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One of the most prevalent malignant bone tumors is osteosarcoma. The diagnosis and treatment cycle are long and the prognosis
is poor. It takes a lot of time to manually identify osteosarcoma from osteosarcoma magnetic resonance imaging (MRI). Medical
image processing technology has greatly alleviated the problems faced by medical diagnoses. However, MRI images of osteo-
sarcoma are characterized by high noise and blurred edges. The complex features increase the difficulty of lesion area identi-
fication. Therefore, this study proposes an osteosarcoma MRI image segmentation method (OSTransnet) based on Transformer
and U-net. This technique primarily addresses the issues of fuzzy tumor edge segmentation and overfitting brought on by data
noise. First, we optimize the dataset by changing the precise spatial distribution of noise and the data-increment image rotation
process. The tumor is then segmented based on the model of U-Net and Transformer with edge improvement. It compensates for
the limitations of U-semantic Net by using channel-based transformers. Finally, we also add an edge enhancement module (BAB)
and a combined loss function to improve the performance of edge segmentation. The method’s accuracy and stability are
demonstrated by the detection and training results based on more than 4,000 MRI images of osteosarcoma, which also
demonstrate how well the method works as an adjunct to clinical diagnosis and treatment.

1. Introduction

Osteosarcoma is the most common primary malignant bone
tumor, accounting for approximately 44% of primary ma-
lignant tumors in orthopedics [1]. In developing countries,
limited by medical level, the death rate of osteosarcoma has
far exceeded that of developed countries. The survival rate of

patients with advanced osteosarcoma is less than 20% [2].
Early detection and timely development of reasonable
treatment strategies can effectively improve the survival rate
of patients [3]. The advantage of MRI is that it can detect
aberrant signals in the early stages of a lesion. It can produce
multidimensional images thanks to its multidirectional
imaging. It can also display more information about the soft
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tissues and their links to the surrounding neurovascular [4].
It can also quantify the extent of the bone marrow cavity’s
involvement [5]. As a result, MRI is a critical technique for
doctors to use when diagnosing and evaluating probable
osteosarcoma.

In most developing countries, the treatment and prog-
nosis of osteosarcoma have been troubling for those involved,
and it is also a pain point for every osteosarcoma patient.
Developing nations are unable to provide patients with os-
teosarcoma with a more individualized course of treatment
due to their economic underdevelopment and lack of medical
resources and equipment [6]. On the other hand, the lack of
technical personnel and the backward medical technology
make the early diagnosis of osteosarcoma a huge problem
[7-10]. The larger problem is that even with adequate
screening equipment and MRI images, inefficient manual
recognition measures may lead to delays in diagnosis and
treatment, thus worsening the condition of patients with
osteosarcoma. Since 600-700 MRI images are generated per
patient [11], there are often fewer than 20 valid osteosarcoma
images. A large amount of data can only be diagnosed by
doctors’ manual identification [11, 12], which burdens doc-
tors. Long-term high-intensity work can also fatigue doctors
and reduce the speed and accuracy of discrimination [13].
Worst of all, the location, structure, shape, and density of
different osteosarcomas are not identical [14]. It is difficult to
distinguish the tumor location from normal tissues. Different
osteosarcomas may also have image differences under the
same imaging method [15-17]. It is extremely difficult to
diagnose with the naked eye, which requires doctors to have
rich diagnostic experience. Otherwise, it may lead to inac-
curate diagnostic results and delays in patient treatment [18].

Medical image processing technology has steadily been
employed in the direction of medical diagnostics as com-
puter image technology has progressed [19]. Among the
existing studies, there are many types of segmentation al-
gorithms applied to medical images, such as thresholding
[20, 21], region growing [22, 23], machine learning [24, 25],
deep learning [26, 27], active contouring [28, 29], quantum-
inspired compilation [30, 31], and computational intelli-
gence [32, 33]. These algorithms are able to provide effective
support for the clinical routine. Through algorithm pro-
cessing, the system can more accurately segment the tumor
area that the doctor is interested in [34]. It is helpful for
precise localization and diagnosis and treatment, reducing
the possibility of tumor recurrence, and thereby greatly
improving the survival rate of patients [35]. For example, the
literature [36] uses the convolutional neural network for the
localization and segmentation of brain tumors, and the
literature [37] realizes the classification of brain tumors and
the grading of glial tumors. However, segmenting osteo-
sarcoma MRI images remains a significant difficulty. The
amount of noise in MRI pictures varies. Furthermore,
the segmentation model is prone to noise [38] and over-
fitting, resulting in worse segmentation accuracy. Mean-
while, osteosarcoma has a wide range of local tissue
development and shape [39, 40]. These properties cause
indistinct tumor boundaries and complex form structures,
making it difficult to maintain edge features [41-43]. As a
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result, it is worth looking into how to segment osteosarcoma
effectively and properly.

We present a segmentation approach for osteosarcoma
MRI images using edge enhancement features (OSTransnet).
To begin, we optimize the dataset by altering the spatial
distribution of natural noise. The overfitting problem of deep
learning models caused by MRI image noise is solved using
this method. Then, for osteosarcoma image segmentation
(UCTransnet), we employed Transformer and U-net net-
work models. The channel CTrans module was introduced
by UCTransnet. The jump connection element of U-Net is
replaced by this module. This method compensates for
U-Net segmentation’s semantic shortcomings and accom-
plishes global multiscale segmentation of tumor patches of
various sizes. This approach also increases the accuracy of
osteosarcoma segmentation by resolving complicated and
changeable lesion areas in MRI images of osteosarcoma.
Finally, we employ a combined loss function and an edge
augmentation module. They collaborate to improve the
segmentation results and effectively handle the problem of
tumor edge blurring. This method increases diagnostic ef-
ficiency while reducing diagnostic workload and time
without compromising diagnostic accuracy.

The contributions to this paper are listed as follows:

(1) A new data alignment method is introduced in this
paper to optimize the dataset. The new data align-
ment is achieved by altering the spatial distribution
of real noise to generate more training samples that
include both actual content and noise. The strategy
effectively mitigates the effect of noise on model
segmentation while broadening the data.

(2) The segmentation model utilized in this paper is
UCTransnset, which is built on Transformer and
U-Net. Instead of using the skip-connected section
of the U-Net, this network structure uses the
channelized Transformer module (CTrans). It real-
izes the localization and identification of tumors of
different scales.

(3) The edge enhancement module (BAB) with a
combined loss function is introduced in this study.
This module can increase tumor border segmenta-
tion accuracy and effectively tackle the problem of
tumor edge blurring.

(4) The experimental results show that our proposed
method of osteosarcoma segmentation has higher
precision than previous methods and has advantages
in various evaluation indexes. The results can be used
by physicians to assist in the diagnosis and treatment
of osteosarcoma. This study has important impli-
cations for the ancillary diagnosis, treatment, and
prognosis of osteosarcoma.

2. Related Work

With the development of computer technology, there have
been many artificial intelligence decision-making systems
and image processing methods used in these systems to
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assist in disease diagnosis. In the diagnosis of osteosarcoma,
we use computer technology to analyze and process images
to help doctors quickly find the tumor location and improve
the speed and accuracy of diagnosis. This has become a
research hotspot today, and some mainstream algorithms in
this field are introduced below:

To discriminate between live tumors, necrotic tumors,
and nontumors, Ahmed et al. [44] proposed a compact CNN
architecture to classify osteosarcoma images. The method
combines a regularized model with the CNN architecture to
reduce overfitting, which achieves good results on balanced
datasets. Fu et al. [45] designed a DS-Net algorithm com-
bining a depth model with a Siamese network to address the
phenomenon of overfitting of small datasets in osteosarcoma
classification. Anisuzzaman et al. [46] used a CNN network
for pretraining. In this way, an automatic classifier of os-
teosarcoma tissue images is realized, thereby better pre-
dicting the patient’s condition.

Additionally, a lot of research has suggested osteosar-
coma segmentation algorithms that predict and separate the
tumor region of osteosarcoma. Nasir and Obaid [47] pro-
posed an algorithm-KCG that combines multiple image
processing techniques, which involves iterative morpho-
logical operations and object counting, and achieves high
accuracy on existing datasets. The MSFCN method was
proposed by Huang et al. [48]. The idea is to add a supervised
output layer to ensure that both local and global image
features can be captured. The MSRN proposed by Zhang
et al. [49] can provide automatic and accurate segmentation
for the osteosarcoma region of the image. By adding three
additional supervised side output modules, the extraction of
image shape and semantic features is realized respectively.
Shuai et al. [50] designed a W-net++ model by considering
two cascading U-Net networks in an integrated manner. It is
mainly implemented by applying multiscale inputs to the
network and introducing deep adaptive supervision. Ho
et al. [51] described a deeply interactive learning (DIAL)
approach to training a CNN as a labeling method for pre-
dictive assessment of prognostic factors for survival in os-
teosarcoma. This method can effectively predict the necrosis
rate within the variation rate range.

In addition to its use for osteosarcoma segmentation,
there are many studies on the application of computer
technology in the treatment of osteosarcoma. Kim et al. [52]
compared the performance of different methods in pre-
dicting response to neoadjuvant chemotherapy in osteo-
sarcoma patients, which can help clinicians, decide whether
to proceed with further treatment of this patient. Dufau et al.
[53] developed a support vector machine-based predictive
model to predict the treatment effect of neoadjuvant che-
motherapy, which predicted the chemotherapy response of
patients before starting treatment. Hu et al. [46, 54]
established an MRI image recognition model based on the
proposed CSDCNN algorithm. This method obtained better
indicators than SegNet, LeNet, and other algorithms. The
F-HHO-based GAN proposed by Badshah et al. [47, 54] can
be used for early osteosarcoma detection work. The method
classifies tumors by GAN and uses GAN to detect and
segment the extracted image features.

With the development of deep learning-based net-
works, many researchers embed the latest algorithms of the
team into the system for implementation. Arunachalam
et al. [55] created a deep learning architecture that im-
plements a fully automated tumor classification system. It
establishes the groundwork for automating the deep
learning algorithms’ extraction of tumor prediction maps
from raw images. Bansal et al. [56] implemented an au-
tomatic detection system based on the F-FSM-C classifi-
cation model. The model can classify the original image
into three types: surviving tumor, nonsurviving tumor, and
nontumor, reducing the number of network features. In
view of the characteristic of high noise in osteosarcoma
MRI images, Wu et al. [57] proposed a segmentation
system based on deep convolutional neural networks,
which effectively improved the speed and accuracy of os-
teosarcoma MRI images.

From the above research work, it can be seen that image
segmentation methods have become increasingly important
for disease diagnosis and prognosis. However, as shown in
Table 1, existing studies still face many problems in the
detection of osteosarcoma MRI images. In particular, it is
still difficult to reasonably preserve edge features when
segmenting osteosarcoma images. Since images are sensitive
to noise, it is necessary to reduce MRI image noise to im-
prove segmentation accuracy. To compensate for segmen-
tation inaccuracy, we present a segmentation method based
on edge enhancement from osteosarcoma MRI (OSTrans-
net). The method uses strategies such as dataset optimiza-
tion, model segmentation, edge enhancement, and mixed
loss functions to improve the accuracy of osteosarcoma
segmentation.

3. System Model Design

The diagnosis and treatment of osteosarcoma present many
difficulties in most underdeveloped countries due to fi-
nancial and technical constraints [58]. Osteosarcoma MRI
scans is complex and data-intensive. Manual screening and
diagnostic tests, which cost a lot of medical resources and are
difficult for clinicians, are extremely difficult to execute
[59, 60]. Image processing technology is gradually becoming
more frequently employed in disease diagnosis, treatment,
and prognosis to aid clinicians in clinical diagnosis and
increase disease diagnosis efficiency [61]. In addition, due to
the complexity of osteosarcoma MIR images and the di-
versity of tumors, existing detection methods do not achieve
ideal segmentation results [62]. This study offers a seg-
mentation approach (OSTransnet) for osteosarcoma MRI
images with edge enhancement features based on Trans-
former and U-Net, which is primarily intended to assist
clinicians in more precisely and rapidly diagnosing osteo-
sarcoma lesions areas by recognizing osteosarcoma MRI
pictures. It has been experimentally demonstrated that
OSTransnet outperforms the current famous network ar-
chitecture in segmentation accuracy for the segmentation of
osteosarcoma. Figure 1 depicts the overall layout of this
publication.
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TaBLE 1: Comparison of different auxiliary diagnostic methods for osteosarcoma.
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[45] FCN overfitting
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[46] learning, VGG19 images to predict patient conditions . A -
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. Prognostic factors predicting . o
Literature Lo . highly subjective. Some of the features used
CNN survival in osteosarcoma, assessing k .

. [52] . s . as input to automated machine learners
Pathological necrosis rates within a variable range depend on the features identified by the
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Literature . automated process for obtaining
Deep learning b
[55] tumor prediction maps from raw
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. . . . Th f ivi , . .
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[56] optimization T speed
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. To compare the use of different
F-FDG PET L - . . . .
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8 neoadjuvant chemotherapy
Diffusi . . oo L
w;i;}ftlsg Literature CNN Prec1s.e locah.zatlon of lesions in The sample size is small.
. . [54] patients with osteosarcoma
imaging
Literature Support vector Predicting a patient’s chemotherapy Not validated for large scale data
[53] machines response before treatment
Literature K-means,
MRI [47] chan-vese High precision segmentation The complexity of the model is high
segmentation
Literature Mean-teacher, Tumor region segmentation Segmentation accuracy is limited
(57] SepUNet, CRF & & & Y

We construct an edge-enhanced osteosarcoma MRI image
segmentation method (OSTransnet), which is mainly divided
into two parts: dataset optimization processing and MRI image
segmentation model based on U-Net and Transformer with
edge-enhanced features. In Section 3.1, we introduced a new
data alignment. It is better for the subsequent segmentation
and diagnosis of the osteosarcoma lesion region. By taking the
optimized image data in 3.1 and feeding it into the segmen-
tation network in 3.2, we can locate the location and extent of
the tumor and provide aid to the doctor’s decision-making for
diagnosis and prediction of the disease.

3.1. Dataset Optimization. One of the most important
problems in Al-assisted diagnosis systems is the lack of
labeled pictures for diagnosing osteosarcoma, despite a large
amount of data in MRI images. Deep learning-based models
are prone to overfitting if there are insufficient training
samples. Data enhancement is an effective way to avoid the

overfitting problem. At the same time, osteosarcoma images
have the characteristic of being susceptible to noise. It is not
feasible to directly discard labeled images that contain noise,
and they can also contribute to the model. We introduce a
new data alignment method that utilizes the natural noise in
authentic noisy images to solve this problem. More training
examples with actual content and noise are generated by
altering the spatial distribution of natural noise.

The first step is to create noisy picture data by subtracting
the validly labeled photos from the corresponding noisy im-
ages, as shown in Figure 2. When working with noisy data, the
noise clustering technique divides it into groups based on
ground-truth intensity values. The places of these noises are
then swapped using a random permutation inside each cluster.
The displaced image is combined with the accompanying valid,
ground-truth labeled image to form a new synthetic noisy MRI
image. This is done to limit the impact of noise on segmen-
tation model accuracy while expanding the breadth of data.
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In this section, we preprocessed osteosarcoma MRI
images. The processed images can not only reduce the waste
of ineffective model training but also improve the seg-
mentation performance. Furthermore, these images can be
used as a reference for doctors’ clinical diagnoses, which can
also improve detection accuracy and diagnosis speed. In the
next section, we describe the MRI image segmentation
process in detail.

3.2. Osteosarcoma Image Segmentation. The osteosarcoma
segmentation model consists of four main parts: U-Net without
skip connection mechanism, channeled Transformer module
(CTrans), edge enhancement module (BAB), and combined
loss function. The general design is shown in Figure 3.

3.2.1. U-Net without Skip Connection Mechanism. U-Net
[30] is the most commonly used model for image seg-
mentation in the medical field due to its lightweight
properties. Its performance in medical picture segmentation
as a traditional encoder-decoder network structure has been

outstanding. As a result, the U-Net model is used to segment
MRI images in the case of osteosarcoma. The systolic path
and the extended path are the two sections that make up the
U-Net in general. The systolic path is on the left and
functions mostly as an encoder for low-level and high-level
characteristics. It is made of two 3 x 3 unfilled convolutional
repetitions and follows the conventional construction of a
convolutional network. Following that, a 2x2 maximum
pooling operation and a rectified linear unit (ReLU) are
coupled. After each convolution, there is a two-step
downsampling process. During each layer’s downsampling,
the number of feature channels is multiplied by two. The
extended path, on the right, is mostly employed as a decoder,
combining semantic characteristics to produce the final
result. Upsampling the feature map and conducting a 2 x 2
upconvolution are included in each stage of its journey. It
halves the number of features to match the relevant feature
maps in the associated shrinkage path. Once the features are
linked, the osteosarcoma MRI feature map is subjected to a
3 x 3 convolution. Each convolutional output of the feature
map must go through ReLU once more.
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The feature connection in the original U-net uses a skip
connection mechanism. The features in the encoder and
decoder stages are incompatible, leading to a semantic gap,
which has a certain impact on the segmentation model. To
segment osteosarcoma MRI images more accurately, we
introduced channel-based transformers (CTrans) instead of
U-Net’s skip connection. It takes advantage of the trans-
formers and U-Net for cross-fusion of multiscale channel
information to achieve effective connection with decoder
feature disambiguation. The multiscale exploration of suf-
ficient information of global context bridges the semantic
gap and solves the problem of semantic hierarchy incon-
sistency. Better segmentation results are obtained in this
way.

3.2.2. Channeled Transformer Module (CTrans). To elimi-
nate semantic delay and integrate encoder features to im-
prove the segmentation effect of osteosarcoma MRI images,
a channel conversion module is constructed in this paper, as
shown in Figure 4. This is mainly to achieve channel-de-
pendent transformation between the U-Net encoder and
decoder. This module consists of two parts: the Channel-
wise Cross Fusion Transformer (CCT) and the Channel-wise
Cross-Attention (CCA). CCT realizes multilevel coding
fusion and CCA is used for decoding fusion. Among them,
the extended CCT fusion replaces U-Net with a channel
transformer (CTrans).

(1) CCT: Channel Cross-Merging Transformer for Trans-
forming Encoding Functions. We present a new channel-
based cross-fusion transformer (CCT) that uses long-de-
pendent modeling in the Transformer to fuse multiscale
encoder characteristics in osteosarcoma MRI images during
segmentation to better fuse multiscale features. The CCT
module consists of three parts: multiscale feature embed-
ding, multihead channel cross-attention, and multilayer
perceptron. They are described in detail below.

Multi-scale feature embedding. We tokenize the osteo-
sarcoma features and restructure them into flattened 2D
patch sequences. So that the patch can be mapped to the
same region of the encoder at four scales, we set the patch
size to P, P/2, P/4, P/8, respectively, and use the four skip-
connected layer outputs of the multiscale feature embedding
E; € REW/?*C; We preserve the original channel sizes during
this process. The four layers T} (i = 1,2,3,4), T; € REW/**C
as key values are then connected.

Ty = Concat(T,,T,, T3, T,). (1)

Multichannel cross-notice module. This is passed to the
multihead channel cross-attention module, which uses
multiscale features to refine features at each U-Net encoder
level. Then, there is a multilayer perceptron (MLP) with a
residual structure that encodes channels and dependencies.

The proposed CCT module has five inputs, as shown in
Figure 5, with four tokens T; serving as queries and a
connected token T’y serving as keys and values:

Q =TiWq,K = TsWy,V = Ty Wy, (2)
where W, € R%4, Wy € R, Wy, € R% is the weight
of the different inputs, d is the length of the sequence,
Q; € R%"4, K € R%*4, V € R4, the values of the ac-
quaintance matrix M; and V are weighted. and
C;(i=1,2,3,4) is the size of the channel that skips the
connection layer.

C, =64, C, = 128,C, = 256,C, = 512. (3)
The cross-attention (CA) mechanism is as follows:
T
K
CA =MV" = (T|:‘*I’(Q’ )]VT
VCs
(4)

T T
WO T TsWy

Vs

T T
]WVTZ,
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where y(-) and o(-) denote the random normalization and
softmax functions, respectively.

We operate attention along the channel axis instead of
the patch axis, which is quite different from the original self-
attention mechanism. By normalizing the similarity matrix
for each instance on the similarity maps, we can smooth
down the gradient by using instance normalization. The
output after multihead cross-attention in an N-head at-
tention condition is computed as follows:

MCA, =(CA; + CA} +---+ CA[')N. (5)

In this formula, N is the total number of heads.
After that, we use MLP and residual operator to get the
following output:

O, = MCA, + MLP (Q, + MCA,). (6)

For simplicity, we omit layer normalization (LN) from
the equation. We repeat the operation of formula (6) L times
to finally form an L-layer transformer. where N and L are
both set to 4. This is mainly because with 4 layers and 4

where ¢(X) = 1/HxW Y1, 3%, XK (i, j), ¢(X) € RO,
L, € R®C, L, € R®*“ and being weights of two linear layers
and the ReLU operator § ().

To avoid the effect of dimensionality reduction on
channel attention learning, we are constructing channel
attention maps with a single linear layer and S-shaped
functions, and synthetic vectors are used to recalibrate and
excite O;.

With this method, the process of transformer self-
control is rethought from the perspective of the channel to
close the semantic gap between features through more ef-
fective feature fusion and multidimensional channel cross-
checking. This enables acquiring more intricate channel
dependencies to enhance the functionality of MRI image
segmentation models for osteosarcoma.

3.2.3. Edge Enhancement Module (BAB). In the MRI image
segmentation of osteosarcoma, blurred edge segmentation,
and partial region missing have been the main problems to
be solved, which affect the accuracy of MRI image seg-
mentation to a certain extent. We introduce the edge
augmentation block (BAB) to solve this problem, as shown
in Figure 6. It focuses more on enhancing the edge in-
formation of the lesion region by a mask extraction al-
gorithm and attention mechanism, as shown in Figure 7.



Edge enhancement is performed on osteosarcoma MRI
images to supplement the missing regions. The BAB
module solves the segmentation problem of blurred edges
to a certain extent.

The final feature map D,,D,,D;,D, of the decoder in the
U-Net path is fed to the BAB module as an input layer.

After convolving the input feature map, the mask edge
map M, is obtained by the mask edge extraction algorithm as
an important complement to the edge information. The
process of the mask edge extraction algorithm can be
expressed as follows: traverse each pixel point (i, j) of the
mask, when the traversed pixel value is 0 and the rest of the
pixel points in the nine-box grid centered on the pixel point
are not all 0, the pixel point is recorded as 0 until all the pixel
points of the mask are traversed, and then, the mask edge
map M, is generated.

The feature maps obtained after convolution are con-
nected with the complementary layer feature maps f; ;
obtained from the previous layer after BAB upsampling by
channel and input to the attention module to obtain the final
prediction.

F;= AB(d3{C[d3 [C(dl (Ri)’]\//[\i)]’fi—l]})’ (8)

where d (*) denotes the convolution function, c(*) denotes
the join operation, AB(®) denotes the attention module
function, and U € R&™W denotes the output.

For the input feature map U € ROV  the feature map
U g € ROPW and vector Uy € RPC are obtained by
compressing them on the channel and space, respectively,
and the two are multiplied to obtain the weight WeR“*H*W,
which is then multiplied pixel by pixel with the input feature
map U to obtain the output.

U =(Uce xUsg) 0U. (9)

where X represents direct multiplication after expansion to
read and © represents pixel-by-pixel multiplication.

3.2.4. Combined Loss Functions. Osteosarcoma MRI im-
ages often have the problem of class imbalance, which
leads to the training being dominated by the class with
more pixels. It is challenging to learn the features of the
part with fewer pixels, thus, affecting the effectiveness of
the network. Therefore, we mostly use the Dice loss
function, which measures the overlapping part of the
samples, to solve the class imbalance. However, for os-
teosarcoma, MRI images have the image characteristics of
blurred edges, and the Dice loss function cannot focus on
the image edge information. So we propose a combined
loss function L. It combines region-based Dice loss and
edge-based Boundary loss, supervised in two different
focus dimensions. Dice loss and Boundary loss are defined
as follows:

2YN Y8, g5
LDice =1 2171 ZCJ 9i°i , (10)

TN «C & N «C o
Vit Y1 Gi FYim 2ot Si
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where i denotes each pixel point, ¢ denotes the classifica-
tion, g{ denotes whether the classification is correct, and s{
denotes the probability of being classified into a certain
class.

Lap = |46 (®S; (01 (11)

If £ € G(Goung Truth), then ¢ (§) = —Dg (£), and vice
versa @ (&) = Dg; (£). Where ¢ is the bounded level set
representation, Dy (&) is the distance map of ground truth,
and the network’s softmax probability output is Sg(&).

The combined loss function L is defined, as shown in

(11):
L= ‘XLDice + ﬁLDice’ (12)

where, parameters o and f3 are balance coefficients to balance
the effect of area loss and edge loss on the final result.

The loss function L combines the region-based Dice
loss and the edge-based Boundary loss, allowing the
network to focus on both region and edge information. It
complements the edge information while ensuring small
missing values in the region, thus improving the accuracy
of segmentation. As the neural network continues to
iterate, the balance coeflicients « and 3 are updated by
self-learning adjustments, prompting the Dice loss to
occupy a larger proportion of the first half of the U-Net
network. Thus, the U-Net network is relatively more
concerned with regional information. Boundary loss pays
more attention to edge information, so it occupies a
larger proportion of the second half of the edge-attention
module. In this paper, a combined loss function is used to
play the role of an edge attention module, which realizes
attention to regional information without losing edge
information. It solves the problems of large missing
values and unclear edges in current medical image
segmentation.

Not only can our segmentation algorithm accurately
segment the tumor region in different slices of osteosarcoma
MRI images, but it can also solve the problem of the lesion
region’s hazy boundary in osteosarcoma MRI pictures. Our
model places a greater emphasis on edge information, which
is beneficial for precise border segmentation. The final lesion
area and segmentation results from the model can help
doctors diagnose and treat osteosarcoma. It helps to increase
the effectiveness and accuracy of osteosarcoma diagnosis,
which lessens the pressure on doctors in many nations to
treat osteosarcoma. Additionally, it is crucial for the aux-
iliary diagnosis, prognosis, and prediction of osteosarcoma
disease.

4. Experimental Results

4.1. Dataset. The Center for Artificial Intelligence Research
at a Monash University provided the data for this article
[57]. We gathered more than 4,000 MRI osteosarcoma
pictures and other index data. To improve the accuracy and
robustness of the model segmentation results, we rotated the
photos by 90, 180, and 270 degrees before feeding them into
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FIGURE 6: Edge enhancement (BAB) module.

the segmentation network. The training set consisted of 80%
of the data, whereas the test set consisted of 20% of the data.

4.2. Evaluation Metrics. To evaluate the performance of the
model, we used the Intersection of Union (IOU), Dice
Similarity Coefficient (DSC), Accuracy (ACC), Precision
(Pre), Recall (Re), and Fl-score (F1) as the measures [63].
These indicators are defined as follows:

IOszzLQIZ’
I,Ul,
psc=2:Ih0L]
1] +|L]
TP+TN
Acc = ,
TP+ TN + FP +FN
(13)
p TP
re = ————,
TP + FP
R TP
e=———,
TP+ FN
2 X Pre X Re
Fl=————
Pre + Re

where I, I, are the predicted and actual tumor areas, re-
spectively. A true positive (TP) indicates that the area has
been identified as an osteosarcoma area. A true negative
(TN) indicates that the area is considered normal, although it
is also a lesion area. A false positive (FP) is normal tissue that
has been determined to be tumor-free. A false negative (FN)
indicates an area predicted to be normal but it is a tumor
area [64].

In addition, for comparative experimental analysis, we use
the FCN [65], PSPNet [66], MSFCN [48], MSRN [49], U-Net
[67], FPN [68], and our proposed OSTransnet algorithms.
Below is a quick description of these strategies.

4.3. Training Strategy. To improve the robustness of the
model and avoid nonsense features, we need to perform data
augmentation on the dataset before training. We use natural
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FIGURE 7: Attention mechanism of BAB module.

noise augmentation to increase the dataset by rotating the
image.

For the AT model, the rotation of the image is obtained as
a new image. To make the mini-row segmentation effect
more robust and accurate, we rotated one image by 90, 180,
and 270 as data augmentation to finally obtain the seg-
mentation probability as a weighted average of the four
image probabilities.

A total of 200 epochs were trained to create a seg-
mentation neural network. In the U-net, a joint training
optimization strategy was applied to the convolution and
CTrans parameters, and the inferior attention parameters of
the two channels were optimized. We first trained the U-net
and then the parameters of the OSTransnet using the same
data.

4.4. Results. The segmentation effect of the model before and
after dataset tuning is shown in Figure 8. Each row has three
columns: column A represents the ground truth, column B
represents the model’s segmentation effect graph without
dataset optimization, and column C represents the model’s
segmentation effect after optimization. In the zoomed-in
image of the local area before optimization, as illustrated in
column B, partial and erroneous segmentation occurs. After
the dataset optimization, the model segmentation results are
closer to the real labels, as shown in column C. The com-
pleteness and accuracy of the segmentation results can be
clearly seen in the enlarged image of the local region. It can
be seen that before the dataset is optimized, there is an
impact on the segmentation model accuracy due to MRI
image noise. After the dataset is optimized, the data aug-
mentation operation using real noise suppresses the influ-
ence of noise on the accuracy of the segmentation model to a
certain extent and there are significant improvement in
segmentation completeness and accuracy. Furthermore, for
tumor margins in MRI images, the segmentation effect is
significantly improved.

As shown in Table 2, the dataset optimization and edge
improvement modules are advantageous in improving the
prediction results, demonstrating that optimizing the dataset
may considerably improve the OSTransnet border segmen-
tation and improve the results. Preincreased by around 0.5%,
F1 increased by roughly 0.3%, IOU increased by roughly 0.7%,
and DSC increased by roughly 0.7%. Following segmentation
optimization, DSC improved by 1.1%, Pre by 0.2%, Re by
0.5%, F1 by 0.2%, and IOU by 0.8%, respectively.
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FIGURE 8: Comparison of the impact of segmentation before and after dataset optimization.
TaBLE 2: Comparison of OSTransnet performance under different conditions.

Model I0U DSC Pre Re F1
Our (OSTransnet) No optimization + BAB 0.889 0.931 0.917 0.974 0.946
Our (OSTransnet) No BAB 0.896 0.938 0.922 0.976 0.949
Our (OSTransnet) 0.904 0.949 0.924 0.981 0.951

Furthermore, the following Figure 9 shows the effect of
each model on the segmentation of osteosarcoma MRI
images. We compared the effect plots of FCN-16s, FCN-8s,
PSPNet, MSECN, MSRN, FPN, and U-Net with our
OSTransnet segmentation model. Ground-truth segmented
images can be used to visually examine the model’s seg-
mentation performance. Meanwhile, we chose the DSC
metrics. The following 6 osteosarcoma segmentation ex-
amples show that OSTransnet can achieve better segmen-
tation results in osteosarcoma MRI image segmentation
work. Especially in MRI images with blurred tumor borders,
such as the third example with more tumor border seg-
mentation, our method is more accurate and complete in
segmentation. For FCN, PSPNet, and MSFCN models, there
is an oversegmentation problem.

To evaluate the segmentation effect of the model on MRI
images with fuzzy edges, we selected six osteosarcoma
images with the same fuzzy edge feature as the third example
in Figure 9 for detailed comparison. In this paper, we used
U-Net, which has the best segmentation effect among many
comparison models, and OSTransnet for the comparative
analysis of the images. From the detailed comparison in
Figure 10, we can intuitively see that our model has a more
accurate segmentation effect for the images with the blurred
boundaries of the lesion regions. Compared with other
contrasting models, our OSTransnet model has greater
advantages in boundary blur segmentation due to its unique
edge enhancement module and combined loss function. It
can be clearly seen that it more effectively and accurately
segments the boundary of the lesion area. The OSTransnet

model effectively solves the blurred segmentation edge that
often occurs in osteosarcoma MRI images.

We quantified the performance of each method in order
to further examine the performance of each strategy. Ex-
perimental evaluation was performed on the osteosarcoma
MRI dataset, and the results are shown in Table 3. The
accuracy of the FCN-8s model was the highest, but the
performance was poor in several other metrics. In particular,
the recall rate was the worst for FCN. The recall rate was only
0.882 for FCN-16s and 0.873 for FCN-8s. The PSPNet model
had the lowest IOU at 0.772. The MSFCN and MSRN models
showed relatively improved performance. Both models have
improved substantially in all metrics, with recall rates
reaching 0.9. The U-Net model has the best performance of
all the compared methods, with an IOU of 0.867 and a DSC
of 0.892. The performance of the OSTransnet model pro-
posed in this paper is the best. It has the highest results in
several metrics of DSC, IOU, Recall, and F1. It achieved a
DSC value of 0.949, which is about 6.4% better than U-Net.
It indicates that the OSTransnet model has better perfor-
mance in osteosarcoma segmentation.

On the osteosarcoma dataset, Figure 11 illustrates the
segmentation comparison of different approaches, and we
used IOU for numerical comparison with DSC. Our pro-
posed osteosarcoma segmentation model is more accurate,
with the DSC metric being 5% higher than the second U-Net
and the IOU measure being 4% higher than the second
U-Net, according to the data.

Figure 12 depicts the accuracy variation of each model.
We trained a total of 200 epochs and utilized systematic
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MSRN[4] UNet  (OSTransnet)

0.866 0.882 0.879 0.876

DSC

0.890 0.897 0.884 0.893

0.886 0.890 0.894 0.937

0.917 0.920 0.921 0.939

F1GUre 9: Comparison of the effect of each model on MRI image segmentation of osteosarcoma.

sampling to select 50 epochs at random (1 epoch randomly
selected per 4 epochs) for comparative analysis. You can
see that the accuracy of each model begins to stabilize
after an average of 50 epochs. Our OSTransnet offers the
highest value stability, with 98.7% reliability. The
accuracy ranking among the models is OSTransnet> U-
Net > FPN > MSRN > MSFCN based on the photos supplied.
The recall of MRSN and MSFCN changes substantially
throughout the first 120 periods of training, as shown in
Figure 13. Except for MSRN, the other models converge to a
stable state after that. Overall, the recall rate of our suggested
method has been kept as high as possible, ensuring that the
risk of missing a diagnosis is minimal.

Finally, we used our approach to compare each model’s
Fl1-score. The F1 of each model changes, as shown in Fig-
ure 14, although our model swings the least in comparison.
In addition, when compared to the F1 of other models, our
model’s F1 is always the greatest. This demonstrates the
robustness of our method. We obtained better performance
and segmentation results for the osteosarcoma MRI dataset
compared to the segmentation results for each of the models
in the table. This method can be used to diagnose, treat, and
predict osteosarcoma, as well as offer doctors a diagnostic
tool for the disease.

4.5. Discussion. According to the analysis in Section 4.4, the
performance of each model has a large gap in tumor region
recognition. On the one hand, the shape and location of
osteosarcoma MRI images vary greatly. On the other hand,

the osteosarcoma MRI images are limited by the acqui-
sition equipment, resulting in low resolution and high
noise. All these have a large impact on the segmentation
effect. The use of deeper and more complex networks alone
does not improve the segmentation accuracy well. The
performance of the FCN model is relatively poor, and it is
easy to misclassify normal tissues as tumor regions. Al-
though the performance of the PSPNet model and FPN
mode has improved, both have lower recognition accuracy
for tumor subtleties and different scales of tumors. Both the
MSEFCN and MSRN models showed substantial improve-
ments in all metrics, but the performance of these two
models still fell short of the ideal due to the heterogeneity
of osteosarcoma and the complexity of the MRI image
background. The U-net model can better avoid the in-
terference of complex background in MRI images by in-
corporating contextual information, so it has better
segmentation performance and all indexes are better than
the other methods in the experiment. However, due to the
network architecture, it is not sensitive enough to multi-
scale tumors and edge details.

Our OSTransnet model has the best segmentation
performance. Especially for tumors of different scales and
for subtleties between tumors. It achieves better seg-
mentation results for both. This is mainly due to the
combination of Transformer and U-Net network models
we used. By introducing the Channel Transformer
(CTrans) module to replace the jump connection in U-Net.
It effectively solves the problem of semantic defects in
U-Net, thus completing the identification of tumors at
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FIGURE 10: Comparison of edge blur image segmentation effect.
TaBLE 3: Performance comparison of different methods on the osteosarcoma dataset.
Model I0U DSC Pre Re F1
FCN-16s 0.824 0.859 0.922 0.882 0.900
FCN-8s 0.830 0.876 0.941 0.873 0.901
PSPNet 0.772 0.870 0.856 0.888 0.872
MSECN 0.841 0.874 0.881 0.936 0.906
MSRN 0.853 0.887 0.893 0.945 0.918
FPN 0.852 0.888 0.914 0.924 0.919
U-Net 0.867 0.892 0.922 0.924 0.923
Our (OSTransnet) 0.904 0.949 0.924 0.981 0.951

different scales. In addition, we introduce the edge en-
hancement module (BAB) with a combined loss function.
This module can improve the accuracy of tumor boundary
segmentation and effectively solve the problem of tumor
edge blurring.

However, although this approach abbreviates the se-
mantic and resolution gaps, it still cannot fully capture local
information due to the introduction of the channel attention
cross-attention model. It still has difficulty completing the

identification of tumors at different scales in MRI maps. In
addition, the small sample dataset has a large impact on the
performance of the model. Overall, the results from Section
4.4 show that our approach has less computational cost and
better segmentation performance, achieving a better balance
between model effectiveness and efficiency. The superiority
of the OSTransnet method can be visualized from Figure 9
and Table 3. Therefore, our method is more suitable for
clinical aid in diagnosis and treatment.
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5. Conclusions

In this study, a U-Net and Transformer-based MRI image
segmentation algorithm (OSTransnet) for osteosarcoma
with edge correction is proposed. Dataset optimization,
model segmentation, edge improvement, and a combined
loss function are all part of the strategy. The method out-
performs other existing methods and has good segmentation
performance, according to the findings of the experiments.
In addition, we visualized the segmentation findings for data
processing, which can aid clinicians in better identifying the
osteosarcoma lesion location and diagnosing osteosarcoma.
With the development of image processing techniques,
we will add more information to the method, enabling us to
design a multiscale segmentation method. This will help us
to better address segmentation errors caused by slight gray-
scale differences between tumor tissue and surrounding
tissue, as well as improve the accuracy of segmentation.

Data Availability

Data used to support the findings of this study are currently
under embargo while the research findings are commer-
cialized. Requests for data, 12 months after the publication of
this article, will be considered by the corresponding author.
All data analyzed during the current study are included in
the submission.

Conlflicts of Interest

The authors declare that there are no conflicts of interest.
Authors’ Contributions

All authors designed this works.

Acknowledgments

This research was funded by the Focus on Research and
Development Projects in Shandong Province (Soft Science
Project), No. 2021RKY02029.

Computational Intelligence and Neuroscience

References

[1] 1. Corre, F. Verrecchia, V. Crenn, F. Redini, and V. Trichet,
“The osteosarcoma microenvironment: a complex but tar-
getable ecosystem,” Cells, vol. 9, no. 4, p. 976, Apr 2020.

[2] T. Ouyang, S. Yang, F. Gou, Z. Dai, and J. Wu, “Rethinking

U-net from an attention perspective with transformers for

osteosarcoma MRI image segmentation,” Computational

Intelligence and Neuroscience, vol. 2022, 17 pages, 2022.

F. Sadoughi, P. Maleki Dana, Z. Asemi, and B. Yousefi, “DNA

damage response and repair in osteosarcoma: defects, regu-

lation and therapeutic implications,” DNA Repair, vol. 102,

Article ID 103105, 2021.

Z. Ling, S. Yang, F. Gou, Z. Dai, and J. Wu, “Intelligent as-

sistant diagnosis system of osteosarcoma MRI image based on

transformer and convolution in developing countries,” IEEE

Journal of Biomedical and Health Informatics, pp. 1-12, 2022.

[5] Y. Shen, F. Gou, and Z. Dai, “Osteosarcoma MRI image-
assisted segmentation system base on guided aggregated bi-
lateral network,” Mathematics, vol. 10, no. 7, p. 1090, 2022.

[6] L. Zhou and Y. Tan, “A residual fusion network for osteo-
sarcoma MRI image segmentation in developing countries,”
Computational Intelligence and Neuroscience, vol. 2022,
pp. 2022-21.

[7] L. Wang, L. Yu, J. Zhu, H. Tang, F. Gou, and J. Wu, “Auxiliary
segmentation method of osteosarcoma in MRI images based
on denoising and local enhancement,” Healthcare, vol. 10,
no. 8, p. 1468, 2022.

[8] G.Yu, Z. Chen, J. Wu, and Y. Tan, “Medical decision support

system for cancer treatment in precision medicine in devel-

oping countries,” Expert Systems with Applications, vol. 186,

Article ID 115725, 2021.

Y. Jiao, H. Qi, and J. Wu, “Capsule network assisted elec-

trocardiogram classification model for smart healthcare,”

Biocybernetics and Biomedical Engineering, vol. 42, no. 2,

pp. 543-555, 2022.

[10] L. Chang, N. Moustafa, A. K. Bashir, and K. Yu, “Al-driven
synthetic biology for non-small cell lung cancer drug effec-
tiveness-cost analysis in intelligent assisted medical systems,”
IEEE Journal of Biomedical and Health Informatics, 2021.

[11] Q. Zhuang, Z. Dai, and J. Wu, “Deep active learning
framework for lymph node metastasis prediction in medical
support system,” Computational Intelligence and Neurosci-
ence, vol. 2022, pp. 1-13, 2022.

[12] F. Gou andJ. Wu, “Triad link prediction method based on the
evolutionary analysis with IoT in opportunistic social net-
works,” Computer Communications, vol. 181, pp. 143-155,
2022.

[13] B. Lv, F. Liu, F. Gou, and J. Wu, “Multi-scale tumor locali-
zation based on priori guidance-based segmentation method
for osteosarcoma MRI images,” Mathematics, vol. 10, no. 12,
p. 2099, 2022.

[14] J. Wu, F. Gou, and Y. Tan, “A staging auxiliary diagnosis
model for nonsmall cell lung cancer based on the intelligent
medical system,” Computational and Mathematical Methods
in Medicine, vol. 2021, pp. 1-15, 2021.

[15] J. Wu, J. Xia, and F. Gou, “Information transmission mode
and IoT community reconstruction based on user influence in
opportunistic s ocial networks,” Peer-to-Peer Networking and
Applications, vol. 15, no. 3, pp. 1398-1416, 2022.

[16] F. Gou and J. Wu, “Data transmission strategy based on node
motion prediction IoT system in opportunistic social net-
works,” Wireless Personal Communications, vol. 126, no. 2,
pp. 1751-1768, 2022.

[3

[4

[9



Computational Intelligence and Neuroscience

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

H. Chen, J. Liu, Z. Cheng et al., “Development and external
validation of an MRI-based radiomics nomogram for pre-
treatment prediction for early relapse in osteosarcoma: a
retrospective multicenter study,” European Journal of Radi-
ology, vol. 129, Article ID 109066, 2020.

Y. Shen, F. Gou, and J. Wu, “Node screening method based on
federated learning with IoT in opportunistic social networks,”
Mathematics, vol. 10, no. 10, p. 1669, 2022.

L. Yu and G. Fangfang, “Data transmission scheme based on
node model training and time division multiple access with
IoT in opportunistic social networks,” Peer-to-Peer Net-
working and Applications, 2022.

U. Ilhan and A. Ilhan, “Brain tumor segmentation based on a
new threshold approach,” Procedia Computer Science,
vol. 120, pp. 580-587, 2017.

M. Tamal, “Intensity threshold based solid tumour segmen-
tation method for Positron Emission Tomography (PET)
images: a review,” Heliyon, vol. 6, no. 10, Article ID e05267,
2020.

L. Rundo, C. Militello, S. Vitabile et al., “Combining split-and-
merge and multi-seed region growing algorithms for uterine
fibroid segmentation in MRGFUS treatments,” Medical, ¢
Biological Engineering ¢ Computing, vol. 54, mno. 7,
pp. 1071-1084, 2016.

E. S. Biratu, F. Schwenker, T. G. Debelee, S. R. Kebede,
W. G. Negera, and H. T. Molla, “Enhanced region growing for
brain tumor MR image segmentation,” Journal of Imaging,
vol. 7, no. 2, p. 22, 2021.

C. Militello, L. Rundo, M. Dimarco et al., “Semi-automated
and interactive segmentation of contrast-enhancing masses
on breast DCE-MRI using spatial fuzzy clustering,” Bio-
medical Signal Processing and Control, vol. 71, Article ID
103113, 2022.

S. Vadhnani and N. Singh, “Brain tumor segmentation and
classification in MRI using SVM and its variants: a survey,”
Multimedia Tools and Applications, vol. 2022, 26 pages, 2022.
A. Baccouche, B. Garcia-Zapirain, C. Castillo Olea, and
A. S. Elmaghraby, “Connected-UNets: a deep learning ar-
chitecture for breast mass segmentation,” NPJ Breast Cancer,
vol. 7, no. 1, pp. 151-212, 2021.

D. D. Gunashekar, L. Bielak, L. Hagele et al., “Explainable AI
for CNN-based prostate tumor segmentation in multi-para-
metric MRI correlated to whole mount histopathology,”
Radiation Oncology, vol. 17, no. 1, pp. 65-10, 2022.

S. S. Dake, M. Nguyen, W. Q. Yan, and S. Kazi, “Human
tumor detection using active contour and region growing
segmentation,” in Proceedings of the 2019 4th International
Conference and Workshops on Recent Advances and Inno-
vations in Engineering (ICRAIE), pp. 1-5, IEEE, Kedah,
Malaysia, March 2019.

Z. Shahvaran, K. Kazemi, M. Fouladivanda, M. S. Helfroush,
O. Godefroy, and A. Aarabi, “Morphological active contour
model for automatic brain tumor extraction from multimodal
magnetic resonance images,” Journal of Neuroscience
Methods, vol. 362, Article ID 109296, 2021.

G. Sergioli, C. Militello, L. Rundo et al., “A quantum-inspired
classifier for clonogenic assay evaluations,” Scientific Reports,
vol. 11, no. 1, pp. 2830-2910, 2021.

J. Amin, M. A. Anjum, N. Gul, and M. Sharif, “A secure two-
qubit quantum model for segmentation and classification of
brain tumor using MRI images based on blockchain,” Neural
Computing and Applications, vol. 2022, 14 pages, 2022.

V. Vijay, A. Kavitha, and S. R. Rebecca, “Automated brain
tumor segmentation and detection in MRI using enhanced

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

[44]

(45]

(46]

(47]

15

Darwinian particle swarm optimization (EDPSO),” Procedia
Computer Science, vol. 92, pp. 475-480, 2016.

T. Zhang, J. Zhang, T. Xue, and M. H. Rashid, “A brain tumor
image segmentation method based on quantum entanglement
and wormhole behaved particle swarm optimization,”
Frontiers of Medicine, vol. 9, Article ID 794126, 2022.

F. Liu, F. Gou, and J. Wu, “An attention-preserving network-
based method for assisted segmentation of osteosarcoma MRI
images,” Mathematics, vol. 10, no. 10, p. 1665, 2022.

L. Li, F. Gou, and J. Wu, “Modified data delivery strategy
based on stochastic block model and community detection in
opportunistic social networks,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 5067849, 16 pages,
2022.

T. M. Ali et al., “A sequential machine learning-cum-attention
mechanism for effective segmentation of brain tumor,”
Frontiers in Oncology Original Research, vol. 12, 2022.

M. Rizwan, A. Shabbir, A. R. Javed, M. Shabbir, T. Baker, and
D. Al-Jumeily Obe, “Brain tumor and glioma grade classifi-
cation using Gaussian convolutional neural network,” IEEE
Access, vol. 10, pp. 29731-29740, 2022.

X. Tian, L. Yan, L. Jiang et al., “Comparative transcriptome
analysis of leaf, stem, and root tissues of Semiliquidambar
cathayensis reveals candidate genes involved in terpenoid
biosynthesis,” Molecular Biology Reports, vol. 49, no. 6,
pp. 5585-5593, 2022.

X. Tian and W. Jia, “Optimal matching method based on rare
plants in opportunistic social networks,” Journal of Compu-
tational Science, vol. 64, Article ID 101875, 2022.

J. Wu, P. Xiao, H. Huang, F. Gou, Z. Zhou, and Z. Dai, “An
artificial intelligence multiprocessing scheme for the diagnosis
of osteosarcoma MRI images,” IEEE Journal of Biomedical
and Health Informatics, vol. 26, no. 9, pp. 4656-4667, 2022.
J. Wu, F. Gou, W. Xiong, and X Zhou, “A reputation value-
based task-sharing strategy in opportunistic complex social
networks,” Complexity, vol. 2021, Article ID 8554351,
16 pages, 2021.

Y. Deng, F. Gou, and ] Wu, “Hybrid data transmission scheme
based on source node centrality and community recon-
struction in opportunistic social networks,” Peer-to-Peer
Networking and Applications, vol. 14, no. 6, pp. 3460-3472,
2021.

L. Li, F. Gou, H. Long, K. He, and J. Wu, “Effective data
optimization and evaluation based on social communication
with Al-assisted in opportunistic social networks,” Wireless
Communications and Mobile Computing, vol. 2022, 14 pages,
2022.

I. Ahmed, H. Sardar, H. Aljuaid, F. Alam Khan, M. Nawaz,
and A. Awais, “Convolutional neural network for histo-
pathological osteosarcoma image classification,” Computers,
Materials ¢ Continua, vol. 69, no. 3, pp. 3365-3381, 2021.
Y. Fu, P. Xue, H. Ji, W. Cui, and E. Dong, “Deep model with
Siamese network for viable and necrotic tumor regions as-
sessment in osteosarcoma,” Medical Physics (Woodbury),
vol. 47, no. 10, pp. 4895-4905, 2020.

D. M. Anisuzzaman, H. Barzekar, L. Tong, J. Luo, and Z. Yu,
“A deep learning study on osteosarcoma detection from
histological images,” Biomedical Signal Processing and Con-
trol, vol. 69, Article ID 102931, 2021.

M. Nasor and W. Obaid, “Segmentation of osteosarcoma in
MRI images by K-means clustering, Chan-Vese segmentation,
and iterative Gaussian filtering,” IET Image Processing, vol. 15,
no. 6, pp. 1310-1318, 2021.



16

[48] L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-
multiple supervised fully convolutional networks for the
osteosarcoma segmentation of CT images,” Computer
Methods and Programs in Biomedicine, vol. 143, pp. 67-74,
2017.

R. Zhang, L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao,

“Multiple supervised residual network for osteosarcoma

segmentation in CT images,” Computerized Medical Imaging

and Graphics, vol. 63, pp. 1-8, 2018.

L. Shuai, X. Gao, and J. Wang, “Wnet ++: a nested W-shaped

network with multiscale input and adaptive deep supervision

for osteosarcoma segmentation,” vol. 23, p. 2021.

D.J. Ho et al., “Deep interactive learning: an efficient labeling

approach for deep learning-based osteosarcoma treatment

response assessment,” in Proceedings of the International

Conference on Medical Image Computing and Computer-

Assisted Intervention, pp. 540-549, Springer, 2020.

[52] J.Kim, S. Y. Jeong, B. C. Kim et al., “Prediction of neoadjuvant
chemotherapy response in osteosarcoma using convolutional
neural network of tumor center 18F-fdg PET images,” Di-
agnostics, vol. 11, no. 11, p. 1976, 2021.

[53] J. Dufau, A. Bouhamama, B. Leporq et al., “Prediction of
chemotherapy response in primary osteosarcoma using the
machine learning technique on radiomic data,” Bulletin Du
Cancer, vol. 106, no. 11, pp. 983-999, 2019.

[54] Y. Hu, J. Tang, S. Zhao, and Y. Li, “Diffusion-weighted im-
aging-magnetic resonance imaging information under class-
structured deep convolutional neural network algorithm in
the prognostic chemotherapy of osteosarcoma,” Scientific
Programming, vol. 2021, pp. 1-12, Article ID 4989166, 2021.

[55] H. B. Arunachalam, R. Mishra, O. Daescu et al., “Viable and

necrotic tumor assessment from whole slide images of os-

teosarcoma using machine-learning and deep-learning

models,” PLoS One, vol. 14, no. 4, p. €0210706, 2019.

P. Bansal, “Automatic detection of osteosarcoma based on

integrated features and feature selection using binary arith-

metic optimization algorithm,” Multimedia Tools and Ap-

plications, vol. 2022, 28 pages, 2022.

[57] J. Wu, S. Yang, F. Gou et al., “Intelligent segmentation medical
assistance system for MRI images of osteosarcoma in de-
veloping countries,” Computational and Mathematical
Methods in Medicine, vol. 2022, pp. 1-17, 2022.

[58] J. Wu, F. Gou, and X. Tian, “Disease control and prevention in

rare plants based on the dominant population selection

method in opportunistic social networks,” Computational

Intelligence and Neuroscience, vol. 2022, pp. 1-16, 2022.

F. Gou and J. Wu, “Message transmission strategy based on

recurrent neural network and attention mechanism in iot

system,” Journal of Circuits, Systems, and Computers, vol. 31,

no. 07, Article ID 2250126, 2022.

X. Zhan, H. Long, F. Gou, X. Duan, G. Kong, and J. Wu, “A

convolutional neural network-based intelligent medical sys-

tem with sensors for assistive diagnosis and decision-making

in non-small cell lung cancer,” Sensors, vol. 21, no. 23, p. 7996,

2021.

G. Yu, Z. Chen, J. Wy, and Y. Tan, “A diagnostic prediction

framework on auxiliary medical system for breast cancer in

developing countries,” Knowledge-Based Systems, vol. 232,

Article ID 107459, 2021.

Y. Qin, X. Li, J. Wu, and K. Yu, “A management method of

chronic diseases in the elderly based on IoT security envi-

ronment,” Computers ¢ Electrical Engineering, vol. 102, Ar-

ticle ID 108188, 2022.

[49

(50

[51

[56

[59

(60

[61

(62

Computational Intelligence and Neuroscience

[63] J. Wu, Y. Guo, F. Gou, and Z. Dai, “A medical assistant
segmentation method for MRI images of osteosarcoma based
on DecoupleSegNet,” International Journal of Intelligent
Systems, vol. 37, no. 11, pp. 8436-8461, 2022.

[64] J. Wu, Z. Liu, F. Gou et al., “BA-GCA net: boundary-aware
grid contextual attention net in osteosarcoma MRI image
segmentation,” Computational Intelligence and Neuroscience,
vol. 2022, pp. 1-16, 2022.

[65] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp- 3431-3440, March 2015.

[66] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene
parsing network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2881-2890,
Honolulu, HI, USA, July 2017.

[67] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234-241,
Springer, May 2015.

[68] T.-Y. Lin, P. Dollér, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117-2125, October 2017.





