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Short summary: Compared to controls, COVID-19 convalescent plasma (CCP) had higher 

distributions of IFN-γ, IL-10, IL-15, IL-21 and MCP-1, but lower IL-1RA, IL-8, IL-16 and VEGF-A. 

Between CCP with low vs. high neutralizing antibody titers, IL-8, IL-15 and IP-10 distributions 

varied significantly. (40/40 words) 
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ABSTRACT 

 

Background  

The efficacy of COVID-19 convalescent plasma (CCP) is primarily ascribed as a source of 

neutralizing anti-SARS-CoV-2 antibodies. However, the composition of other immune components in 

CCP and their potential roles remain largely unexplored. This study aimed to describe the 

composition and concentrations of plasma cytokines and chemokines in eligible CCP donors. 

 

Methods 

A cross-sectional study was conducted among 20 pre-pandemic healthy blood donors without SARS-

CoV-2 infection and 140 eligible CCP donors with confirmed SARS-CoV-2 infection. 

Electrochemiluminescence detection based multiplexed sandwich immunoassays were used to 

quantify plasma cytokine and chemokine concentrations (n=35 analytes). A SARS-CoV-2 

microneutralization assay was also performed. Differences in the percent detection and distribution of 

cytokine and chemokine concentrations were examined by categorical groups using Fisher’s exact and 

Wilcoxon rank-sum tests, respectively.  

 

Results 

Among CCP donors (n=140), the median time since molecular diagnosis of SARS-CoV-2 was 44 

days(interquartile range=38-50) and 9%(n=12) were hospitalized due to COVID-19. Compared to 

healthy blood donor controls, CCP donors had significantly higher plasma levels of IFN-, IL-10, IL-

15, IL-21 and MCP-1, but lower levels of IL-1RA, IL-8, IL-16, and VEGF-A(P<0.0014). Significant 

differences were also observed in plasma levels of IL-8, IL-15 and IP-10 between CCP donors with 

low(<40) vs. high(≥160) anti-SARS-CoV-2 neutralizing antibody titers(P<0.0014).  The median 

levels of IL-6, IL-8, TNF-, IL-12/IL23p40, MDC were significantly higher among CCP donors who 

were hospitalized vs. non-hospitalized(P<0.05). 

 

Conclusion 

Heterogeneity in cytokine and chemokine composition of CCP suggests there is a different 

inflammatory state among the CCP donors as compared to SARS-CoV-2 naïve, healthy blood donors.  

 

Keywords (3–10): SARS-CoV-2, COVID-19, cytokine, chemokine, convalescent plasma, neutralizing 

antibodies 
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BACKGROUND 

The ongoing coronavirus disease 2019 (COVID-19) pandemic is a challenging global health crisis. 

While the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 

which causes COVID-19, continues to surge, the scientific community is exploring effective 

prophylactic and therapeutic options. COVID-19 convalescent plasma (CCP) is currently one of the 

leading therapies and was recently granted hospital Emergency Use Authorization (EUA) by the U.S. 

Food and Drug Administration [1-4]. Although the efficacy of CCP is primarily thought to be 

ascribed to neutralizing anti-SARS-CoV-2 antibodies, the composition and potential roles of other 

immune components in the plasma remain largely unexplored. In this study, the composition and 

concentrations of plasma cytokines and chemokines were evaluated in potential CCP donors with 

confirmed SARS-CoV-2 infection, and compared to that in healthy blood donor controls. 

 

METHODS 

Study Participants 

A cross-sectional study of potential CCP donors (hereinafter referred to as CCP donors) was 

conducted as previously described [5-7]. From April to May 2020, eligible CCP donors (n=140) from 

the Baltimore/Washington DC area who had a confirmed molecular diagnosis of SARS-CoV-2 RNA 

(PCR+), were at least 18 years old and met the eligibility criteria for community blood donation (e.g. 

no pregnancy within last six weeks, never been diagnosed with HIV, HBV or HCV) were included. 

During this time period, the FDA did not require a specific titer for CCP donors.  Plasma was 

separated from whole blood within 12 hours of collection and stored at -80˚C until further processing. 

In addition, a convenience sample of plasma from 20 platelet blood donors (New York Blood Center, 

NY) collected prior to December 2019 served as healthy controls (pre-COVID-19 pandemic blood 

donors hereinafter referred to as controls). Self-reported demographic and clinical information was 

collected and available for the CCP donors. However, except for ABO blood group, no other 

information was available for the controls. 
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Patient Consent Statement 

The design of the work has been approved by the Johns Hopkins University School of Medicine 

Institutional Review Board. All study participants (both CCP donors and controls) provided written 

informed consent. 

 

Microneutralization Assay 

SARS-CoV-2 neutralizing antibody (nAbs) titers against 100 50% tissue culture infectious doses 

(TCID50) per 100 L were determined using a microneutralization (NT) assay, as previously 

described [7]. The nAb titer was the highest plasma dilution that prevented cytopathic effect (CPE) in 

50% of the wells tested. nAb area under the curve (AUC) values were estimated using the exact 

number of wells protected from infection at every plasma dilution. 

 

Multiplexed Sandwich Immunoassays  

Highly sensitive, multiplexed sandwich immunoassays using MULTI-ARRAY
® 

electrochemiluminescence detection technology (MesoScale Discovery, Gaithersburg, MD, USA) 

were used for the quantitative evaluation of 35 different human cytokine and chemokine analytes in 

plasma samples from CCP donors and controls following the manufacturer’s instructions.  Based on 

previously published reports [8] and preliminary discussions with COVID-19 researchers at Johns 

Hopkins University, the analytes evaluated included: colony stimulating factors [GM-CSF, G-CSF 

(CSF3)]; eosinophil chemotactic proteins [Eotaxin, Eotaxin-3]; interleukins [IL-1α, IL-1β, IL-2, IL-4, 

IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-12/IL23p40, IL-13, IL-15, IL-16, IL-17A, IL-18, IL-21, 

IL-33 and receptor antagonist IL-1RA]; interferons [IFN-γ, IFN-2a]; IFN-γ inducible protein-10 [IP-

10]; macrophage-inflammatory protein [MIP-1α, MIP-1β]; macrophage-derived chemokine [MDC]; 
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monocyte chemoattractant protein [MCP-1, MCP-4]; tumor necrosis factors [TNF-α, TNF-β]; 

thymus- and activation-regulated chemokine [TARC] and vascular endothelial growth factor [VEGF-

A]. Analyte concentrations were calculated per manufacturer protocol (MSD DISCOVERY 

WORKBENCH® analysis software) and were considered ―detectable‖ if both runs of each sample 

had a signal greater than the analyte- and plate-specific lower limit of detection (LLOD) (i.e., 2.5 

standard deviations of the plate-specific blank). Analyte concentrations (pg/mL) from both runs of 

each analyte were averaged for analysis.  

  

Statistical Analysis 

Cytokine and chemokine analytes with <80% detectability in the overall sample were analyzed as 

binary variables (detectable vs. not detectable) and analytes with80% detectability in the overall 

sample were analyzed continuously, as previously published [9]. Values for analytes with results 

below the LLOD were imputed using a single stochastic imputation from truncated log-normal 

distributions fitted to the detectable values of each analyte (i.e., random values were drawn from the 

extrapolated tail of the distribution below the LLOD). CCP donors were categorized into groups based 

on the level of nAb (AUC cutoffs of <40, 40-159, ≥160 as low, middle and high titer, respectively). 

Differences in analyte detectability were examined between categorical groups using Fisher’s exact 
2
 

tests. Differences in the distribution of continuous analytes were examined between categorical 

groups using Wilcoxon rank-sum tests. 

 

To assess whether the distribution of log2-transformed cytokine and chemokine analytes differed by 

nAb groups (<40, 40-159, or 160 AUC) among CCP donors, least-squares linear regression was 

performed separately for each analyte (dependent variable). For each analyte, adjusted  coefficients 

were estimated from a multivariable model that included adjustment for age (continuous), sex, and 

days from PCR+ diagnosis (continuous). As a sensitivity analysis, a second model was also 
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constructed that additionally included adjustment for history of COVID-19 hospitalization status as a 

measure of severity of illness. Similar analyses were performed using modified Poisson regression for 

binary analytes. Adjustment for multiple comparisons across analytes was performed by using a 

family-wise Bonferroni correction to control the family-wise error rate at an  of 0.05 [10]; a two-

sided P value < 0.0014 (0.05/35 analytes) was considered statistically significant. Analyses were 

performed in R statistical software (version 4.0.2). 

 

RESULTS 

Study Participants Characteristics 

The sample of CCP donors (n=140) was 54% male with a mean age of 42 years (Supplementary Table 

1). CCP donors were predominantly white (n=108), followed by Asian (n=14), Hispanic (n=5), 

African American (n=4), and mixed or unknown race (n=9). While most CCP donors had minor 

symptoms and did not require any hospitalization, 12 (9%) donors had previously been hospitalized 

due to COVID-19. At the time of blood collection, a median of 44 days (IQR=38-50) had elapsed 

since participants had been diagnosed with SARS-CoV-2 infection by PCR. There were 60 CCP 

donors in the low nAb group (43%), 35 in the middle nAb group (25%), and 45 in the high nAb group 

(32%), for whom epidemiologic characteristics are given in Supplementary Table 1.  

 

Plasma cytokine and chemokine levels in CCP donors  

For each of the cytokine and chemokine analytes tested, LLOD range (pg/mL) and total number of 

detectable samples in CCP donors and controls were calculated. For all analytes, the overall mean 

coefficient of variation between runs was <15% (Supplementary Tables 2 and 3). The correlation 

between cytokines and chemokines varied substantially and is shown in (Figure 1).   
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Among the analytes with 80% overall detectability,  the  median levels of IL-6, IL-8, TNF-, IL-

12/IL23p40 and MDC were significantly higher among CCP donors who were hospitalized vs. non-

hospitalized (Wilcoxon rank sum P <0.05, Supplementary Table 4); the median levels of Eotaxin 

were significantly lower among those hospitalized vs. non-hospitalized (Wilcoxon rank sum P <0.05, 

Supplementary Table 4). For analytes with <80% detectability, no significant difference in percent 

detection was observed among CCP donors by hospitalization status (Supplementary Table 5).  

 

Among the analytes with 80% detectability, the distribution of plasma IFN-, IL-10, IL-15, IL-21 

and MCP-1 were significantly higher in CCP donors as compared to the controls, whereas the 

distribution of IL-1RA , IL-8, IL-16, and VEGF-A levels were significantly lower in CCP donors than 

the controls after adjusting for multiple comparison using Bonferroni correction (Wilcoxon rank-sum 

P<0.0014) (Figure 2). Among CCP donors and the analytes with 80% detectability, the distribution 

of IL-8, IL-15, and IP-10 were significantly higher in the high nAb titer group (≥160 AUC) compared 

to the low nAb titer group (<40 AUC) (Wilcoxon rank-sum P<0.0014) (Figure 3). In multivariable 

regression analysis, only the distribution of IL-15 was significantly higher in the high nAb titer group 

than those in the low nAb titer group (AUC <40) after adjusting for age, sex, days since PCR+ 

diagnosis as well as for multiple comparisons (P < 0.0014) (Supplementary Table 6). Similar results 

were obtained in the model that adjusted for prior hospitalization status.  

Among analytes with <80% detectability, the percent detection of IL-13, IL-1, IL-4, and G-CSF was 

significantly lower among CCP donors than controls after adjusting for multiple comparisons 

(Fisher’s exact P < 0.0014) (Figure 4). There were, however, no statistically significant differences by 

nAb titer group among CCP donors after adjusting for multiple comparisons (Figure 5; 

Supplementary Table 7).  
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DISCUSSION 

In addition to nAbs, convalescent plasma may contain cytokines (pro- and/or anti-inflammatory), 

clotting factors, natural antibodies, defensins, pentraxins and other undefined proteins [11]. 

Antibodies in convalescent plasma may also mediate their therapeutic effects through a variety of 

mechanisms (e.g. direct virus neutralization, antibody mediated complement activation, antibody-

dependent cellular cytotoxicity, and/or phagocytosis) [11, 12]. While studies have evaluated the acute 

phase plasma of COVID-19 patients [13-15], sparse data exist on recovered COVID-19 patients, and 

the components in convalescent plasma. In addition, little is known regarding whether a particular 

cytokines or chemokines profile is associated with higher nAb. This study demonstrates that CCP has 

a different cytokine and chemokine profile than that of the plasma of SARS-CoV-2 naïve controls, 

and that IL-8, IL-15 and IP-10 were associated with higher nAb among CCP donors. 

 

Distributions of IFN-, IL-10, IL-15, IL-21 and MCP-1 were significantly higher in CCP as compared 

to control plasma. Although no significant difference in median levels of these cytokines and 

chemokines has been observed in the hospitalized CCP donors (n=12), this may still reflect residual 

effects of the heightened immune response that were present during acute phase of the disease in 

severe as well as moderately ill COVID-19 patients as previously reported [16, 17]. From a functional 

standpoint, some of these cytokines (IL-10, IL-15 and IL-21) may be involved in B cell survival, 

differentiation into plasma cells and class switching, while others may impart an inhibitory effect on 

B cells in certain situations (e.g. IL-8, IFN-) [18-20]. In addition, it has recently been reported that 

individuals with inborn errors of type I IFN immunity is associated with life-threatening COVID-19 

pneumonia [21]. Of note, some of the analytes tested (e.g. IL-1RA, IL-8, IL-16, and VEGF-A) were 

significantly lower in CCP donors than those from the control cohort, the biological relevance of 

which requires further investigation. This is in contrast to a previous report by Chi et. al. where levels 

of all 48 cytokines and chemokines tested were very similar between a small sample of convalescent 

(n=4) and control subjects (n=4) [17].  
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In a well-controlled immune response, cytokine and chemokine expression is tightly regulated, and 

loss of this control may have unintended consequences. For instance, IL-10, a key regulator of 

immune system homeostasis and an anti-inflammatory cytokine, was also associated with sustained 

chronic infection when expressed aberrantly [22]. Virus-induced aberrant inflammatory responses 

have been associated with the pathogenesis of many viral diseases including the coronaviruses [8]. 

Excessive cytokine production, also known as hypercytokinemia, has been linked to pulmonary 

inflammation and acute lung injury in SARS, MERS-CoV, and in SARS-CoV-2 infected patients [8, 

23-26]. Longitudinal immune profiling of COVID-19 has revealed an inflammatory cluster of IL-1α, 

IL-1β, IL-6, IL-10, IL-12 p70, IL-17A, IFNα, thrombopoietin (TPO), IL-33, IL-16, IL-21, IL-23, 

IFNλ, eotaxin and eotaxin 3 in patients with severe disease [16]. Transfusion of plasma with elevated 

levels of some of these cytokines, could contribute to some of the biological effects associated with 

CCP administration in COVID-19 patients. In this regard, the administration of these cytokine and 

chemokines may have an immunomodulatory effect in less critical patients via amelioration of the 

severe inflammatory response (e.g. anti-inflammatory IL-10) and/or antibody production (e.g. IL-21 

in plasma cell generation). 

 

There are limitations to this study. The study is cross-sectional and not designed to infer causal 

associations. The number of available controls was relatively low, and limited demographic and 

clinical data were available for the control group, which may have resulted in unmeasured 

confounding. Nevertheless, findings of this study suggest heterogeneity in cytokine and chemokine 

composition and levels in CCP. Indeed, the biological significance of the variations in several 

cytokine and chemokine levels observed in this study requires investigation. 

 

The markedly different inflammatory states in the CCP donors observed in this study may have 

particular significance to long-term recovery from COVID-19, and also the therapeutic potential of 

CCP. A recent study of 55 people recovering from COVID-19 in China showed abnormal lung scans 
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and lung function three months after discharge from the hospital, and elevated serum levels of D-

dimer was associated to people with more lasting lung problems [27]. Even in outpatients with milder 

COVID-19 illness, delay in complete recovery with prolonged symptoms like cough, fatigue, or 

shortness of breath has been reported in the US [28].These studies demonstrate that individuals have 

markedly different inflammatory states long after symptoms have resolved, and these may contribute 

to the lingering symptoms (e.g. shortness of breath, cough, gastrointestinal problems, headache, or 

fatigue) reported in the COVID-19 long-haulers. Thus, the levels of CCP cytokines and chemokines 

provide important insights into overall recovery status of the convalescing patients, as well as its 

suitability as a therapy for COVID-19 patients with different disease severity. Larger and longer-term 

CCP studies are also necessary to evaluate their immunomodulatory effects in COVID-19 patients.   
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Figure 1. Correlation heatmap between cytokines and chemokines among COVID-19 convalescent 

plasma (CCP) donors. 

Note: This analysis is restricted to analytes that had 80% overall detectability. 

 

 

Figure 2. Distribution of log2 cytokine and chemokine levels among pre-COVID-19 pandemic blood 

donors (controls) to COVID-19 convalescent plasma (CCP) donors.  

Note: There were 20 controls and 140 CCP donors. P values were determined from Wilcoxon rank sum test. 

Only p values < 0.05 are presented.  Unit of the analytes: log2-transformed pg/mL. 

* significant p values after adjusting for multiple comparison using Bonferroni correction (P < 0.0014). 

 

Figure 3. Distribution of log2 cytokine and chemokine levels by neutralizing antibody (nAb) titer 

group among COVID-19 convalescent plasma donors.  

Note: There were 60 samples in the <40 group, 35 in the 40-159 group, and 45 in the ≥160 group. P values 

were determined by Wilcoxon rank sum test. Only p values < 0.05 are presented. Unit of the analytes: log2-

transformed pg/mL. 

* significant p values after adjusting for multiple comparison using Bonferroni correction (P < 0.0014). 

 

 

Figure 4. Comparisons of percent detection of cytokines and chemokines among pre COVID-19 

blood donors (controls) to COVID-19 convalescent plasma (CCP) donors.  

Note: This analysis is restricted to analytes that had <80% detectability. There were 20 controls and 140 CCP 

donors. P values were determined by Fisher’s exact test. Only p values < 0.05 are presented.  

* significant p values after adjusting for multiple comparison using Bonferroni correction (P < 0.0014). 

 

Figure 5. Comparisons of percent detection of cytokines and chemokines by neutralizing antibody 

(nAb) titer group among COVID-19 convalescent plasma (CCP) donors.  

Note: This analysis is restricted to analytes that had <80% detectability. P values were determined by fisher’s 

exact tests. Only p values < 0.05 are presented. No p value was significant after adjusting for multiple 

comparison using Bonferroni correction (P < 0.0014). 
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