; 

deployment of learning curves 
• Demand for electricity is broken down into its parts 
• Variations that last just a short time 
• Granularity of time 

3. LITERATURE REVIEW 

3.1. Applications of ML in Past Studies using the NYISO 
Database 

Temporal predictions include short-term and long-term 
estimates, such as power supply balancing and income anal-
yses [53]. Various forecasting approaches have been utilised 
throughout the years, including multivariate and multiple 
regression, SVM, and time series (including ARIMA and 
ARMA) [54]. ANNs (artificial neural networks) are also 
extensively employed for prediction. For example, ANNs 
have been used to predict microgrid load, building optimiza-
tion scenarios, and long-term horizon scenarios to anticipate 
a region's yearly energy consumption [55-58]. However, 
personal taste often prevails in the absence of a generally 
accepted forecasting methodology [59]. 

According to recent research, "basic procedures devised 
by experienced forecasters perform as well, if not better, than 
elaborate ones" [60]. So far, there is no indication that com-
plex models outperform simple ones. Thus, knowing which 
model to use in which case is crucial [61, 62]. 

Precise load forecasting may allow electric companies to 
operate at the lowest possible cost. These predictions are 
used to plan generate capacity and fuel purchases [63]. De-
regulation has made a lot of structural changes in the utility 
business over the last decade, which makes our predictions 
more important [64-66]. 

Many power and energy utilities use ML-based algo-
rithms to predict how much power or energy they will need 
to balance production and demand. Demand and supply 
management includes load forecasting [67, 68]. 

A load forecasting model uses previous data to predict 
future load demands. Therefore, the model must initially 
understand the electrical load data use patterns [69]. Next, 
prepare the load data for training. Then the incorrect and 
missing values are replaced. Finally, they link this electrical 
data with historical information such as weather or historical 
occurrences. These factors substantially influence forecast 
accuracy [70-72]. 

Anomalies in instances, missing values (more than 5%), 
and lost data points are some of the reasons for troubles in 
the data collection process. It is challenging to tackle these 
problems without understanding how to apply the model [73, 
74]. If any of these is present, the value will be less accurate. 
As a result, researchers are proposing solutions to these is-
sues. Electric utilities, for example, may save money by bet-
ter predicting their load [75-77]. 
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Fig. (3). Flowchart of Autoregressive Integrated Moving Average (ARIMA). 
 

Accidental mistakes may cause significant financial and in-
frastructural damage. Predicting mistakes may increase energy 
generation costs, claim Haida and Muto et al. The mean abso-
lute percentage error (MAPE) should be reduced by 1% and 
improve load forecasting accuracy to save 3-5% on research 
production costs. Renewable energy has lately caught the inter-
est of both the government and electric utilities [78, 79]. 

Extrapolation of EEX, Nasdaq, or other power market 
exchange load profiles is often used to forecast future elec-
tricity demand. The annual growth in power consumption is 
often utilized [80]. However, the current profile uses the 
hourly pattern. Most techniques use temperature as an ex-
planatory variable and a function indicating repeating daily 
and weekly load patterns [81-84]. Table 1 tabulates the re-
markable research that has been published in the past using 
the NYISO database.  

3.2 Hybrid Models of ML Methods used in Forecasting 

3.2.1. Autoregressive Integrated Moving Average (ARIMA) 

AutoRegressive Integrated Moving Average (ARIMA) is 
an abbreviation that stands for AutoRegressive Integrated 
Moving Average. It adds the concept of integration to the 
more straightforward AutoRegressive Moving Average. This 
abbreviation is descriptive, summarising the model's essen-
tial features. In summary, they are: 

AR: Autoregression. A model that uses the dependent 
connection between an observation and a certain number of 
lagging observations. 

I: Incorporation. Utilization of raw observation differenc-
ing (e.g., subtraction of observation from an observation at 
the previous time step) to render a time series stable. 

MA: Moving Average. A model that utilises the depend-
ence between an observation and a residual error derived 
from a moving average model applied to lagging observa-
tions. 

Each of these components is defined explicitly as a mod-
el parameter. ARIMA (p,d,q) is a standard notation where 
the parameters are replaced by integer values to reflect the 
particular ARIMA model being utilised. 

The ARIMA model parameters are specified as follows: 
p is the number of lag observations included in the mod-

el, which is also known as the lag order. 
d: The number of times the raw observations are differen-

tiated, also known as the differencing degree. 

q: The size of the moving average window, also known 
as the moving average order. 

A linear regression model is developed with the neces-
sary number and kind of variables, and the data is differenti-
ated to make it stationary, i.e., to eliminate trend and season-
al patterns that adversely impact the regression model. A 
parameter may be assigned the value 0 to indicate that the 
model element is not to be utilised. Thus, the ARIMA model 
may be constructed to serve the same purpose as an ARMA 
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Table 1. MAPE of past studies using NYISO database. 

Author Year Method MAPE 

Peng et al. [91] 2017 

Autoregressive Integrated Moving Average (ARIMA) 60.65 

Back Propagation Neural Network (BPNN) 42.5 

Genetic Algorithm-Artificial Neural Network (GA-ANN) 33.12 

Hybrid Autoregressive (AR)-EMD-SVR 11.29 

Empirical Mode Decomposition (DEMD) -SVR-AR 5.37 

Empirical Mode Decomposition (DEMD) -QPSO-SVR-AR 4.62

Li et al. [69] 2016 Ensemble method 3.43 

Fang et al. [138] 2016 Seasonal autoregressive integrated moving average 8.4 

Idowu et al. [15] 2016 Support vector machine 4.78 

Lee et al. [15] 2015 Fuzzy time series 2.61 

Lou et al. [15] 2015 Fuzzy neural network 2.3 

Vaghefi et al. [15] 2015 Linear regression model 4.56 

Xu et al. [113] 2014 Optimistic optimization 3.1 

Amini et al. [140] 2015 Autoregressive integrated moving average 2.59 

Lahouar et al. [90] 2014 Random forest 1.44 

Fan et al. [34] 2017 

Original SVR 12.88 

SVR-PSO 13.5 

SVR-GA 14.31 

AFCM 11.1 

EMD-PSO-GA-SVR 3.92 

 
model or even a basic AR, I, or MA model. Adopting an 
ARIMA model for a time series presupposes that the process 
underlying the data is an ARIMA process. This may seem 
apparent, but it helps justify the necessity to check the mod-
el's assumptions in the raw data and in the residual errors of 
the model's projections. Fig. (3) shows the flowchart of Au-
toregressive Integrated Moving Average (ARIMA). 
3.2.2. Empirical Mode Decomposition (DEMD)-SVR-AR 

Following is a summary of the suggested DEMD-SVR-
AR model's comprehensive method, as shown in Fig. (4). 
 

 
Fig. (4). Flowchart of Empirical Mode Decomposition (DEMD) -
SVR-AR. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

Step 1 Separate the input data using DEMD: Each elec-
tric load data (input data) might be split into a number of 
intrinsic mode functions (IMFs), i.e., a high frequency item 
and residuals. 

Step 2 SVR modelling: Various sizes of fed-in/fed-out 
subsets will be established at this step in order to determine 
the optimal parameters for the SVR model used to anticipate 
high-frequency items. 

Step 3 AR modelling: The AR model predicts residuals 
because they are monotonous and stable. Similarly, if the 
new parameters have a lower MAPE value or if the maxi-
mum number of iterations has been achieved, the new three 
parameters and their related objective value represent the 
solution at this stage. 

Step 4 DEMD-SVR-AR forecasting: After obtaining the 
forecasting values of the high frequency item and the residu-
al items from the SVR model and the AR model, respective-
ly, the high frequency item and the residuals would be used 
to generate the final forecasting results. 
3.2.3. Genetic Algorithm-Artificial Neural Network (GA-
ANN) 

Local minima and network paralysis are examples of 
ANN's downsides. The inability of the network to modify the 
weights towards local minima paralyses the network, dimin-
ishing the precision of the system. On the other hand, we 
cannot always get optimum solutions using just the genetic 
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algorithm. To construct a new forecasting model that ad-
dresses these issues, it will be necessary to combine ANN 
with GA (Fig. 5). 

3.3. Applications of ML in Past Studies using other Data-
bases 

3.3.1. Genetic Algorithm 

Genetic search algorithms are influenced by Charles Dar-
win's theory of natural selection. They can address both con-
strained and unconstrained optimisation issues. For bio-inspired 
optimisation and search tasks, GAs are often used. Holland dis-
covered this approach at the University of Michigan [85]. 

A genetic algorithm applies three rules to produce the 
next generation from the current population. First, pick the par-
ents who contribute to the next generation's population. Next, 
children are exposed to random mutation rules [86, 87]. Finally, 
an assessment procedure is used to build a dataset or population, 
which involves choosing subsets of the datasets for crossover. 
People then bring in the new population and keep testing it until 
they achieve what they want [88-90]. 
3.3.2. Ant Colony Optimization 

With the ACO algorithm, we may find food sources distant 
from the colony. Real ants use pheromones to find the fastest 
routes from the colony to food. The "system's" interests have all 
joined together to discover one answer; hence, there is only one 
solution [91, 92]. Ants use a pheromone to find food.  

The amount of pheromone laid depends on the food 
source's distance, quantity, and quality [93]. On the other 
hand, a lone ant would likely follow the pheromone trail if it 
smelled it. Therefore, this ant maintains the pheromone trail 
along that route since it is responsible for it. Consequently, 
the route with the highest amount of traffic is the most likely 
to be chosen [94-96]. Alternatively, the chance of an ant 
choosing a route rises with the number of ants that have al-
ready chosen it. Thus, this mechanism has a positive feed-
back loop [97]. 

3.3.3. Cuckoo Search Algorithm 

The CS algorithm is inspired by cuckoo bird behaviour. 
Its capacity to switch between global and local random walks 
is critical for global optimisation [98]. Simulated annealing 
is used in algorithms like SA, PSO, and DE, but CS outper-
forms them all. Moreover, the CS algorithm is quicker than 
the DE approach in achieving the ideal answer. CS is also 
faster than PSO in calculation [99, 100]. 
3.3.4. Quantum PSO 

The efficiencies of the PSO have been improved over time. 
The quantum-behaved PSO (QPSO) method is a global search 
approach created by PSO researchers to guarantee that outstand-
ing optimal solutions are identified in the search space [101]. 
Since it lacks particle velocity vectors, QPSO has fewer pa-
rameters to adjust than PSO. In investigations utilising typical 
benchmark functions, QPSO outperformed PSO [102]. 
3.3.5. Artificial Neural Networks 

McCulloch and Pitts explained the neuron's mechanical 
structure in 1943, while Frank Rosenblatt used mathematical 
analysis, digital computer modelling, and parallel analogue 
experimentation with neural networks to classify spatial pat-
terns. Since Rosenblatt's time, ANNs have gained popularity 
as AI tools, particularly for predicting electric load [103-
105]. The artificial neuron is the most straightforward ANN 
unit, handling complex behaviours through connections be-
tween processing neurons and weight variables. They are 
simple to build-MLPs with a single hidden layer [106]. Non-
linear MLPs approximate a regular function with arbitrary 
accuracy. Large ANNs with plenty of neurons and weights are 
known to be easy to train. This may also lead to overtraining. 
The ANN's power rises with depth, but training gets difficult 
owing to the vanishing gradient issue. Shallow ANN topolo-
gies are avoided with just one hidden layer [107-109]. 
3.3.6. Regression Trees 

Many features in the data interact in complicated and 
nonlinear ways, making regression trees a better machine 

 
Fig. (5). Flowchart of Genetic Algorithm-Artificial Neural Network (GA-ANN). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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learning approach than linear regression models. Regression 
trees assign places to their nodes (leaves) where interactions 
are more controlled [110-112]. This is because linear regres-
sion models use a global prediction formula. Using regres-
sion trees, decisions are regressed from the root node to the 
leaf node, where the solution is. The leaf node has the solu-
tion [113] 
3.3.7. Regression Models based on Historical Data 

We build regression models utilising historical data for 
electrical demand and other affecting factors like weather 
variables (temperature, humidity, solar radiation, and wind). 
Some say that load forecasting algorithms should use accu-
rate data whenever possible to avoid making energy con-
sumption predictions that are very different from each other 
[114, 115]. 

3.3.8. Fuzzy Sets 

In the latest forecasting models, intuitionistic fuzzy sets 
are examined by calculating the anticipated outcomes due to 
the employment of the max-min composition in the forecast-
ing technique. The researchers proposed a forecasting model 
based on intuitionistic fuzzy sets and a basic arithmetic algo-
rithm. The suggested model partitioned the universe of dis-
course using a frequency density-based strategy and em-
ployed a simple arithmetic formula to calculate the predicted 
outputs [116]. 

Pritpal Singh introduced a novel time series forecasting 
model based on neutrosophic set (NS) theory and the particle 
swarm optimization (PSO) method. The suggested model 
began with the description of a time series dataset utilising 
three distinct memberships of NS, namely, truth-memb-
ership, indeterminacy-membership, and falsity-membership. 
This neutrosophic depiction of time series was known as the 
neutrosophic time series (NTS). It was shown that the pre-
dicting performance of the suggested model was greatly de-
pendent on the ideal selection of the universe of time series 
datasets. This issue was handled using the PSO method in 
this research. Three distinct datasets, including the Alabama 
university enrollments dataset, the TAIFEX index, and the 
TSEC weighted index, were used to verify and validate the 
suggested model. Experimental findings of the proposed 
model outperformed current benchmark models with an av-
erage predicted error rate of 0.80% for university enroll-
ments, 0.015% for TAIFEX, and 0.90% for TSEC [117]. 

Pritpal et al. proposed a new hybrid time series forecast-
ing model using neutrosophic set (NS), ANN, and gradient 
descent. This study examines the representation of time se-
ries datasets using network structures (NS), three degrees of 
NS membership, and predicts outcomes. This study advocat-
ed a neutrosophic-neuro-gradient technique to solve these 
challenges. Neutrophic time series datasets use NS theory to 
convey uncertainty (NTS). In NTS, IF-THEN rules called 
neutrosophic entropy decision rules (NEDRs) were created. 
ANN-based architecture with projected results from NEDRs, 
to improve ANN's performance and produce optimal fore-
casting results. The gradient descent approach was to elimi-
nate simulation output discrepancies. The TAIFEX index, 
the Alabama university enrollment dataset, and the Taiwan 
Stock Exchange Corporation (TSEC) weighted index were 
utilised to validate the proposed model. The suggested model 
beat existing benchmark models with average error rates of 
1.02 percent for TAIFEX, 0.74 percent for university en-
rollment, and 1.27 percent for TSEC [118]. 

Pritpal et al. introduce a novel technique for forecasting 
time series datasets using a neutrosophic-quantum optimiza-
tion strategy. This work uses neutrosophic set (NS) theory to 
describe the inherited uncertainty of time series datasets with 
three distinct memberships, namely, truth, indeterminacy, 
and false. Such representations of time series datasets are 
referred to as neutrosophic time series (NTS). This NTS is 
also used to model and predict time series datasets. The effi-
cacy of the NTS modelling technique is significantly reliant 
on the ideal selection of the discourse universe and its ac-
companying intervals, according to a study. This work 
chooses the quantum optimization algorithm (QOA) and 
ensembles using the NTS modelling strategy to address this 
problem. QOA enhances the efficacy of the NTS modelling 
strategy by picking the optimum universe of discourse and 
its accompanying intervals from the collection of local opti-
mal solutions. The suggested hybrid model (i.e., the NTS-
QOA model) is confirmed and validated using datasets of 
Alabama (USA) university enrolment, Taiwan futures ex-
change (TAIFEX) index, and Taiwan Stock Exchange Cor-
poration (TSEC) weighted index. Diverse experimental find-
ings demonstrate that the proposed NTS-QOA model is su-
perior to current benchmark models in terms of average fore-
casting error rates (AFERs) of 0.44 percent for university 
enrolment, 0.066 percent for the TAIFEX index, and 1.27 
percent for the TSEC weighted index [119, 120]. 

Table 2. MAPE of past studies using other databases. 

Authors Year Method MAPE 

Khwaja et al. [64] 2020 Bag-Boost NN 1.43 

Laouafi et al. [17] 2017 Hampel filter-based Forecast Combination Method 0.86 

Wu et al. [20] 2019 Cuckoo search hybrid model 3.04 

Bouktif et al. [11] 2018 LSTM 0.78 

Ramos et al. [115] 2021 KNN 3.95 

heikhan et al. [120] 2011 GA, ACO and MLP 1.46 

Peng et al. [135] 2016 Quantum PSO with SVR 4.62 

Ghasemi et al. [128] 2016 TV-SABC 6.98 
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Table 2 shows the different studies other than the NYISO 
database with their respective MAPE. 

4. RESULTS AND DISCUSSION 

The discussion is based on the difference in errors in each 
study. The MAPE of each study is analysed to find the most 
optimised method for long-term forecasting. 80% of the past 
studies were focused on short-term load forecasting, and 
only 5% of the past studies included long-term forecasting. 
The other 15% of studies were price forecasting for medium-
term forecasting. Various factors influence the electric load 
in a particular geographical area. The main factors are holi-
days, weather, lifestyle, average annual income in the partic-
ular location, and cultural background. For example, a city 
like Coimbatore in Tamil Nadu, India, comes to rest at 9 pm, 
while the considered database has a city like New York, 
which has more demand at night. 

The study revealed that only a few studies had been pub-
lished on optimising load forecasting algorithms for long-
term forecasting. The Mean Average Percentage Error 
(MAPE) is calculated using the formula involving y’, the 
predicted value of the model and y being the actual desired 
value applied to several data available.  
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Fig. (6). Shows the different MAPES of past studies that 
included the NYISO database. 

MAPE does not rely on size and may be used simply for 
both large and low volume items. However, frequently, the 
differential penalty might lead to biased forecasting. The 

drawbacks of MAPE, such as difficulty managing small and 
zero denominators, are not highly significant for conventional 
load forecasting issues since the load at the aggregated level is 
seldom 0 or approaching a minimal value. Also, the value of 
these measures is variable for various datasets and factors.  

Therefore, it is challenging to compare the outcomes of 
various procedures. Also, no approaches are explored in a 
single dataset to determine their comparison. In this study 
effort, the most remarkable accuracy of each described ap-
proach is tallied in the coming parts by diverse forecasting 
methodologies. By looking at (Fig. 7), the MAPE of past 
studies that are drawn upon other databases is plotted. 
 

 
Fig. (7). Models vs. MAPE of past studies using other databases. (A 
higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

Fig. (6). Models vs. MAPE of past studies using the NYISO database. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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By analysing the studies, only a few concentrate on deep 
learning methods, although these methods show promising 
outcomes while optimising the algorithms for long-term 
forecasting. The next section briefly talks about deep learn-
ing methods that can be used to make long-term forecasts.  

4.1. Deep Learning Methods used in Forecasting 

An autoencoder is a feed-forward neural network that 
employs hidden layers to duplicate input neurons into output 
neurons [121]. 

Because the RNN model fails on diminishing gradient 
descent, the LSTM model is applied. LSTM has long-term 
storage memory. The LSTM model uses internal self-loops 
to store data. The LSTM's computational graph consists of 
five parts: I/O has five gates: 1, 2, 3, 4, and 5. LSTM compu-
tational model at the cell layer, fused with other cells to pro-
duce an RNN model. Gate actions, like reading, writing, and 
deleting, happen when cells are in the memory state [122]. 

Like human neurons, CNNs transmit information back to 
themselves [123]. This level of training from CNN has been 
used in visual and audio processing, video recognition, and 
natural language processing. In addition, convolutional neu-
ral networks are often used to handle grid data (CNN) [124]. 
Images, for example, use a 2D pixel grid, but time series data 
uses a 1D grid. At least one CNN layer uses the convolution-
al mathematical technique [125-129]. 

There are several deep probabilistic models, but RBM is 
one of the most well-known. RBM has two primary layers: 
visual input and hidden variables. RBM is typically stacked 
to add depth [130-133]. 

The Deep Belief Network (DBN) architecture uses 
stacked RBMs to train hidden layers [134]. The DBN archi-
tecture's connection units link units from one tier to the next; 
no connections exist inside a layer. A DBN is an RBM with 
hidden layers, while an RBM has just one [135, 136]. 

The Deep Boltzmann Machine (DBM) is built like an 
RBM but with concealed variables and layers. There are also 
undirected relationships between variables at all levels, both 
visible and hidden, in DBM. This is unlike DBN, which does 
not have these kinds of relationships [137]. 

The dispersion of power transformers at a great distance 
from electrical plants constitutes the greatest obstacle in 
transformer state detection. Elsisi et al. presented a novel 
combination of an Internet of Things (IoT) architecture with 
deep learning against cyberattacks for online monitoring of 
the condition of power transformers. For failure diagnostics 
of power transformers and cyberattacks, a built one-
dimensional convolutional neural network (1D-CNN) that 
was resistant to uncertainty was presented. In addition, ex-
perimental scenarios are conducted to demonstrate the effi-
cacy of the suggested IoT architecture. Compared to other 
techniques, the deep 1D-CNN has an accuracy of 94.36 per-
cent in the typical case, 92.58 percent when cyberattacks are 
included, and 5 percent uncertainty. The connection between 
the IoT platform and the 1D-CNN effectively identified 
cyberattacks and offered safe online monitoring of trans-
former status via the internet [138]. 

Elssi et al. presented an integrated IoT architecture to 
combat cyber assaults based on a created deep neural net-

work (DNN) with a rectified linear unit to offer dependable 
and secure online monitoring for autonomous guided vehi-
cles (AGVs). In place of the standard cyber attack detection 
strategies in the literature, the created IoT architecture based 
on a DNN presented a novel method for the online monitor-
ing of AGVs against cyber assaults that was inexpensive and 
simple to deploy. The DNN was trained using experimental 
AGV data that reflect the actual state of the AGV and several 
sorts of cyber assaults, including a random attack, ramp at-
tack, pulse attack, and sinusoidal attack that are fed into the 
internet network by the attacker.  

For further validation, the proposed DNN was compared 
to other deep learning and machine learning techniques, in-
cluding a one-dimensional convolutional neural network 
(1D-CNN), a supported vector machine model (SVM), a 
random forest, extreme gradient boosting (XGBoost), and a 
decision tree. In addition, the IoT architecture based on a 
DNN can effectively identify the state of an AGV with a 
96.77 percent accuracy, which is much higher than the accu-
racy of the standard schemes. An enhanced IoT platform 
known as CONTACT Elements for IoT displays the AGV's 
status based on the proposed IoT architecture with a DNN. 
To highlight the performance of the IoT architecture based 
on a DNN, several test scenarios using a realistic IoT-
equipped AGV system are executed. The findings validate 
the use of the IoT to offer effective cybersecurity for data 
visualisation and monitoring of the AGV's state, hence im-
proving decision-making and industrial efficiency [139]. 

Elssi et al. presented a model predictive controller (MPC) 
for operating an automated voltage regulator (AVR). The 
design technique generally addresses the AVR parameter 
uncertainty problem. Hermite–Biehler theorem criteria are 
given to preserve the system's stability in the frequency do-
main. A novel evolutionary technique known as arithmetic 
optimization algorithm (AOA) is used to tune the MPC pa-
rameters, while expert designers rely on trial-and-error ap-
proaches to accomplish this goal. The stability restrictions 
are addressed throughout the process of tuning. By concur-
rently decreasing the voltage maximum overshoot and the 
response settling time, an effective time-domain target is 
developed in order to ensure the AVR's performance. The 
findings of the AOA-based robust MPC are compared to 
those of other approaches described in the literature. In com-
parison to existing strategies, the system response illustrates 
the efficacy and resilience of the strategy with minimum 
control effort against voltage changes and parameter uncer-
tainty [140]. 

Elssi et al. presented a novel intelligent integration be-
tween an Internet of Things (IoT) platform and a deep learn-
ing neural network (DNN) algorithm for the online monitor-
ing of computer numerical control (CNC) devices. The sug-
gested infrastructure is used to monitor the cutting process 
while preserving the cutting stability of CNC machines to 
guarantee efficient cutting operations that improve product 
quality. To evaluate the vibration conditions, a force sensor 
is mounted in the milling CNC machine centre. Consequent-
ly, an IoT architecture is built to link the sensor node to the 
cloud server using the message queue telemetry transport 
(MQTT) protocol to collect the real-time machine status. In 
order to preserve the health of the CNC machine, an en-
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hanced model of DNN is developed to categorize the various 
cutting circumstances (i.e., stable cutting and unstable cut-
ting). Consequently, the created deep learning can properly 
determine whether the sent data of the smart sensor through 
the internet is genuine cutting data or false data generated by 
cyberattacks or the inefficient reading of the sensor owing to 
the environment's temperature, humidity, and noise signals. 
The suggested technique yields exceptional results, demon-
strating that deep learning may beat other conventional ma-
chine learning approaches for vibration control. Contact 
components for IoT are used to show cutting data on a graph-
ical dashboard and monitor the cutting process in real-time. 
During the implementation of the proposed deep machine 
learning and IoT-based monitoring system, multiple cutting 
conditions for slot milling are experimentally verified. Diverse 
scenarios are shown to validate the efficacy of the built sys-
tem, which may disconnect instantly to safeguard the system 
automatically upon detecting a cyberattack and switch to the 
backup broker to continue running operations [140]. 

CONCLUSION 

This paper discusses the unique deep learning methods 
used in load forecasting. In terms of prediction, most of these 
new learning algorithms outperform AI and neural networks. 
Forecasting concerns include load, time of day, weather, 
seasons, consumer behaviour, and vacations. Residential 
load consumption projections, for example, vary based on 
the occupants' appliances. In load forecasting, neural net-
works are commonly used. However, training time, NN up-
grading, and technology integration are difficulties for power 
systems. This article examines a single key technique and 
describes the state-of-the-art for developing hybrid models. 
Several load forecasting approaches and time frames were 
offered due to the study's extensive literature evaluation. 
These have been used to build many prediction models. 

In recent decades, artificial intelligence has been devel-
oped to automate processes and make intelligent decisions. 
Several machine learning techniques have been used to solve 
AI problems in computer vision, neurology, biomedicine, 
and power systems. Researchers have created multiple ML 
models to account for continually changing elements and 
increase prediction accuracy. As future work, we want to 
delve more into the descriptions shown by the selected arti-
cles. Future studies may include deep learning forecasting 
methods to forecast long-term load in the NYISO database.  
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