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ABSTRACT: The world faces multiple public health emergencies
simultaneously, such as COVID-19 and Monkeypox (mpox). mpox,
from being a neglected disease, has emerged as a global threat that
has spread to more than 100 nonendemic countries, even as COVID-
19 has been spreading for more than 3 years now. The general mpox
symptoms are similar to chickenpox and measles, thus leading to a
possible misdiagnosis. This study aimed at facilitating a rapid and
high-brevity mpox diagnosis. Reportedly, mpox circulates among
particular groups, such as sexually promiscuous gay and bisexuals.
Hence, selectively vaccinating, isolating, and treating them seems
difficult due to the associated social stigma. Deep learning (DL) has
great promise in image-based diagnosis and could help in error-free
bulk diagnosis. The novelty proposed, the system adopted, and the
methods and approaches are discussed in the article. The present
work proposes the use of DL models for automated early mpox diagnosis. The performances of the proposed algorithms were
evaluated using the data set available in public domain. The data set adopted for the study was meant for both training and testing,
the details of which are elaborated. The performances of CNN, VGG19, ResNet 50, Inception v3, and Autoencoder algorithms were
compared. It was concluded that CNN, VGG19, and Inception v3 could help in early detection of mpox skin lesions, and Inception
v3 returned the best (96.56%) classification accuracy.

1. INTRODUCTION
Mpox virus that causes monkeypox is a member of the genus
orthopoxvirus. It is an enveloped double-stranded DNA virus
belonging to family Poxviridae, the same as that of smallpox
virus.1 It was identified in 1958 in monkeys at a Denmark
research institute; hence, it is known as the soubriquet
Monkeypox.1,2 The first confirmed human mpox case was
reported in 1970 in the Republic of Congo.1,2 Initially
appearing in the African region, it has reached more than
100 nonendemic countries with 84,468 confirmed cases.3

Mpox is transmitted to humans through close contact with
infected individuals or contaminated objects. It has similar
symptoms such as chickenpox and measles, which makes it
difficult to diagnose. Also, its initial symptoms are similar to
COVID-19.4,5 It commonly circulates in particularly the
sexually promiscuous group like gay and bisexuals.6 The
associated social stigma makes its selective vaccination,
isolation, and treatment difficult. Recent reports of break-

through infections and post-vaccine side effects in mpox
indicate next-generation novel vaccines.7

Although it is usually self-limiting, mpox could be severe in
children, pregnant women, or the immunosuppressed (under-
lying immunodeficiencies may worsen the outcome). Compli-
cations include secondary infections, sepsis, encephalitis,
bronchopneumonia, and a loss of vision. The incubation
period for mpox usually ranges from 5 to 21 days. The invasion
is characterized by intense headache, back pain, fever, myalgia,
lymphadenopathy, and intense asthenia. Skin eruption begins
on days 1−3 of fever. Rashes are developed on the palms of the
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hands, face, oral mucous membranes, soles of the feet,
genitalia, and conjunctivae.
The current 2022 mpox outbreak has now been a concern

for healthcare professionals worldwide. Early diagnosis is
necessary to counter its rapid progression. An automated IoT-
based system to detect mpox is proposed in this study. The
data set used was accessed from Mendeley (https://data.
mendeley.com/datasets/r9bfpnvyxr). The main objective was
to detect and classify mpox skin lesion from other skin lesions
like chickenpox, measles, and conventional skin lesion into four
classes: Monkeypox, Measles, Chickenpox, and Normal.
The primary objective of the study was to enhance DL-based

mpox diagnosis in terms of accuracy, outperforming the
algorithms in vogue. The study was envisioned to facilitate a
rapid and high-brevity mpox diagnosis. As deep learning
promises high-brevity image-based diagnosis, the proposed
rapid and fool-proof in silico-integrated IoT and deep learning
approach is the novelty of the work. After the general
introduction, the rest is organized in the following manner: the
related work section provides an overview of the mpox skin
lesion image analysis by using deep learning techniques. In the
materials and method section, the used data set and
methodology are detailed. The adopted system, the methods,
and approaches are elaborated. The results and discussion
section present the obtained results and an attempt to analyze
the same alongside corroborations. The data set adopted for
the study was meant for both training and testing, and the
performances of CNN, VGG19, Inception v3, and Autoen-
coder algorithms were analyzed and elaborated in the results
and discussion section. Finally, the concluding remarks and
possible future extensions of the work are stated.

2. REVIEW OF THE RELATED WORKS
The social, cultural, and economic impacts of a pandemic
cannot be ignored. The healthcare infrastructure needs to be
equipped well, and the system needs to prepare to deal with
such a situation. The lethal impact of the recent mpox is a
concern of the international health community. As specific
mpox vaccinations or therapies are currently unavailable, early
diagnosis seems to be a viable option. Mpox could be
diagnosed primarily through a skin lesion test using electron
microscopy or polymerase chain reaction (PCR), the more
reliable being the latter. PCR has also been effective in the
diagnosis of COVID-19 diagnosis. Artificial intelligence (AI)-
based techniques through virus image processing and analysis
could help in diagnosis. With emerging and more reliable AI
models in various domains, such models were proposed for
medical image analysis to detect virus-related diseases.8−101112

Skin diseases like Psoriasis, Vitiligo, Melanoma, Chicken Pox,
Ringworm, Lupus, Acne, and Herpes were investigated using
deep-learning models.13 Low-cost image analysis for Herpes
Zoster Virus (HZV) detection was proposed using the CNN
model with 89.6% accuracy.14 The transfer learning approach
to detect measles was tried recently.15 The big data approach
to detect Ebola virus using an ensemble learning approach by
combining artificial neural network (ANN) and genetic
algorithm (GA) was proposed.16 Images of mpox, measles,
and chickenpox were analyzed using web mining techniques.17

A transfer learning approach with the VGG-16 model was
evaluated without data augmentation that returned 97%
accuracy.18 There are few reports on detecting mpox. Deep
learning shows tremendous promise in image-based diagnosis
and could be useful in diagnosing mpox as it invades human

skin. This work proposes the use of DL models for the
automated early diagnosis of mpox. The performances of the
proposed algorithms were evaluated by using the data set
available on public domain.

Pramanik et al. proposed an ensemble learning-based
framework from a target mpox data set to detect mpox from
other skin lesion images.19 They considered three pretrained
base learners Xception, Inception v3, and DenseNet169 to
fine-tune the target data set, with an average 93.39% accuracy,
88.91% precision, 96.78% recall, and 92.35% F1 score as
returned by their proposed model. Bala et al. evaluated a
modified DenseNet-201 deep learning-based CNN model with
mpox images data set.20 The model correctly identified mpox
with 93.19 and 98.91% accuracies, using original and
augmented data sets, respectively. Yasmin et al. used the data
augmentation method to avoid any model “overfitting” and
classified monkeypox skin lesion using the poxnet22 DL model
with 100% accuracy.21 Ali et al. detected and classified mpox
skin lesion from a data set that contained the images of
measles, chickenpox, and mpox skin lesions.22 They
implemented three pretrained DL models ResNet50, VGG-
16, and Inception v3 to classify mpox skin lesion from the
other two and obtained a maximal accuracy of 82.96% with the
ResNet50 model.

Sahin et al. developed an Android mobile application using
deep Convolutional Neural Network to detect and classify
mpox skin lesion.23 The CNN model simulation result
returned a 91.11% classification accuracy. Sitaula et al.
compared 13 different pretrained DL models to detect
mpox.24 Using an ensemble analysis approach, they obtained
87.13% accuracy, 85.44% precision, and 85.40% F1-score and
AUC with public data set. Ozasahin et al. analyzed four DL
models CNN, AlexNet, VGG16 and VGG19 for accurate
detection and classification of mpox skin lesion.25 With 99.60%
accuracy, the CNN outperformed, followed by AlexNet (98%
accuracy) and VGG16 and VGG19 (80% accuracy). Jaradat et
al. used five pretrained DL models VGG16, VGG19,
MobileNetV2, ResNet50 and EfficientNetB3 to diagnose
mpox skin lesion,26 and they found that MobileNetv2 model
performed the best in terms of accuracy, recall, precision and
F1score with 98.16%, 0.96, 0.99, and 0.98 brevity, respectively.
Ahsan et al. developed mpox diagnosis model for binary and
multiclass classification using Generalization and Regularisa-
tion-based Transfer Learning approaches,27 and tested the
model on ten different CNN models. Combined with
Xception, the proposed model distinguished with and without
mpox cases with 77−88% accuracy. 84−99% accuracy was
obtained for multiclass classification using residual network.

3. RESULTS AND DISCUSSION
Various performance metrics were used to measure the
performance of the DL models. Each model performance
was measured in terms of confusion metrics, accuracy and loss
curves, and AUC curve. The numerous parameters used during
training are detailed in Table 1. The evaluation of the
pretrained classification performance of the DL models is
presented in Table 2.
3.1. Comparing the DL Models. The performance of

each DL model pretrained for mpox classification was
compared based on the performance evaluation data set. The
result of the comparison is presented in Table 2. Inception v3
was found to be best performing for mpox (augmented
precision = 0.97, recall = 0.96, F1-score = 0.97) and for others
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(augmented precision = 0.96, recall = 0.97, F1-score = 0.97),
and Autoencoder performed the worst for mpox (augmented
precision = 0.89, recall = 0.82, F1-score = 0.85) and for others
(augmented precision = 0.83, recall = 0.89, F1-score = 0.86)
among all DL models. It was concluded from Table 2 that the
Inception v3 pretrained model was the best among all the DL
models in extracting features from medical images and
classifying mpox skin lesion from other skin lesions like
chickenpox and measles.
3.2. Comparative Analysis in Terms of Confusion

Metrics. The confusion matrix for the several models (CNN,
VGG19, Inception v3, and Autoencoder) considered is shown
in Figure 1. Table 3 shows that Inception v3 outperformed

others (TP: 155, TN: 154, FP: 4, FN: 7) in classifying mpox
skin lesions, as the false negative (FN) and positive values were
small compared to other models. The FN value is the most
critical among all confusion matrix parameters, as the model

Table 1. Numerous Parameters Used in the Performance
Evaluation of DL Models

DL models
total

parameters
trainable
parameters

nontrainable
parameters

CNN 1,809,522 1,807,730 1,792
AE 103,936,930 102,760,834 1,176,096
Inception v3 24,572,962 7,918,082 16,654,880
VGG-19 20,027,458 9,441,282 10,586,176
ResNet-50 23,600,002 14,458,370 9,141,632

Table 2. Performance Metrics Comparison of DL Models

precision recall F1-score support

CNN
Mpox_augmented 0.95 0.91 0.93 162
others_augmented 0.92 0.96 0.93 158

VGG-19
Mpox_augmented 0.96 0.92 0.94 162
others_augmented 0.92 0.96 0.94 158

Inception v3
Mpox_augmented 0.97 0.96 0.97 162
others_augmented 0.96 0.97 0.97 158

AE
Mpox_augmented 0.89 0.82 0.85 162
others_augmented 0.83 0.89 0.86 158

Figure 1. Confusion matrices of (a) CNN, (b) VGG-19, (c) Inception v3. and (d) Autoencoder.

Table 3. Confusion Matrix Parameter Values

DL model TP TN FP FN

CNN 148 151 7 14
VGG-19 149 152 6 13
Inception v3 155 154 4 7
Autoencoder 133 141 17 29
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Table 4. Comparison of Accuracy, AUC, and Loss Curve of the Test DL Models

DL model training accuracy validation accuracy training loss validation loss training AUC testing AUC

CNN 99.74 93.43 0.01 0.3 99.91 96.52
VGG-19 99.91 94.06 0.0011 0.45 1 96.96
Inception v3 100.00 96.56 3.95 0.29 1 97.19
Autoencoder 99.96 85.62 0.03 0.39 1 0.92

Figure 2. Accuracy, AUC, and loss curve of CNN, VGG-19, Inception v3, and Autoencoder models.
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predicts a patient having mpox as not having mpox, which may
lead to misdiagnosis and delayed treatment. If the FN value is
quite high, it may be life-threatening (Figure 1). The CNN
model detected 149 patients with mpox skin lesions and 151
patients with other skin lesions. The model misdiagnosed
seven patients as having mpox skin lesions, although they had
other skin lesions (FP), and 14 patients as having other skin
lesions, although they had mpox skin lesion (FN). Likewise,
the VGG-19 model correctly diagnosed 149 patients as
suffering from mpox skin lesions and 152 patients as suffering
from other skin lesions. The model misdiagnosed six patients
with other skin lesions as with mpox skin lesion and 13
patients with mpox skin as with other skin lesions.
Autoencoder correctly diagnosed 133 patients with mpox
skin lesion and 141 patients with other skin lesions. It
misdiagnosed 17 patients with other skin lesions as mpox skin
lesions and 29 patients suffering from other skin lesions as
having mpox skin lesion. The task of this study was to help
clinicians in the early accurate diagnosis of mpox skin lesion by
analyzing patient X-rays and advice for early isolation to
prevent further transmission. It was okay if a false positive
value was received as the patient could be advised to isolate,
thereby greatly reducing the risk of chance spread of the virus.
The risk would otherwise be high for FN cases (in models with
low recall) as the sick remain mobile without isolation, risking
further transmission. Inception v3 had 96% recall on the test
data set, which proved that it was the best model for the task.
3.3. Comparison of Accuracy. All four test models

(CNN, VGG-19, Inception v3, and Autoencoder) showed
nearly 100% training accuracy with appreciably high validation
accuracy of more than 90% (Table 4). Inception v3
demonstrated the best performance in terms of accuracy,
AUC, and minimum loss (training accuracy = 100, testing
accuracy = 96.56, training loss = 0.01, validation loss = 0.29,
training AUC = 1, testing AUC = 97.19), as also presented in
Figure 2. Autoencoder showed the worst performance with a
training accuracy of 99.19 and a validation accuracy of 85.62.
3.4. ROC Curve. The ROC curves of the models are shown

in Figure 3. The ROC curve measures the diagnosability of a

DL model. The more the area under the curve, the more shall
be the diagnosis capability of the model. AUC measures the
area under the receiver operating characteristics curve. It is a
graph between true positives and false positives. The more the
value of the area, the better the classification ability of the DL
model. Inception v3 had the highest (0.966) area (Figure 3),
indicating that it had the maximum classification ability as
compared to the other three models for mpox skin lesion.

Figure 3 shows that Inception v3 had the highest (96.6) AUC
followed by VGG 19 (94.1), CNN (93.5), and Autoencoder
(85.7). A simulation study showed that Inception v3 had the
highest diagnosability for mpox, as it had a high (96.6) AUC
and Autoencoder contrastingly had the least with the lowest
(85.7) AUC value.
3.5. Performance Comparison with Earlier Works. The

proposed model was compared with some established
documented state-of-the-art methods for mpox classification.
Four well-established DL-based methods were used: deep bag
of words (BoDVW), attention-based VGG (AVGG), multi-
scale deep bag of deep visual words (MBoDVW), and
convolutional neural network with long short-term memory
(CNNLSTM). The selected optimal hyperparameters from the
related papers were considered, and the comparison results are
presented in Table 5. The proposed model demonstrated the
best performance as compared with other accepted models for
mpox virus diagnosis. The results demonstrated that the best
performing accurate DL model could be constructed using a
combination of transfer learning and data augmentation
techniques with VGG16, Resnet50, and Inception v3.

VGG, ResNet50, Inception v3, ResNet18, MobileNet, and
Inception v3-based techniques were most frequently employed
to build models in earlier investigations. Models employed in
this study are standardized in terms of conditions and
parameters and are based on transfer learning. CNN,
VGG19, Inception v3, and Autoencoder were compared in
this study for an expedited and improved model’s brevity for
use as a real-time assessment tool. The suggested strategy using
the Inception v3 model ultimately provided a superior (100%)
accuracy level and efficiency compared to other test models.

The accuracy and recall rate of the test models were positive
findings in the results. Better results were achieved using the
pretrained Inception v3 model for classification tasks, which
was also proposed in the simulation work. The data
augmentation technique could possibly enhance the accuracy
of the Inception v3 model. Data augmentation and data
rescaling were used to improve the image quality. The
pretrained models were implemented to improve the accuracy
and AUC.

Results show that Inception v3 performed better in
classifying mpox skin lesions than other mentioned state-of-
art models. The finding is encouraging, as it demonstrates the
potential of DL applications in early diagnosis. The pretrained
model was 100% accurate at classifying mpox and 96.6%
accurate in diagnosing with both training and test sets, making
it a potentially useful tool for rapid and precise diagnosis in
clinical settings.
3.6. Scientific Contribution of the Present Study. The

present work primarily contributes to the description of
cutting-edge DL methods in detecting mpox early in a real-
time system (Figure 5) that was missing in other literature.
The speed and accuracy of diagnosis in classifying and
diagnosing mpox skin lesion by the proposed model are
worth mentioning. Data preprocessing and data augmentation
as the two methods used to improve the image classification
accuracy of the database before image classification is another
aspect. The high degree of classification accuracy (Table 4) of
the proposed model with both training and test sets
demonstrates that it is a potentially useful tool for rapid and
precise diagnosis in clinical settings. This could help doctors/
clinicians to make rapid and precise diagnosis of various
ailments, improve treatment outcome, and reduce healthcare

Figure 3. ROC curves for the test DL models.
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expenses. The suggested Inception v3 model outperformed
other DL-based models in terms of accuracy and efficacy.
Inception v3 could also be a real-time assessment tool and

could be deployed on smartphones for real-time detection and
predicting mpox instances (Figure 5). Its excellent degree of
classification accuracy makes it a potentially useful tool for a
rapid, real-time, smart phone-based mpox diagnosis. It is
suggested that the proposed model may help classify several
skin lesions. Research on automated mpox detection using
deep and transfer learning techniques could also potentially
pave the way to create new diagnostic approaches for other
such diseases. This will help in reducing the challenges in skin
lesion diagnosis with accuracy and handle bulk cases, if any, in
the future.
However, the study has its limitations too. For instance, the

sample size in the data set could be larger. The data set
employed here is a purely mpox-dedicated data set without the
images of “no skin lesions”. Future investigations with bigger
data sets that classify different types of skin lesions as well cases
without any skin lesion are suggested to be carried out.

4. CONCLUSIONS AND FUTURE PROSPECTS
An automatic diagnostic system for mpox from images was
devised in the work using the DL approach. DL models
differentiated between mpox skin lesion patients and other skin
lesion cases. To implement the DL model, various image
enhancement techniques were used to develop a system with
improved image quality with the noise eliminated. This article
attempted to compare four pretrained DL models on mpox
data set. The performance evaluation result of all the DL
models showed that Inception v3 was the best with 97.48%
precision, 95.67% recall, 96.56% F1-score, and 96.56%
accuracy in detecting mpox virus. VGG-19 was the second
best model with 96.12% precision, 91.97% recall, 93.99% F1-
score, and 94.06% accuracy, followed by the CNN model
(95.48% precision, 91.35% recall, 93.36% F1-score, and
93.43% accuracy). The Autoencoder model performed the
least with 88.66% precision, 82.09% recall, 85.24% F1-score,
and 85.62% accuracy. Like any scientific work, this one also has
limitations, and we propose to state those. First, the data set
size was relatively small, so the addition of more data could
have a positive effect on the performance. Second, the AI
approach was based on pretrained DL models, which may be a

problem if these are deployed in memory-constrained settings.
Designing lightweight DL models could be useful for a
resource-limited scenario. With a unique augmentation
approach, the Inception v3 model returned 100% training
accuracy and 96.56% validation accuracy, performing at the
highest level. As the proposed model achieved a high level of
accuracy in classifying mpox, it is a potentially valuable tool for
early, automatic, and accurate diagnosis of mpox and other skin
lesion diseases like measles, smallpox, chickenpox, and so forth.
Studies to demonstrate and validate the model’s brevity on
bigger image data set may be done in the future. This and the
ensuing future studies are anticipated to facilitate early
identification, categorization, and management of mpox and
other skin lesion ailments. Real-time smart phone-based mpox
prediction and diagnosis is a potential extended use of the
algorithm, as discussed.

5. MATERIALS AND METHODS
5.1. Data Set Sourcing. Mpox skin lesion image database

used in the study were collected from digital sources that
included news portals, web resources, and available data in the
public domain (https://data.mendeley.com/datasets/
r9bfpnvyxr). To remove the bias in the training images such
as data preprocessing (the rescaling of images) and
augmentation method, two methods were used.
5.2. Data Augmentation. Numerous data augmentation

techniques to address the difficulties related to developing an
effective classification algorithm are suggested. Rotation,
flipping, and zipping augmentation techniques were employed
in the study to increase the data set size and prevent
overfitting. It broadened the data set and improved the
functionality of the model. Data set size could be increased
further by using common data augmentation techniques such
as zoom, rotation, height shift, shear and width shift ranges,
and vertical flip. They enable the production of augmented
photos with minor alterations of the original, producing a
larger, clear, and clean image.

The final data set contained two directories of augmented
images (1428 augmented files of mpox and 1764 of others like
chickenpox and measles) and two directories of 228 original
images (102 of mpox and 126 of non-mpox cases). The final
data set contained 55% non-mpox cases and 45% mpox cases.
Low-quality images were discarded through two-stage screen-

Table 5. Performance Comparison of the Proposed with Other Documented Approaches

reference model precision recall F1-score accuracy
22 Inception v3 0.74 0.81 0.78 74.07
22 VGG-19 0.85 0.81 0.83 81.48
22 Inception v3 0.74 ± 0.02 0.81 ± 0.07 0.78 ± 0.04 74.07 ± 3.78
22 VGG16 0.85 ± 0.08 0.81 ± 0.05 0.83 ± 0.06 81.48 ± 6.87
22 ResNet50 0.87 ± 0.07 0.83 ± 0.02 0.84 ± 0.03 82.96 ± 4.57
23 ResNet18 86.87
23 MobileNetV2 91.11
24 Xception 85.01 85.14 85.02 86.51
24 Inception v3 82.51 82.30 82.16 84.53
24 VGG-19 81.84 81.90 81.03 82.94
28 VGG-19 94.36 98.53 97.48
28 MobileNet 83.54 95.22 92.30
engaged models CNN 95 91 93 99.74

VGG-19 96 92 94 99.91
Inception v3 97 96 97 100
Autoencoder 89 82 85 99.96
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ing, and all the images were resized to 224 × 224 × 3; after
that, the region of interest is cropped. The considered data set

contained augmented images of mpox, chickenpox, and
measles with the preliminary objective to categorize mpox

Figure 4. Samples of the considered images after data set preprocessing.
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from other skin lesions. Samples of the considered images are
shown in Figure 4.
Data augmentation facilitates enhanced accuracy of predict-

ing a model by adding training data, prevents data scarcity,
reduces data overfitting, ensures data variability, increases
model generalization, and helps resolve class imbalance issues.
In this study, tensorflow’s image data generator function
(IDG) was used to generate augmented images considering the
following parameters:

_ = [ ]ZOOM RANGE 0.99, 1.01

_ = [ ]BRIGHTNESS RANGE 0.8, 1.2

_ =HORZ FLIP True(Randomly flip inputs horizontally. )

_ =FILL MODE constant

5.3. Model Selection and Training. Five DL models
(CNN, VGG19, Inception v3, ResNet-50, and Autoencoder)
were selected for the study. The architecture and structure for
each model were given in Figures S1−S3 and Tables S1−S5.
All models were trained using the preprocessed data, and the
performances were evaluated and compared in terms of
precision, accuracy, recall, and F1-score metrics.
5.4. Deep Learning Models Applied in the Study. DL

models, autoencoder, convolutional neural network, and
pretrained models Inception v3 and VGG-19 available on
ImageNet database29 were applied in the study (Table 6). The
pretrained models were used for the purpose of transfer
learning.30 Transfer learning helps to boost the performance of
DL models by transferring knowledge from a large data set,
while training a small data set. Windows 10 operating system,
Tesla K80 GPU, and 12 GB RAM were used to process the
data set using Python open-source software. NumPy, Pandas,
TensorFlow, Keras, and skLearn Python libraries were used to
implement DL models. Google collab and Amazon cloud web
services were used to store data. The proposed approach to
detect mpox skin lesions is presented in Figure 5.

5.4.1. CNN. CNN is a deep neural network model for feature
extraction in image analyses. It reduces the manual job to
automatically detect and classify image features. Its architecture
consists of primarily three layers, convolutional (input),
pooling (output), and fully connected (multiple hidden
layers), and uses these layers to extract features from images.
Input (convolution) and output (pooling) layers are used to
extract features, and the fully connected layer is used to
classify. It is mainly used in analyzing clinical images like MRI,
CT scan, ultrasound, and so forth.

5.4.1.1. Convolutional Layer. The first layer of CNN
architecture is used to detect and extract features from the

image, thereby helping in dimension reduction of features.
CNN uses a convolution mathematical tool to perform a
convolution operation between an input image and a filter with
size NXN. The filter is slid across the input image, and the dot
product between the filter and the parts of the input image
(with respect to filter size; NXN) is obtained. This dot product
informs about edges and corners of the image, termed a feature
map. After this, the feature map is fed to other layers to
decipher other image features.

5.4.1.2. Pooling Layer. The main objective of this layer is to
reduce the dimension of the feature map obtained from the
convolutional layer to reduce the computational cost. It is done
by reducing the connection between layers and operating on
the individual feature map independently. Depending on the
manner of features extraction from the feature map, pooling
layer may be max, average, or sum.

5.4.1.3. Fully Connected Layer. This FC layer enables an
understanding of neural connections between different layers.
It contains bias and weights and receives flattened input
images. It is a layer present before the output layer, and it
initiates image classification.

Table 6. Implemented DL Models with Their Advantages and Disadvantages

DL model advantages disadvantages

CNN CNN model automatically extracts the features from the data,
without human supervision

As it contains numerous layers, the training time is more

Autoencoder (1) It is a very efficient deep learning model for learning features from
data

Autoencoder requires larger data set to deliver useful output, and the data
samples should be clean without “noise”

(2) It can denoise data and can learn data variation
ResNet 50 (1) This model has faster training time due to its skip connection (1) The model is prone to overfitting problem

(2) More complex function can be learned (2) Convergence time is more for attending the local minima
(3) It can reuse activation function of previous layer that helps in
reducing the vanishing gradient problem

Inception v3 It gives high performance by utilizing computing resources efficiently Requires high computational power to give better result
VGG19 Faster training speed, higher accuracy The model requires more time to implement

Figure 5. Architecture used in the study: the skin sensor senses the
mpox skin lesion, and patient data is stored in the cloud. Then the
application data are processed using a digital (computer) platform
using python open-source software. Deep learning models are
implemented on the mpox skin lesion database to extract the features
of the lesion, and then, the DL model classifies the skin lesion as
mpox or others. If there is an mpox skin lesion, a notification is sent
directly to the clinician’s mobile. In case of an emergency, the
concerned doctor prescribes medicine to the patient through a mobile
app. If it is a skin lesion other than mpox (like chickenpox and
measles), then the notification is sent automatically to the patient’s
mobile and the patient takes therapeutic prescriptions from the doctor
accordingly. The cloud system is used to store huge (big) patient data.
An “emergency” patient with mpox skin lesion is treated immediately
this way without a need to visit a hospital while the misdiagnosis rate
is reduced.
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5.4.1.4. Dropout. This helps in reducing the overfitting
problem, which results from the all-neural connection to the
fully connected layer. It solves the overfitting problem by
dropping the neurons of little relevance randomly from the
nodes of the network while training the neural network.

5.4.1.5. Activation Functions. The most significant
parameter of the CNN model is the activation function that
helps decide the information flow direction and neuron
activation in the network. Rectified linear units, TanH,
sigmoid, and softmax are the commonly used activation
functions used in CNN.

5.4.2. VGG-19. The winner of ImageNet database challenge
is a deep CNN model developed by Visual Geometry Group,
Oxford University, in 2014 with 19 deep layers trained over
millions of images from the ImageNet database. An advance
version of VGG-16 consists of 16 convolutional layers, 5
Maxpool layers, and 3 dense layers. It has the ability to classify
images into 1000 categories. In the present work, the 224 ×
224 × 3 input image size was fed to the VGG-19 model.
During the preprocessing phase, the mean of the RGB value of
the input image was calculated and subtracted from each image
pixel. The whole image was preprocessed using a 3 × 3 kernel
size along with stride 1. Spatial padding was used to conserve
the resolution of the input image. MaxPooling operation was
performed on the reduced feature map of 2 × 2 size to extract
image features. Relu activation function was used to add
nonlinearity, and sigmoid or TanH was used to reduce the
computational time. Three fully connected layers were applied
before the output layer, and the SoftMax activation function
was used in the final layer for classification.

5.4.3. Inception v3. An advanced version of Inception V1 by
GoogleNet, Inception v3 containing 42 wide layers for image
classification instead of deep layers was introduced in 2014.24

It is useful in reducing the overfitting problem that occurs in
deep CNN architecture. It is a pretrained model loaded from
the ImageNet database with weight and absence of a toplayer.
The layers in pretrained Inception v3 model were locked to
prevent weight biasing. It uses global average pooling and the
Relu activation function to train the network. The last layer for
binary classification is the SoftMax classification layer. The
global average pooling layer was applied on top of this,
followed by 3 layers of 32 dense hidden units with a “Relu”
activation function. Finally, the last softMax layer was added
with two outputs for the two classes. The model used the
Adam optimizer and sparse categorical loss function for
compilation.

5.4.4. Autoencoder. It is a type of deep feed-forward neural
network wherein the input is the compressed domain
representation of latent space, and the output is reconstructed
from latent space representation. Its architecture consists of an
encoder, hidden layers, and output. Autoencoder is an
unsupervised learning model that learns features from its
compressed domain representation. The output of the
autoencoder is not the same as that of the input due to the
loss function (mean square or cross-entropy).
5.5. Performance Evaluation Metrics. Confusion matrix

represents the capability of DL models in predicting mpox.

One label of confusion matrix represented true value, and
another represented the predicted value. The four outputs
were TP (true positive), TN (true negative), FP (false
positive), and FN (false negative). TP represented doctor
diagnosis and model prediction as the same (patient with
mpox skin lesion). Doctor’s diagnosis report and the model
prediction both being false (patient with other skin lesions)
were represented by TN. FP represented those where the
doctor’s diagnosis report was negative (other skin lesions),
while the model prediction was positive (with mpox skin
lesion), and FN returned the values of positive doctor’s
diagnosis report (with mpox skin lesion) but negative model
prediction (having other skin lesions). The formulas for
performance metrics used in the study are provided in Table 7.
5.6. Implementation. The proposed DL model was

implemented using Keras (https://github.com/fchollet/
keras) in the Python environment using Google Colab
(Tensorflow ver. 2.9.2). While applying, the following
parameters were tuned: each image was resized to 224 ×
224, followed by the online data augmentation as rescale = 1/
255, rotation range = 50, width shift range = 0.2, height shift
range = 0.2, shear range = 0.25, zoom range = (0.9, 1.01),
bright range [0.8, 1.2] and channel shift range = 20. The
optimizer was set as “Adam”, with 3192 batch size and 0.001
initial learning rate, with binary cross entropy loss function. To
prevent overfitting, the learning rate decay over each epoch
coupled with the early stopping criteria were utilized. This
study used an 80:20::train:test ratio, and the average
performance was reported.
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