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The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the
implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker
systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained
the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for
high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-
increasing sequence information in public databases; however, complex genomes pose special challenges in the identification
of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become
available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts
in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key
experimental strategies and cases exemplifying their impact.

1. Introduction

Allelic variations within a genome of the same species
can be classified into three major groups that include
differences in the number of tandem repeats at a particular
locus [microsatellites, or simple sequence repeats (SSRs)]
[1], segmental insertions/deletions (InDels) [2], and single
nucleotide polymorphisms (SNPs) [3]. In order to detect
and track these variations in the individuals of a progeny
at DNA level, researchers have been developing and using
genetic tools called molecular markers [4]. Although SSRs,
InDels, and SNPs are the three major allelic variations
discovered so far, a plethora of molecular markers were
developed to detect the polymorphisms that resulted from
these three types of variation [5]. Evolution of molecular
markers has been primarily driven by the throughput and
cost of detection method and the level of reproducibility
[6]. Depending on detection method and throughput, all
molecular markers can be divided into three major groups:
(1) low-throughput, hybridization-based markers such as
restriction fragment length polymorphisms (RFLPs) [4];
(2) medium-throughput, PCR-based markers that include

random amplification of polymorphic DNA (RAPD) [7],
amplified fragment length polymorphism (AFLP) [8], SSRs
[9]; (3) high-throughput (HTP) sequence-based markers:
SNPs [3]. In late eighties, RFLPs were the most popular
molecular markers that were widely used in plant molecular
genetics because they were reproducible and codominant
[10]. However, the detection of RFLPs was an expensive,
labor- and time-consuming process, which made these
markers eventually obsolete. Moreover, RFLP markers were
not amenable to automation. Invention of PCR technology
and the application of this method for the rapid detection of
polymorphisms overthrew low-throughput RFLP markers,
and new generation of PCR-based markers emerged in the
beginning of nineties. RAPD, AFLP, and SSR markers are
the major PCR-based markers that research community has
been using in various plant systems. RAPDs are able to
simultaneously detect polymorphic loci in various regions
of a genome [11]. However, they are anonymous and
the level of their reproducibility is very low due to the
non-specific binding of short, random primers. Although
AFLPs are anonymous too, the level of their reproducibility
and sensitivity is very high owing to the longer +1 and
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+3 selective primers and the presence of discriminatory
nucleotides at 3′ end of each primer. That is why AFLP
markers are still popular in molecular genetics research in
crops with little to zero reference genome sequence available
[12]. However, AFLP markers did not find widespread
application in molecular breeding owing to the lengthy
and laborious detection method, which was not amenable
to automation either. Therefore, it was not surprising that
soon after the discovery of SSR markers in the genome of
a plant, they were declared as “markers of choice” [13],
because SSRs were able to eliminate all drawbacks of the
above-mentioned DNA marker technologies. SSRs were no
longer anonymous; they were highly reproducible, highly
polymorphic, and amenable to automation. Despite the cost
of detection remaining high, SSR markers had pervaded
all areas of plant molecular genetics and breeding in late
90s and the beginning of 21st century. However, during
the last five years, the hegemony of medium-throughput
SSRs was eventually broken by SNP markers. First dis-
covered in human genome, SNPs proved to be universal
as well as the most abundant forms of genetic variation
among individuals of the same species [14]. Although SNPs
are less polymorphic than SSR markers because of their
biallelic nature, they easily compensate this drawback by
being abundant, ubiquitous, and amenable to high- and
ultra-high-throughput automation. However, despite these
obvious advantages, there were only a limited number of
examples of application of SNP markers in plant breeding
by 2009 [15]. In this paper, we tried to summarize the
recent progress in the utility of SNP markers in plant
breeding.

2. SNP Discovery in Complex Plant Genomes

While SNP discovery in crops with simple genomes is a
relatively straightforward process, complex genomes pose
serious obstacles for the researchers interested in devel-
oping SNPs. One of the major problems is the highly
repetitive nature of the plant genomes [16]. Prior to the
emergence of next-generation sequencing (NGS) technolo-
gies, researchers used to rely on different experimental
strategies to avoid repetitive portions of the genome. These
include discovery of SNPs experimentally by resequencing
of unigene-derived amplicons using Sanger’s method [17]
and in silico SNP discovery through the mining of SNPs
within EST databases followed by PCR-based validation
[18]. Although these approaches allowed the detection
of gene-based SNPs, their frequency is generally low in
conserved genic regions, and they were unable to discover
SNPs located in low-copy noncoding regions and inter-
genic spaces. Additionally, amplicon resequencing was an
expensive and labor-intensive procedure [15]. As many crops
are ancient tetraploids with mosaics of scattered duplicated
regions [19], in silico and experimental mining of EST
databases resulted in the discovery of a large number of
nonallelic SNPs that represented paralogous sequences and
were suboptimal for application in molecular breeding [20].
Recent emergence of NGS technologies such as 454 Life

Sciences (Roche Applied Science, Indianapolis, IN), HiSeq
(Illumina, San Diego, CA), SOLiD and Ion Torrent (Life
Technologies Corporation, Carlsbad, CA) has eliminated
the problems associated with low throughput and high
cost of SNP discovery [21]. Transcriptome resequencing
using NGS technologies allows rapid and inexpensive SNP
discovery within genes and avoids highly repetitive regions of
a genome [22]. This methodology was successfully applied
in several plant genomes, including maize [23], canola
[24], eucalyptus [25], sugarcane [26], tree species [27],
wheat [28], avocado [29], and black currant [30]. Origi-
nally developed for human disease diagnostic research, the
NimbleGen sequence capture technology (Roche Applied
Science, IN) [31] brought the detection of gene-based SNPs
in plants into higher throughput and coverage level [32].
This technology consists of exon sequence capture and
enrichment by microarray followed by NGS for targeted rese-
quencing. Similar in-solution target capture technologies,
such as Agilent SureSelect, are also commercially available
for genome/exome mining studies. However, this technology
would be efficient only for crops with available reference
genome sequence or large transcriptome (EST) datasets,
since the design of capture probes requires these reference
resources.

Despite the attractiveness of SNP discovery via tran-
scriptome or exome resequencing, this process is targeted,
focusing solely on coding regions. It is obvious that the
availability of SNPs within coding sequences is a very
powerful tool for molecular geneticists to detect a causative
mutation [33]. However, often QTL are located in noncoding
regulatory sequences such as enhancers or locus control
regions, which could be located several megabases away
from genes within intergenic spaces [34]. Discovery of SNPs
located within those regulatory elements via transcriptome
or exon sequencing is limited. In order to discover SNPs in
a genome-wide fashion and avoid repetitive and duplicated
DNA, it is very important to employ genome complex-
ity reduction techniques coupled with NGS technologies.
Several genome complexity reduction techniques have been
developed over the years, including High Cot selection [35],
methylation filtering [36], and microarray-based genomic
selection [37]. These techniques mainly reduce the number
of repetitive sequences but lack the power to recognize and
eliminate duplicated sequences, which cause the detection
of false-positive SNPs. Unlike the above-mentioned tech-
niques, recently developed genome complexity reduction
technologies such as Complexity Reduction of Polymor-
phic Sequences (CRoPS) (Keygene N.V., Wageningen, The
Netherlands) [38] and Restriction Site Associated DNA
(RAD) (Floragenics, Eugene, OR, USA) [39] are computa-
tionally well equipped and capable of filtering out duplicated
SNPs. These systems were successfully applied to discover
SNPs in crops with [40] and without reference genome
sequences [41].

Although several complexity reduction approaches are
being developed to generate data from NGS platforms, it is
often challenging to identify candidate SNPs in polyploid
crops species such as potato, tobacco, cotton, canola, and
wheat. In general, minor allele frequency could be used as
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a measure to identify candidate SNPs in diploid species [42].
However, in polyploid crops, you often find loci that are
polymorphic within a single genotype due to the presence of
either homoeologous loci from the individual subgenomes
(homoeologous SNPs) or paralogous loci from duplicated
regions of the genome. Such false positive SNPs are not
useful for genetic mapping purposes and often lead to a lower
validation rate during assays. Successful SNP validation in
allopolyploids depends upon differentiation of the sequence
variation classes [43]. Use of haplotype information beside
the allelic frequency would help to identify homologous
SNPs (true SNPs) from those of homoeologous loci (false
positives). Bioinformatic programs such as HaploSNPer
[44] would facilitate identification of candidate loci for
assay design purposes in polyploid crops. Elimination of
homoeologous loci for the assay design process would
improve the validation rate. Such approaches could also
be extended to other complex and highly repetitive diploid
genomes such as barley. Complexity reduction approaches,
combined with sophisticated computational tools, would
expedite SNP discovery and validation efforts in polyploids.

Although CRoPS and RAD technologies are powerful
tools to detect SNPs in genome-wide fashion, they can hardly
be called HTP, because on an average only ∼1,000 SNPs
pass stringent quality control [40]. While these numbers
are enough to generate genetic linkage maps of reasonable
saturation and carry out preliminary QTL mapping, they
are not adequate to implement genome-wide association
studies (GWAS). Depending on the rate of linkage dis-
equilibrium decay, GWAS might require several million
genetic landmarks. From this point of view, genotyping-
by-sequencing (GBS) technique offers many more oppor-
tunities. Discovery of a large number of SNPs using GBS
was demonstrated in maize [45] and sorghum [46]. GBS
not only increases the sequencing throughput by several
orders of magnitude but also has multiplexing capabilities
[47]. To eliminate a large portion of repetitive sequences, a
type II restriction endonuclease, ApeKI, is applied to digest
DNA prior to sequencing to generate reduced representation
libraries (genome complexity reduction component), which
are further subject to sequencing [47]. In polyploid crops,
GBS might be challenging, but the associated complexity
reduction methods could be used for SNP discovery. For
discovery purposes, the availability of a reference genome is
not an absolute requirement to implement GBS approach.
However, in organisms that do not have a reference genome,
GBS-derived SNPs must be validated using one of the
techniques that are described in the following section, which
might dramatically increase per marker price. Validation
needs to be done primarily to discard paralogous SNPs.
For organisms with a reference genome sequence, the
validation step is replaced by in silico mapping of the
sequenced fragments to the genome. Although GBS has the
potential to discover several million SNPs, one of the major
drawbacks of this technique is large numbers of missing data.
To solve this problem, computational biologists developed
data imputation models such as BEAGLE v3.0.2 [48] and
IMPUTE v2 [49], to bring imputed data as close as possible
to the real data [50, 51].

3. SNP Validation and Modern Genotyping
Platforms and Chemistries

The availability of reference sequence and sophisticated soft-
ware does not always guarantee that the discovered SNP can
be converted into a valid marker. In order to insure that the
discovered SNP is a Mendelian locus, it has to be validated.
The validation of a marker is the process of designing
an assay based on the discovered polymorphism and then
genotyping a panel of diverse germplasm and segregating
population. Compared to the collection of unrelated lines,
a segregating population is more informative as a validation
panel because it allows the inspection of the discriminatory
ability and segregation patterns of a marker which helps the
researcher to understand whether it is a Mendelian locus or
a duplicated/repetitive sequence that escaped the software
filter [40].

The most popular HTP assays/chemistries and genotyp-
ing platforms that are currently being used for SNP vali-
dation are Illumina’s BeadArray technology-based Golden
Gate (GG) [52] and Infinium assays [53], Life Technolo-
gies’ TaqMan [54] assay coupled with OpenArray platform
(TaqMan OpenArray Genotyping system, Product bulletin),
and KBiosciences’ Competitive Allele Specific PCR (KASPar)
combined with the SNP Line platform (SNP Line XL;
http://www.kbioscience.co.uk). These modern genotyping
assays and platforms differ from each other in their chem-
istry, cost, and throughput of samples to genotype and
number of SNPs to validate. The choice of chemistry and
genotyping platform depends on many factors that include
the length of SNP context sequence, overall number of SNPs
to genotype, and finally the funds available to the researcher,
because most of these chemistries still remain cost intensive.
Comparative analyses of these four genotyping assays and
platforms were described in Kumpatla et al. [55].

Though all genotyping chemistries and platforms are
applicable to generate genotypic data in polyploid crops,
analysis of SNP calls is somewhat challenging in polyploids
due to multiallele combinations in the genotypes. SNPs in
polyploid species can be broadly classified as simple SNPs,
hemi-SNPs, and homoeo-SNPs. Here, we describe simple,
hemi-, and homoeo-SNPs using an example of allele calls
in tetraploid and diploid cotton species (Figure 1). Genomes
of tetraploid cotton species, Gossypium hirsutum (AD1) and
G. barbadense (AD2), consist of two subgenomes A and D,
where A genome was derived from diploid progenitors, such
as G. herbaceum (A1) and G. arboreum (A2), and D genome
resulted from another diploid progenitor G. raimondii (D5).
Simple, or true SNPs are markers that detect allelic variation
between homologous loci of the same subgenome of two
tetraploid samples. For example, in Figure 1(a), a SNP
marker clearly detects polymorphism within A subgenomes
of G. hirsutum (AD1) and G. barbadense (AD2) and separates
samples into homozygous A (blue) and B (red) clusters.
This marker does not discriminate polymorphism in D
subgenome, because the D genome allele is absent there
(pink dot in G. raimondii). In contrast to simple SNPs, hemi-
SNPs detect allelic variation in the homozygous state in
one sample and the heterozygous state in the other sample.

http://www.kbioscience.co.uk
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Figure 1: Segregation patterns of simple, hemi-, and homoeo-SNPs assayed using KASPar chemistry across tetraploid cotton species [G.
hirsutum (AD1) and G. barbadense (AD2)] and their diploid progenitors [G. arboreum, G. herbaceum (A subgenome), and G. raimondii
(D-subgenome)]. (a) Simple, or true SNP detects allelic variation between homologous loci of A subgenome of G. hirsutum (AD1) and G.
barbadense (AD2). (b) Hemi-SNPs detect allelic variation in homozygous state in G. barbadense (AD2) and heterozygous state in G. hirsutum
(AD1). (c) Homoeo-SNP detects homoelogous and/or paralogous loci both in A and D subgenomes, which are monomorphic between
G. barbadense (AD2) and G. hirsutum (AD1). Allele calls depicted in blue, red, green, pink, and black represent alleles A, B, and AB, no
amplification or missing locus, and no template control (NTC), respectively.

In Figure 1(b), SNP marker detects both alleles (A and B)
in G. hirsutum (heterozygous green cluster) and one allele A
in G. barbadense (a homozygous blue cluster) and could be
vice versa. Homoeo-SNPs detect homoeologous and possibly
paralogous loci both in A and D subgenomes and result
in monomorphic loci in tetraploid species (right image).
In Figure 1(c) A genome progenitors (G. herbaceum and G.
arboreum) had allele A (blue) and D genome progenitor
(G. raimondii) had allele B (red), but both tetraploid
species (G. hirsutum and G. barbadense) were grouped into
heterozygous AB (green) cluster. As homoeo-SNPs can detect
paralogous loci, the diploid progenitors both have different
alleles.

Simple SNPs as well as hemi-SNPs are useful markers
for genetic mapping and diversity screening studies. Simple
SNPs segregate like the markers in diploids in most of the
mapping populations and would account for approximately
10–30% of total polymorphic SNPs in various polyploid
crop species. Hemi-SNPs form a major category (30–60%)
of polymorphic SNPs in a polyploid crop species and could
be used for genetic mapping purposes in F2, RIL, and DH
populations. Homoeo-SNPs are of lesser value for mapping
purposes as most of the genotypes result in heterologous loci
due to polymorphism between the homoeologous genomes
or duplicated loci within each of the polyploid genotypes
[56].

4. Application of SNP Markers in
Gene/QTL Discovery

4.1. Biparental Approach. Genetic mapping studies involve
genetic linkage analysis, which is based on the concept of
genetic recombination during meiosis [57]. This encom-
passes developing genetic linkage maps following genotyping

of individuals in segregating populations with DNA markers
covering the genome of that organism. Since their discovery
in the 1980s, DNA-based markers have been widely used in
developing saturated genetic linkage maps as well as for the
mapping and discovery of genes/QTL. With the large-scale
availability of the sequence information and development of
HTP technologies for SNP genotyping, SNP markers have
been increasingly used for QTL mapping studies. This is
primarily, because SNPs are highly abundant in the genomes
and, therefore, they can provide the highest map resolution
compared to other marker systems [58, 59]. A review of
the selected examples of QTL and gene discovery using SNP
markers is presented below.

4.1.1. Examples in Rice. A recent study on QTL analysis
in rice for yield and three-yield-component traits, number
of tillers per plant, number of grains per panicle, and
grain weight compared a SNP-based map to that of a
previous RFLP/SSR-based QTL map generated using the
same mapping population [42]. Using the ultra-high-density
SNP map, the authors showed that this map had more
power and resolution relative to the RFLP/SSR map. This
was clearly evident by the analysis of the two main QTL for
grain weight, kgw3a (GS3) and kgw5 (GW5/qSW5). Using
the SNP bin map, GW5/qSW5 QTL for grain width was
accurately narrowed down to a 123 kb region as compared
to the 12.4 Mb region based on the RFLP/SSR genetic map.
Likewise, GS3 QTL for grain length was mapped to a 197 kb
interval in comparison to 6 Mb region with the RFLP/SSR
genetic map. Beside the power and the resolution, maps
based on high-density SNP markers are also highly suitable
for fine mapping and cloning of QTL and at times SNPs
on these maps are also functionally associated with the
natural variation in the trait. In another QTL mapping
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project, SNP and InDel markers were used to fine map qSH1
gene, a major QTL of seed shattering trait in rice [60]. The
QTL were initially detected using RFLP and RAPD markers
on F2 plants. Using large BC4F2 and BC3F2 populations
in fine mapping approach with SNP and InDel markers,
the authors mapped the functional natural variation to
a 612 bp interval between the QTL flanking markers and
discovered only one SNP. They further showed that this SNP
in the 5′ regulatory region of the qSH1 gene caused loss of
seed shattering. Fine mapping approach was also taken to
positionally clone the rice bacterial blight resistance gene xa5,
by isolating the recombination breakpoints to a pair of SNPs
followed by sequencing of the corresponding 5 kb region
[61]. Several studies have shown that the SNPs and InDels
are highly abundant and present throughout the genome in
various species including plants [62–64]. SNP genotyping
is a valuable tool for gene mapping, map-based cloning,
and marker assisted selection (MAS) in crops [65]. A study
was conducted to assess the feasibility of SNPs and InDels
as DNA markers in genetic analysis and marker-assisted
breeding in rice by analyzing these sequence polymorphisms
in the genomic region containing Piz and Piz-t rice blast
resistance genes and developing PCR-based SNP markers
[65]. The authors discovered that SNPs were abundant
in the Piz and Piz-t (averaging one SNP every 248 bp),
while InDels were much lower. This dense distribution of
SNPs helped in developing SNP markers in the vicinity of
these genes. Advancements in rice genomics have led to
mapping and cloning of several genes and QTL controlling
agronomically important traits, enabled routine use of SNP
markers for MAS, gene pyramiding, and marker-assisted
breeding (MAB) [66–68].

4.1.2. Examples in Maize. SNP markers have facilitated the
dissection of complex traits such as flowering time in
maize. Using a set of 5000 RILs, which represent the nested
association mapping (NAM) population and genotyping
with 1,200 SNP markers, the authors discovered that the
genetic architecture of flowering time is controlled by small
additive QTL rather than a single large-effect QTL [69]. The
same NAM population was used for mapping resistance to
northern leaf blight disease [70]. Twenty-nine QTL were
discovered and candidate genes were identified with genome-
wide NAM approach using 1.6 million SNPs. Proprietary
SNP markers developed by companies are being predom-
inantly used in their private breeding programs. A study
from Pioneer Hi-Bred International Inc. reported identifying
a high-oil QTL (qHO6) affecting maize seed oil and oleic
acid contents. This QTL encodes an acyl-CoA:diacylglycerol
acyltransferase (DGAT1-2), which catalyzes the final step of
oil synthesis [71].

4.1.3. Examples in Wheat. Recent advances in wheat genom-
ics have led to the implementation of high-density SNP
genotyping in wheat [72–75]. Gene-based SNP markers were
developed for Lr34/Yr18/Pm38 locus that confers resistance
to leaf rust, stripe rust, and powdery mildew diseases [76].
These markers serve as efficient tools for MAS and MAB of

disease resistant wheat lines. Another economically impor-
tant wheat disease, Fusarium head blight (FHB), has been
extensively studied. Several QTL controlling FHB resistance
have been identified, with the most important being Fhb1
[77]. Recently, SNP markers were mapped between the
known flanking markers for Fhb1 [78]. These new markers
would be useful for MAS and fine mapping towards cloning
the Fhb1 gene. MAS in wheat has been extensively applied for
simple traits that are difficult to score [79].

4.1.4. Examples in Soybean. In order to improve the effec-
tiveness of MAS and clone soybean aphid resistance gene,
Rag1, fine mapping was done to accurately position the
gene, which was previously mapped to a 12 cM interval
[80]. The authors mapped the gene between two SNP
markers that corresponded to a physical distance of 115 kb
and identified several candidate genes. Similarly, another
aphid resistance gene, Rag2, originally mapped to a 10 cM
interval, was fine mapped to a 54 kb interval using SNP
markers that were developed by resequencing of target
intervals and sequence-tagged sites [81]. In another study
that used a similar approach, the authors identified SNP
markers tightly linked to a QTL conferring resistance to
southern root-knot nematode by developing these SNP
markers from the bacterial artificial chromosome (BAC)
ends and SSR-containing genomic DNA clones [82]. In all
of these examples the main idea behind the identification of
closely linked SNP markers was to enhance the efficiency and
cost effectiveness through MAS and increase the resolution
within the target locus.

4.1.5. Examples in Other Crops. In a study conducted in
canola to map the fad2 and fad3 gene, single nucleotide
mutations were identified by sequencing the genomic clones
of these genes and subsequently SNP markers were developed
[83]. Allele-specific PCR assays were developed to enable
direct selection of desirable fad2 and fad3 alleles in marker-
assisted trait introgression and breeding. In barley, SNP
markers were identified that were linked to a covered smut
resistance gene, Ruh.7H, by using high-resolution melting
(HRM) technique [84]. In sugar beet, an anchored linkage
map based on AFLP, SNP, and RAPD markers was developed
to map QTL for Beet necrotic yellow vein virus resistance
genes, Rz4 [85] and Rz5 [86]. A consensus genetic map
based on EST-derived SNPs was developed for cowpea that
would be an important resource for genomic and QTL
mapping studies in this crop [87]. In one of the post-
genomic era studies in 2002, the fine mapping and map-
based cloning approaches were used to clone the VTC2
gene in Arabidopsis [88]. The authors fine mapped the gene
interval from ∼980 kb region to a 20 kb interval with SNP
and InDel markers. Additional nine candidate genes were
identified in that interval and subsequently the underlying
mutation was discovered. Although only a few examples
that demonstrate the application of SNP markers in QTL
mapping and genomic studies have been mentioned here,
several other studies have been published in this area. Recent
advances in HTP genotyping technologies and sequence



6 International Journal of Plant Genomics

information will further pave the way for rapid identification
of causative variations and cloning of QTL of interest for use
in MAB.

4.2. Genome-Wide Association Study Approach. GWAS is
increasingly becoming a popular tool for dissecting complex
traits in plants [89–92]. The idea behind GWAS is to
genotype a large number of markers distributed across the
genome so that the phenotype or the functional alleles will
be in LD with one or few markers that could then be used in
the breeding program. However, due to limited extent of LD,
a greater number of markers are required for sufficient power
to detect linkage between the marker and the underlying
phenotypic variation. Several studies on association mapping
in plants have been published and reviewed in the past
[89, 90, 92, 93]. A few selected examples on the GWAS and
candidate gene association (CGA) studies that utilized SNP
markers are described below.

The successful use and first time demonstration of the
power of GWAS was through the identification of a putative
gene associated with a QTL in maize [94]. In that study,
a single locus with major effect on oleic acid was mapped
to a 4 cM genetic interval by using SNP haplotypes at
8,590 loci. The authors identified a fatty acid desaturase
gene, fad2, at ∼2 kb from one of the associated markers,
and this was considered a likely causative gene. With the
discovery of millions of SNPs in maize and the availability
of tools such as NAM populations, GWAS was effectively
applied to dissect the genetic architecture of leaf traits and
it was also shown that variations at the liguleless genes
contributed to more upright leaf phenotype [95]. Utility of
the GWAS approach was demonstrated in barley through
the mapping of a QTL for spot blotch disease resistance
[96]. Using the diversity array technology (DArT) and SNP
markers, the authors identified several QTL, some of which
were not identified for this trait earlier. Another variant
of the association mapping method is the CGA, where
the association between one or few gene candidate loci
and the trait of interest is tested. Using this approach 24
gene candidates were analyzed for association with the field
resistance to late blight disease in potato and plant maturity.
Nine SNPs were identified to be associated with maturity
corrected resistance, explaining 50% of the genetic variance
of this trait [97]. Two SNPs at the allene oxide synthase
2 (StAOS2) gene locus were associated with the largest
effect on the trait of interest. A GWAS approach was also
successfully applied to understand the genetic architecture
of complex diseases such as northern and southern corn leaf
blights [70, 98]. Although the number of papers dedicated
to the application of GWAS to reveal the genetic basis of
agronomic traits is growing, the practical utility of minor
QTL in molecular breeding is yet to be shown. As GWAS
requires large number of molecular markers, the utility of
GWAS in dissection of molecular basis of traits in polyploid
crops such as canola, wheat, and cotton has been fairly
limited due to the insufficient number of polymorphic
markers and the absence of reference genome. However,
recently developed associative transcriptomics method has

a potential to overcome the above-mentioned shortages
[99]. Harper et al. [99] leveraged differentially expressed
transcriptome sequences to develop molecular markers in
tetraploid crop Brassica napus and associated them with
glucosinolate content variation in seeds. Due to the precision
of this method, scientists were able to correlate specific
deletions in canola genome with two QTL controlling the
trait. Annotation of deleted regions revealed the orthologs
of the transcription factor HAG1, which controlled aliphatic
glucosinolate biosynthesis in A. thaliana. This research work
gives an optimism on successful application of GWAS in
polyploid crops.

5. Implementation of SNP Markers in
Plant Breeding

Due to the availability of HTP SNP detection and validation
technologies, the development of SNP markers becomes a
routine process, especially in crops with reference genome.
How has that influenced the application of SNP markers
in plant breeding? In a review article, Xu and Crouch
[100] indicated fairly low number of articles dedicated to
the marker assisted selection for the 1986–2005 period.
The combination of three key phrases (“marker-assisted
selection” AND “SNP” AND “plant breeding”), indeed,
shows only 637 articles at Google Scholar for that period.
However, similar search for the period, spanning 2006
through 2012, demonstrates almost sevenfold (∼4,560)
increase in the number of articles indicating the application
of SNPs in MAS. A vast majority of those publications
are from public sector and primarily describe mapping
QTL using SNPs and state the potential usefulness of those
markers in MAS without any experimental support for that.
For most of those research studies, QTL mapping is the
final destination and further application of those markers in
actual MAS leading to the development of varieties seldom
happens. Fairly low impact of academic research in the MAS-
based variety development can be explained by the lack of
funding to complete the entire marker development pipeline
(MDP), which can be long term and cost intensive. MDP
includes several steps such as (1) population development,
(2) initial QTL mapping, (3) QTL validation (testing in
several locations and years and implementing fine mapping),
and (4) marker validation (development of inexpensive but
HTP and automation amenable assays) [101]. Every step of
the development of markers linked to QTL is associated with
numerous constraints, which may take several years and sub-
stantial funding to resolve. However, since 2006, there have
been a few success stories about the development of varieties
using SNPs in publications derived from academic research,
including the development of submergence-tolerant rice
cultivars [102], rice cultivars with improved eating, cooking,
and sensory quality [103], leaf rust resistant wheat variety
“Patwin” [104], and maize cultivar with low phytic acid
[105]. Although the private sector does not normally release
details of its breeding methodologies to the public, several
papers published by Monsanto [106, 107], Pioneer Hi-bred
[71], Syngenta [108], and Dow AgroSciences [109] indicate
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that commercial organizations are the main drivers in the
application of SNP markers in MAS [110].

Current MAS strategies fit the breeding programs for
the traits that are highly heritable and governed by a single
gene or one major QTL that explains a large portion of
the phenotypic variability. In reality, most of the agronomic
traits such as yield, drought and heat tolerance, nitrogen
and water use efficiency, and fiber quality in cotton have
complex inheritance that is controlled by multiple QTL with
minor effect. Use of one of those minor QTL in MAS will be
inefficient because of its negligible effect on phenotype.

The MAS scheme using paternity testing has recently
been proposed to address challenges associated with selec-
tion gains that can be achieved in outbred forage crops
[111]. Paternity testing, a nonlinkage-based MAS scheme,
improves selection gains by increasing parental control in the
selection gain equation. The authors demonstrated paternity
testing MAS in three red clover breeding populations by
using permutation-based truncation selection for a biomass-
persistence index trait and achieved paternity-based selection
gains that were greater than double the selection gains based
on maternity alone. The paternity was determined by using a
small set (11) of SSR markers. SNP markers can also be used
for paternity testing, but one would require a relatively larger
number of SNP loci [112].

Meuwissen et al. [113] described a new methodology
in plant breeding called genomic selection (GS) that was
intended to solve problems related to MAS of complex
traits. This methodology also applies molecular markers but
in a different fashion in both diploid and polyploid crop
species. Unlike MAS, in GS markers are not used for tracking
a trait. In GS high-density marker coverage is needed to
potentially have all QTL in LD with at least one marker.
Then the comprehensive information on all possible loci,
haplotypes, and marker effects across the entire genome is
used to calculate genomic estimated breeding value (GEBV)
of a particular line in the breeding population.

GS of superior lines can be carried out within any
breeding population. In order to enable successful GS, the
experimental population must be identified. The population
should not be necessarily derived from bi-parental cross
but must be representative of selection candidates in the
breeding program to which GS will be applied [114]. The
experimental population must be genotyped with a large
number of markers. Taking into account the low cost of
sequencing, the best choice is the GBS implementation,
which will yield maximum number of polymorphisms. The
sequence of the two events, that is, phenotypic and genotypic
data collection, is arbitrary and can be done in parallel.
When both phenotypic and genotypic data are ready, one
can start “training” molecular markers [115]. In order to
train the GS model, the effect of each marker is calculated
computationally. The effect of a marker is represented by
a number with a positive or negative sign that indicates
the positive or negative effect, respectively, of a particular
locus to the phenotype. When the effects of all markers are
known, they are considered “trained” and ready to assess
any breeding population different from the experimental one
for the same trait. Availability of trained GS model does not

require the collection of phenotypic data from new breeding
populations. The same set of “trained” markers will be used
to genotype a new breeding population. Based on genotypic
data, the known effects of each marker will be summed and
GEBV of each line will be calculated. The higher the GEBV
value of an individual line, the more the chances that this line
will be selected and advanced in the breeding cycle. Thus, GS
using high-density marker coverage has a potential to capture
QTL with major and minor effects and eliminate the need
to collect phenotypic data in all breeding cycles. Also, the
application of GS was demonstrated to reduce the number
of breeding cycles and increase the annual gain [114]. One of
the problems of GS is the level of GEBV accuracy. Simulation
studies based on simulated and empirical data demonstrated
that GEBV accuracy could be within 0.62–0.85. Heffner et
al. [114] used previously reported GEBV accuracy of 0.53
and reported three- and twofold annual gain in maize and
winter barley, respectively. The obvious advantages of GS
over traditional MAS have been successfully proven in animal
breeding [116]. Rapid evolution of sequencing technologies
and HTP SNP genotyping systems are enabling generation
and validation of millions of markers, giving a “cautious
optimism” for successful application of GS in breeding for
complex traits [117–120].

6. Conclusion

SNP markers have become extremely popular in plant
molecular genetics due to their genome-wide abundance and
amenability for high- to ultra-high-throughput detection
platforms. Unlike earlier marker systems, SNPs made it
possible to create saturated, if not, supersaturated genetic
maps, thereby enabling genome-wide tracking, fine mapping
of target regions, rapid association of markers with a trait,
and accelerated cloning of gene/QTL of interest. On the flip
side, there are some challenges that need to be addressed or
overcome while using SNPs. For example, the biallelic nature
of SNPs needs to be compensated by discovering and using a
larger number of SNPs to arrive at the same or higher power
as that of earlier-generation molecular markers. This could
be cost prohibitive depending on the crop and the sequence
resources available for that genome. Working with polyploid
crops is another challenge where useful SNPs are only a small
percentage of the total available polymorphisms. Creative
strategies need to be employed to generate a reasonable
number of SNPs in those species. The use of SNP markers
in MAB programs has been growing at a faster pace and
so is the development of technologies and platforms for
the discovery and HTP screening of SNPs in many crops.
SNP chips are currently available for several crops; however,
one disadvantage is that these readily available chips are
made based on SNPs discovered from certain genotypes and,
therefore, may not be ideal for projects utilizing unrelated
genotypes. This necessitates creation of multiple chips or
the usage of technologies that permit design flexibility but
are economical. Although GBS creates great opportunities
to discover a large number of SNPs at lower per sample
cost within the genotypes of interest, the lack of adequate
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computational capabilities such as reliable data imputation
algorithms and powerful computers allowing quick process-
ing and the storage of a large amount of sequencing data
becomes a major bottleneck. Despite certain disadvantages
or challenges, it is clear that SNP markers, in combination
with genomics and other next-generation technologies, have
been accelerating the pace and gains of plant breeding.
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