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Abstract

Background: In recent decades, with the development of the global economy and 
the improvement of living standards, insulin resistance (IR) has become a common 
phenomenon. Current studies have shown that IR varies between races. Therefore, it is 
necessary to develop individual prediction models for each country. The purpose of this 
study was to develop a predictive model of IR applicable to the US population.
Method: In total, 11 cycles of data from the NHANES database were selected for this 
study. Of these, participants from 1999 to 2010 (n  =  14931) were used to establish 
the model, and participants from 2011 to 2020 (n  =  13,646) were used to validate the 
model. Univariate and multivariable logistic regression was used to analyze the factors 
associated with IR. Optimal subset regression was used to filter the best modeling 
variables. ROC curves, calibration curves, and decision curve analysis were used to 
determine the strengths and weaknesses of the model.
Results: After screening the variables by optimal subset regression, variables with 
covariance were excluded, and a total of seven factors (including HDL, LDL, ALB, GLB, 
GLU, BMI, and waist) were finally included to establish the prediction model. The AUCs 
were 0.851 and 0.857 in the training and validation sets, respectively, and the Brier value 
of the calibration curve was 0.153.
Conclusion: The optimal subset predictive model proposed in this study has a great 
performance in predicting IR, and the decision curve analysis shows that it has a high net 
clinical benefit, which can help clinicians and epidemiologists easily detect IR and take 
appropriate interventions as early as possible.

Background

Insulin resistance (IR) is a systemic disorder of glucose 
metabolism that results in changes in multiple organs 
and insulin regulatory pathways (1, 2, 3). The clinical 

significance of IR has become clear over the past few 
decades, a disorder characterized by markedly elevated 
insulin levels (hyperinsulinemia) and decreased insulin 
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function (4). Type 2 diabetes develops when an IR 
individual fails to secrete enough insulin to overcome 
the deficiency (5, 6). A large number of studies have 
shown that IR is the main pathophysiological factor 
in the development of the metabolic syndrome and 
cardiovascular diseases (7, 8, 9, 10). Meanwhile, people 
with IR have a higher risk of death. In an 18.9-year 
prospective cohort study in the United States, Pan et  al. 
found a 26% increased risk of death in postmenopausal 
women with IR (11). A cohort study by Lee et al. involving 
1687 US population found a 79% increase in all-cause 
mortality in patients with IR after a median follow-up 
of 4.5 years (12). Since IR could lead to a large number of 
adverse effects, early detection of IR and intervention will 
certainly reduce the number of people with IR in advance 
and reduce various risks including developing diabetes 
and death.

Currently, there are several methods for predicting IR 
directly or indirectly. Among them, the hyperinsulinemic-
euglycemic clamp (HEC) test, originally developed by 
DeFronzo (13), is considered the gold standard method for 
diagnosing IR. However, this method is costly, invasive, 
and inconvenient and is often extremely time-consuming 
in clinical applications, making it unreasonable for 
large-scale use in the general population. Given this, 
the HOMA-IR index for evaluating IR models came into 
being (14). Unfortunately, the HOMA-IR index lacks a 
standardized method for measuring insulin, and currently, 
its clinical application is still limited. HOMA-IR is not 
routinely measured in clinical practice when used to 
diagnose IR. Furthermore, HOMA-IR is rarely measured in 
large-scale physical examinations and broad population 
surveys. Thus, from a clinical point of view, a simple, easy-
to-follow, and inexpensive predictor to identify IR may 
effectively help clinicians and epidemiologists identify 
subjects with IR early.

At present, several predictive models for IR have 
been established. For example, in 2018, Boursier et  al. 
used triglycerides and glycated hemoglobin to predict 
IR in an obese population (15). Yeh et  al. proposed a 
predictive model for IR in elderly Taiwanese in 2019 
using triglyceride/high-density lipoprotein (TG/HDL) 
that is readily available in the clinic (16). These models 
were clinically proven to be available. However, multiple 
studies have shown that the occurrence of IR is ethnic-
specific (17, 18, 19, 20). Our research aims to collect 
clinically accessible indicators and screen out the most 
appropriate variables by optimal subset regression in 
the US adult population to establish an easy-to-use IR 
predictive model.

Method

Database

This study selected all cycle data collected since 1999 by 
the National Health and Nutrition Examination Surveys 
(NHANES) project of the US National Health Center, with 
a total of 11 cycles of 22 years (21). The NHANES project 
focuses on health examinations and healthy eating in the 
US, including comprehensive data on diet, nutritional 
status, and chronic diseases. Continuous data collection 
began in 1999, with new data released in 2-year cycles of 
approximately 10,000 participants per cycle, all selected 
by a complex multi-stage hierarchical probabilistic design 
with unique demographic weights applied, with a sample 
representative of the entire US population. Detailed data 
were divided into five categories: demographic informatics 
data, dietary data, body measurement data, laboratory 
data, and questionnaire data. All NHANES-based studies 
were approved by the National Health Statistics Research 
Ethics Review Board. Ethical approval, and more detailed 
information can be found on the website of the Ethics 
Review Board of the National Center for Health Statistics 
(https://www.cdc.gov/nchs/nhanes/irba98.htm) (22).

Study population and study design

This study initially enroled 116,876 participants who 
completed interviews and exams at Mobile Examination 
Centers (MECs). After rigorous screening, a total of 
28,577 participants were included (Fig. 1). The exclusion 
criteria are as follows: (1) under the age of 18 (n  = 47,979); 
(2) not participating in the detection of fasting blood 
glucose and insulin items (n  = 39,465); and (3) taking 
anti-hyperglycemic agents (n  = 855) (details of the 
names of drugs in Supplementary Table 1, see section on 
supplementary materials given at the end of this article).

The purpose of this study was to use the optimal subset 
regression to screen the best modeling factors to establish a 
predictive model of IR based on clinically readily available 
variables. The diagnostic criteria of IR refer to the HOMA-IR 
index recognized by international experts. The calculation 
formula of HOMA-IR is as follows: fasting plasma 
glucose level (FPG, mmol/L) × fasting insulin level (FINS,  
μU/mL)/22.5. In the US population, HOMA-IR ≥ 2.73 is 
positive for IR. FPG and FINS were measured by the University 
of Missouri-Columbia Diabetes Diagnostic Laboratory using 
the Primus CLC330. FPG was measured by the hexokinase 
method, and FINS was measured by the insulin RIA.

The population who participated in the NHANES 
project from 1999 to 2010 was used to establish the model, 
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while the population who participated in the NHANES 
project from 2011 to 2020 was used to validate the model.

Data collection

Data were collected by professionally trained and qualified 
personnel in the MECs, including demographics (age, 
gender, ethnicity, education, etc.), anthropometric 
measurements (height, waist circumference, weight, BMI, 
etc.), health-related behaviors (smoking and alcohol 
consumption), laboratory tests (ALT, HDL, etc.), etc. 
Among them, the serum samples were sent to the US 
Centers for Disease Control and Prevention National 
Center for Environmental Health Laboratory Science 
Department and designated to authorized institutions 
for analysis under cold-chain conditions after scientific 
storage management (22).

Demographic data
Participants were measured for age, gender, ethnicity, 
education, smoking, and alcohol consumption in the 
mobile test vehicle, and other necessary interviews were 

conducted. In our study, educational level was divided 
into three categories: low education (no education or 
education up to grade 11), secondary education (education 
level of high school), and high education (education level 
of college and above).

Smoking status was divided into three categories: 
current smokers (smoked ≥ 100 cigarettes in the past in 
total and reported smoking on several days or days at the 
time of interview), ex-smokers (smoked < 100 cigarettes in 
the past but did not currently smoke), and non-smokers 
(smoked < 100 cigarettes in the past). Alcohol consumption 
was classified as drinking and non-drinking according to 
the recommendations of the US Department of Health and 
Human Services: >1 drink per day for women and >2 drinks 
per day for men were defined as drinkers (23).

Blood pressure of the participants was measured after 
a 5-minute rest, with a 5-minute interval between the 
next measurements, taking the average of two or more 
blood pressure measurements. SBP > 140 or DBP > 90 
was diagnosed as hypertension. Diabetes was diagnosed 
by meeting any of the following criteria: FPG ≥ 7.0 
mmol/L, glycated hemoglobin > 6.5%, the doctor told 
the participant to have diabetes, self-reported diabetes 

Figure 1
Flowchart of participant selection.
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for a long time, random blood glucose, or 2 h-OGTT 
test ≥ 11.0 mmol/L, was taking diabetes-related drugs. BMI 
was calculated based on height and weight, and its formula 
is BMI = weight/height-squared (kg/m2).

Laboratory data
The collection of laboratory data was carried out in a 
mobile test vehicle, and the samples were scientifically 
stored at −20°C or −30°C after collection and transported 
to the laboratory for analysis at appropriate time. Samples 
prior to 2007 were analyzed by the Johns Hopkins 
University laboratory, and from 2007, by the University 
of Minnesota laboratory. Detailed processing steps can be 
found in the description of plasma sample components 
on the NHANES official website (https://www.cdc.gov/
nchs/nhanes/about_nhanes.htm). Total cholesterol (TC) 
and triglyceride (TG) were measured enzymatically, and 
high-density lipoprotein (HDL) was measured by two 
methods: heparin-manganese precipitation or direct 
immunoassay. Other laboratory tests were measured by 
conventional biochemical spectroscopy, using a Hitachi 
Model 704 multichannel analyzer (Boehringer Mannheim 
Diagnostics, Indianapolis, IN, USA). Meanwhile, 
the NHANES project team employs several different 
approaches to test the quality of assays performed by the 
laboratory, including but not limited to conducting a 
second examination of previously examined participants.

Statistical analysis

All data in this study were analyzed using R software 
(version 4.1.2; packages: magrittr, dply, corrplot, leaps, 
rms, InformationValue, etc.). ROC curves were plotted 
using MedCalc software (version 15.6.1).

After checked for normality, continuous variables 
that obey the normal distribution were expressed as 
mean ± standard deviation (M ± s.d.) and compared by the 
independent sample t-test; if not, expressed as the median 
with interquartile range (IQR) and compared by the Mann–
Whitney U test. Categorical variables were represented by 
counts and weighted percentages and were compared 
using the chi-square test. The multiple imputation 
method was used to impute missing variables in order to 
maximize statistical power and minimize bias. In addition, 
to determine whether the generated complete data differed 
significantly from the original data, a sensitivity analysis 
was performed. The results showed that the data after 
multiple imputation was not significantly different from 
the original data, and there was no statistical significance 

(P  > 0.05). Univariate and multivariable logistic regression 
analyses were used to analyze which factors were closely 
associated with IR. In univariate logistic regression models, 
variables with effect value greater than 10% or P < 0.1 
were included in multivariable logistic regression. The 
likelihood ratio test was used to select the relevant factors 
for constructing the predictive model in the training set 
by means of optimal subset regression. The discriminative 
power of different models was quantified and compared 
using the area under the receiver operating characteristic 
(ROC) curve (AUC). The calibration curve was evaluated by 
the unreliability U test. Use the ‘rms’ package of R software 
to draw calibration curves. We additionally introduce 
the Brier score (calculated by R software) to evaluate the 
accuracy of model predictions in classification tasks.

Decision curve analysis (DCA) was performed to 
determine the clinical net benefit of the model (24, 25). DCA 
is combining accuracy measures and clinical applicability 
by integrating clinical consequences associated with a test 
result. The net benefit is calculated by the difference between 
the proportion of relative harms of false positives and false 
negatives weighted by the odds of the selected threshold 
for high-risk designation, in other words, the difference 
between the expected benefit and the expected harm.

All statistical tests were two-sided and P values < 0.05 
were considered significant.

Results

Baseline characteristics of the 
participating population

A total of 14,931 participants from 1999 to 2010 were 
included to establish the predictive model. The age of the 
participants was 46.9 ± 19.7, of whom 6444 participants 
were diagnosed with IR and were older than IR-negative 
participants (48.7 vs 45.5). In addition, IR-positive 
and IR-negative participants differed significantly in 
the following variables: gender, race, education, BMI, 
waist circumference, hypertension, smoking, alcohol 
consumption, HDL, LDL, TC, TG, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), glutamyl 
transpeptidase (GGT), total bilirubin (TBIL), blood urea 
nitrogen (BUN), lactate dehydrogenase (LDH), albumin 
(ALB), globulin (GLB), creatinine (Cre), uric acid (UA), Na, 
and glucose (GLU), with all P values <0.001 (Table 1).

A total of 13,646 participants from 2011 to 2020 were 
included to validate the accuracy of the model, and the 
age of the participants was 48.3 ± 18.3. 6114 participants  
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were diagnosed with IR and were older than those 
who were IR-negative (49.8 vs 47.1). There were still 
significant differences between IR-positive and IR-negative 
participants in the following variables: gender, race, 

education, BMI, waist circumference, hypertension, 
smoking, alcohol consumption, HDL, LDL, TC, TG, ALT, 
AST, GGT, TBIL, BUN, LDH, ALB, LB, Cre, UA, Na, and GLU, 
with all P values < 0.001 (Table 2).

Table 1 Basic crowd information description of the training set.

Variables Total (n  = 14,931) IR-negative (n  = 8487) IR-positive (n  = 6444) P-value

Age, mean ± s.d. 46.9 ± 19.7 45.5 ± 20.0 48.7 ± 19.2 <0.001
Gender, n (%) <0.001
 Male 7231 (48.4) 3969 (46.8) 3262 (50.6)
 Female 7700 (51.6) 4518 (53.2) 3182 (49.4)
Race, n (%) <0.001
 Mexican American 3266 (21.9) 1610 (19) 1656 (25.7)
 Other Hispanic 2935 (19.7) 1588 (18.7) 1347 (20.9)
 Non-Hispanic White 7110 (47.6) 4402 (51.9) 2708 (42)
 Non-Hispanic Black 1011 ( 6.8) 515 (6.1) 496 (7.7)
 Other races 609 ( 4.1) 372 (4.4) 237 (3.7)
Education, n (%) <0.001
 Poorly educated 4520 (30.3) 2306 (27.2) 2214 (34.4)
 Moderately educated 3536 (23.7) 1974 (23.3) 1562 (24.2)
 Highly educated 6875 (46.0) 4207 (49.6) 2668 (41.4)
BMI, mean ± s.d. 28.3 ± 6.5 25.7 ± 4.7  31.7 ± 6.9 <0.001
Waist, mean ± s.d. 97.0 ± 15.8 90.4 ± 12.7 105.8 ± 15.2 <0.001
Hypertension, n (%) <0.001
 No 5354 (35.9) 2389 (28.1) 2965 (46)
 Yes 9577 (64.1) 6098 (71.9) 3479 (54)
DM, n (%) <0.001
 No 12,823 (85.9) 7987 (94.1) 4836 (75)
 Yes 2108 (14.1) 500 (5.9) 1608 (25)
Smoking status, n (%) <0.001
 Never smoking 7895 (52.9) 4508 (53.1) 3387 (52.6)
 Former smokers 3879 (26.0) 2055 (24.2) 1824 (28.3)
 Current smoker 3157 (21.1) 1924 (22.7) 1233 (19.1)
Alcohol, n (%) <0.001
 No 10,565 (70.8) 5764 (67.9) 4801 (74.5)
 Yes 4366 (29.2) 2723 (32.1) 1643 (25.5)
HDL, median (IQR) 1.3 (1.1, 1.6) 1.4 (1.2, 1.8) 1.2 (1.0, 1.4) <0.001
LDL, median (IQR) 2.9 (2.4, 3.6) 2.9 (2.3, 3.5) 2.9 (2.4, 3.6) 0.01
TC, median (IQR) 5.0 (4.3, 5.7) 5.0 (4.3, 5.7) 5.0 (4.3, 5.8) 0.004
TG, median (IQR) 1.2 (0.8, 1.8) 1.0 (0.7, 1.5) 1.5 (1.0, 2.2) <0.001
ALT, median (IQR) 21.0 (16.0, 28.0) 19.0 (15.0, 25.0) 23.0 (17.8, 33.0) <0.001
AST, median (IQR) 23.0 (19.0, 27.0) 22.0 (19.0, 26.0) 23.0 (19.0, 28.0) <0.001
GGT, median (IQR) 20.0 (14.0, 31.0) 17.0 (13.0, 25.0) 24.0 (17.0, 37.0) <0.001
TBIL, median (IQR) 12.0 (10.3, 15.4) 12.0 (10.3, 15.4) 12.0 (8.6, 13.7) <0.001
BUN, median (IQR) 4.3 (3.2, 5.4) 4.3 (3.2, 5.4) 4.3 (3.6, 5.7) <0.001
LDH, median (IQR) 130.0 (114.0, 148.0) 128.0 (113.0, 147.0) 132.0 (116.0, 150.0) <0.001
ALB, median (IQR) 42.0 (40.0, 45.0) 43.0 (40.0, 45.0) 42.0 (40.0, 44.0) <0.001
GLB, median (IQR) 30.0 (27.0, 33.0) 29.0 (27.0, 32.0) 31.0 (28.0, 34.0) <0.001
Cre, median (IQR) 70.7 (61.9, 88.4) 70.7 (61.9, 88.4) 71.6 (61.9, 88.4) 0.074
UA, median (IQR) 315.2 (261.7, 374.7) 297.4 (243.9, 356.9) 339.0 (285.5, 398.5) <0.001
Na, median (IQR) 139.0 (138.0, 140.8) 139.0 (138.0, 141.0) 139.0 (138.0, 140.5) <0.001
Cl, median (IQR) 104.0 (102.0, 105.2) 104.0 (102.0, 105.0) 104.0 (102.0, 105.6) 0.37
Ca, median (IQR) 2.4 (2.3, 2.4) 2.4 (2.3, 2.4) 2.4 (2.3, 2.4) 0.069
GLU, median (IQR) 5.1 (4.7, 5.6) 4.9 (4.6, 5.3) 5.5 (5.0, 6.2) <0.001

ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Ca, calcium; Cl, chlorine; Cre, creatinine; GGT, 
glutamyl transpeptidase; GLB, globulin; GLU, glucose; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; Na, 
sodium; TBIL, total bilirubin; TC, total cholesterol; TG, triglyceride; UA, uric acid.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-22-0066

https://ec.bioscientifica.com © 2022 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-22-0066
https://ec.bioscientifica.com


R Gong, Y Liu et al. e220066

PB–XX

11:7

Logistic regression analysis

The optimal subset regression analysis identified eight 
candidate factors, and after exclusion of collinearity 
interference, a total of seven factors were finally included, 
as shown in the nomogram (Figs 2 and 3). The included 

factors were HDL, LDL, ALB, GLB, GLU, BMI, and waist 
circumference, and their correlation with IR is shown 
in Table 3. After adjusting for potential confounders, 
HDL (OR: 0.37, 95% CI 0.33–0.41) and LDL (OR: 0.88, 
95% CI 0.84–0.92) are inversely correlated with IR, while  
ALB (1.04, 95% CI 1.03–1.05), GLB (OR: 1.07, 95% CI 

Table 2 Basic crowd information description of the test set.

Variables Total (n  = 13,646) IR-negative (n  = 7532) IR-positive(n  = 6114) P-value

Age, mean ± s.d. 48.3 ± 18.3 47.1 ± 18.6 49.8 ± 17.8 <0.001
Gender, n (%) 0.012
 Male 6628 (48.6) 3585 (47.6) 3043 (49.8)  
 Female 7018 (51.4) 3947 (52.4) 3071 (50.2)  
Race, n (%) <0.001
 Mexican American 1857 (13.6) 826 (11) 1031 (16.9)  
 Other Hispanic 3030 (22.2) 1667 (22.1) 1363 (22.3)  
 Non-Hispanic White 4997 (36.6) 2914 (38.7) 2083 (34.1)  
 Non-Hispanic Black 1433 (10.5) 721 (9.6) 712 (11.6)  
 Other races 2329 (17.1) 1404 (18.6) 925 (15.1)  
Education, n (%) <0.001
 Poorly educated 2884 (21.1) 1479 (19.6) 1405 (23)  
 Moderately educated 3061 (22.4) 1637 (21.7) 1424 (23.3)  
 Highly educated 7701 (56.4) 4416 (58.6) 3285 (53.7)  
BMI, mean ± s.d. 29.1 ± 7.2 26.1 ± 5.3  32.9 ± 7.5 <0.001
Waist, mean ± s.d. 99.0 ± 16.9 91.4 ± 13.4 108.3 ± 16.2 <0.001
Hypertension, n (%) <0.001
 No 5259 (38.5) 2318 (30.8) 2941 (48.1)  
 Yes 8387 (61.5) 5214 (69.2) 3173 (51.9)  
DM, n (%) <0.001
 No 11,161 (81.8) 6921 (91.9) 4240 (69.3)  
 Yes 2485 (18.2) 611 (8.1) 1874 (30.7)  
Smoke, n (%) <0.001
 Never smoking 7946 (58.2) 4393 (58.3) 3553 (58.1)  
 Former smokers 3110 (22.8) 1579 (21) 1531 (25)  
 Current smoker 2590 (19.0) 1560 (20.7) 1030 (16.8)  
Alcohol, n (%) <0.001
 No 6193 (45.4) 3307 (43.9) 2886 (47.2)  
 Yes 7453 (54.6) 4225 (56.1) 3228 (52.8)  
HDL, median (IQR) 1.3 (1.1, 1.6) 1.5 (1.2, 1.8) 1.2 (1.0, 1.4) <0.001
LDL, median (IQR) 2.8 (2.2, 3.4) 2.7 (2.2, 3.4) 2.8 (2.2, 3.5) <0.001
TC, median (IQR) 4.8 (4.1, 5.5) 4.8 (4.1, 5.5) 4.8 (4.1, 5.5) 0.167
TG, median (IQR) 1.1 (0.8, 1.7) 1.0 (0.7, 1.3) 1.4 (1.0, 2.0) <0.001
ALT, median (IQR) 19.0 (14.0, 27.0) 17.0 (13.0, 23.0) 22.0 (16.0, 31.0) <0.001
AST, median (IQR) 21.0 (17.0, 26.0) 21.0 (17.0, 25.0) 21.0 (17.0, 27.0) <0.001
GGT, median (IQR) 20.0 (14.0, 30.0) 17.0 (12.0, 25.0) 23.0 (17.0, 35.0) <0.001
TBIL, median (IQR) 8.6 (6.8, 12.0) 10.3 (6.8, 13.7) 8.6 (6.8, 12.0) <0.001
BUN, median (IQR) 4.6 (3.6, 5.7) 4.6 (3.6, 5.7) 4.6 (3.9, 5.7) <0.001
LDH, median (IQR) 136.0 (118.0, 158.0) 135.0 (117.0, 157.0) 138.0 (120.0, 159.0) <0.001
ALB, median (IQR) 42.0 (39.0, 44.0) 42.0 (40.0, 44.0) 41.0 (39.0, 43.0) <0.001
GLB, median (IQR) 29.0 (27.0, 33.0) 29.0 (26.0, 32.0) 30.0 (27.0, 33.0) <0.001
Cre, median (IQR) 73.4 (61.9, 86.6) 73.4 (61.9, 86.6) 73.4 (61.0, 87.5) 0.944
UA, median (IQR) 315.2 (261.7, 374.7) 297.4 (249.8, 356.9) 339.0 (285.5, 398.5) <0.001
Na, median (IQR) 140.0 (138.0, 141.0) 140.0 (138.0, 141.0) 140.0 (138.0, 141.0) 0.04
Cl, median (IQR) 103.0 (101.0, 105.0) 103.0 (101.0, 105.0) 103.0 (101.0, 105.0) 0.006
Ca, median (IQR) 2.3 (2.3, 2.4) 2.3 (2.3, 2.4) 2.3 (2.3, 2.4) 0.709
GLU, median (IQR) 5.3 (4.9, 5.8) 5.0 (4.7, 5.4) 5.6 (5.2, 6.4) <0.001

ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Ca, calcium; Cl, chlorine; Cre, creatinine; GGT, 
glutamyl transpeptidase; GLB, globulin; GLU, glucose; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; Na, 
sodium; TBIL, total bilirubin; TC, total cholesterol; TG, triglyceride; UA, uric acid.
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1.06–1.08), GLU (OR: 2.07, 95% CI 1.96–2.19), BMI (OR: 
1.13, 95% CI 1.12–1.15), and waist circumference (OR: 1.03, 
95% CI 1.02–1.03) are positively correlated with IR. Among 
them, the correlations between HDL/GLU and IR are more 
significant.

Analysis of full factor modeling and optimal 
subset modeling

We included all variables (age, gender, race, education, 
BMI, waist, hypertension, smoking, alcohol consumption, 
HDL, LDL, TC, TG, ALT, AST, GGT, TBIL, BUN, LDH, 
ALB, LB, Cre, UA, Na, and GLU) to establish a full factor 
prediction model and plotted ROC curves (Fig. 4B1 and 
B2). In the training set, the AUC of the full factor modeling 
is 0.870 (95% CI: 0.864–0.875) and of the validation set 
is 0.874 (95% CI: 0.869–0.880) (Table 4). The calibration 
curve is shown in Fig. 5, the predicted occurrence of IR in 
the full factor modeling is well-calibrated, and there is no 
significant difference between the predicted probability 
and the observed probability. In the temporal validation 
population, the mean difference between predicted and 
calibrated probabilities is 0.017, the maximum difference 
is 0.036, the P -value for the U-index is 0.406, and Brier 
is 0.143, suggesting that the P-value obtained by the full 
factor model is as expected, while the mean difference 
provides an adequate estimate of the target error when 
assessed using temporal validation data.

A total of seven factors (HDL, LDL, ALB, GLB, GLU, 
BMI, and waist) were included in the optimal subset model, 
and the ROC curves are shown in Fig. 4. In the training set, 
the AUC for the optimal subset modeling is 0.851 (95% CI: 
0.845–0.857), and in the validation set, the AUC is 0.857 
(95% CI: 0.851–0.863) (Table 3). The calibration curve is 
shown in Fig. 5B2, the prediction of the occurrence of IR 
in the optimal subset modeling is well-calibrated, and in 
the external validation population, the mean difference 
between predicted and calibrated probabilities is 0.019, 
and the maximum difference is 0.0368, The P-value for the 
U-index is 0.238 and the Brier is 0.153. Likewise, this also 
shows that the P-values obtained by the optimal subset 
model are as expected, while the mean difference provides 
an adequate estimate of the target error when evaluated 
using external data.

The decision curves show that the red line  
representing the full factor modeling is almost always 
above the blue line representing the optimal subset 
modeling, indicating that the net benefit of the full  
factor model was slightly higher than that of the optimal 
subset model (Fig. 6A and B).

Discussion

In recent decades, with the development of the global 
economy and the advancement of a large number of clinical 

Figure 2
The nomogram of the optimal subset regression to predict the risk of incident insulin resistance.
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studies, most infectious diseases worldwide have been 
successfully conquered, and the main culprits affecting the 
health of people in the world have been gradually replaced 
by non-communicable diseases (26). Currently, insulin 

resistance has become a global health issue that cannot 
be ignored. The root causes for the widespread prevalence 
of IR can be roughly classified into two categories: one is 
the increase in the consumption of high-calorie, low-
fiber diets; the other is the sedentary period caused by 
high-convenience tools, which in turn leads to a decrease 
in physical activity (27, 28, 29). The occurrence of IR will 
not only increase the incidence of diseases such as type 2 
diabetes, hypertension, coronary artery disease, stroke, 
etc. but also increase all-cause mortality of patients with 
cancer, causing trillions of medical burdens worldwide (8, 
30, 31, 32, 33, 34, 35). The incidence of IR, which remains 
on the rise, is largely attributable to the failure to recognize 
its occurrence early. In current clinical and epidemiological 
practice, there is also a lack of convenient tools for the early 
identification of IR. Thus, the development of a simple 
predictive model for the assessment of IR can effectively 
help clinicians and epidemiologists to identify subjects 
with IR early.

In this study, we established a full factor predictive 
model based on 25 clinical routine items. In the external 
validation set, the AUC value was 0.874, as AUC > 0.85 
was generally considered to be excellent test performance. 
However, considering the large number of variables 
included, it is difficult to apply in clinical practice. 
Therefore, we screened the best modeling factors by 
means of the optimal subset regression and established 
the model with only seven factors. The AUC value in the 
external validation set was 0.857, which was also excellent, 
approaching the performance of the full factor modeling. 
Meanwhile, the subsequent calibration curves suggest that 
there was no difference between the prediction accuracy 
and the ideal accuracy of the optimal subset model, and 
the accuracy of the model was high. We performed the 
DCA and the results showed that both the full factor 
predictive model and the optimal subset regression 
predictive model performed excellently for the clinical 
net benefit. As expected, the clinical benefit of the optimal 
subset regression prediction model was not inferior to that 
of the full factor prediction model after a large number of 
variables were removed. Taken together, we believe that 
adopting a highly refined optimal subset model in the 
clinic is most beneficial for clinical practice.

A large number of IR prediction models have been 
established in previous studies; however, the performance 
of the models has been suboptimal and there is considerable 
ethnic heterogeneity. For example, a model’s performance 
with an AUC of 0.841 proposed by Lechner et al. in 2021 
with a German population (n  = 2231) including age, 
gender, waste-to-height ratio (WHtR), FPG, and TG/HDL, 

Figure 3
Number of included factor variables screened by the three criteria for the 
optimal subset. (A) Screening variables using the CP principle. (B) 
Screening variables using the BIC scoring principle. (C) Screening variables 
using the adjusted R-squared principle.
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is lower than our model (36). In a Chinese study, Liu et al.  
established a model by factors such as WHtR, waist 
circumference, WHR, BMI, etc. with an AUC value of 0.747 
and poor performance (37). In addition, Yeh et  al. (16) 
reported that a model established with TG/HDL to predict 
IR performed well in the elderly Taiwanese population, 
with an AUC of 0.729, but the AUC value was only 

0.56 when applied to the overweight African-American 
population (38). Admittedly, the ethnic heterogeneity 
of IR prediction models is significant, and these results 
reinforce the motivation for our study. However, due to 
the complexity of racial makeup, developing a model for 
each race is clearly impractical. Even the same race, when 
living in different countries or regions, with different diets 

Table 3 Univariate and multivariate logistics regression analyses included indicators and insulin resistance.

Variable Crude OR (95% CI) Crude P-value Adjusted OR (95% CI) Adjusted P-value

(Intercept) 6.71 (5.9–7.63) <0.001 0 (0–0) <0.001
HDL 0.2 (0.18–0.22) <0.001 0.37 (0.33–0.41) <0.001
LDL 1.03 (1–1.07) 0.073 0.88 (0.84–0.92) <0.001
ALB 0.95 (0.95–0.96) <0.001 1.04 (1.03–1.05) <0.001
GLB 1.08 (1.07–1.08) <0.001 1.07 (1.06–1.08) <0.001
GLU 2.8 (2.65–2.95) <0.001 2.07 (1.96–2.19) <0.001
bmi 1.22 (1.21–1.23) <0.001 1.13 (1.12–1.15) <0.001
waist 1.08 (1.08–1.09) <0.001 1.03 (1.02–1.03) <0.001

The variables included in multivariate logistic regression were those with P < 0.1 in univariate analysis or those included in previous studies.

Figure 4
The ROC curves of the full model and optimal subset model in the training set and validation set. (A1) ROC curves of the full model and optimal subset 
model in the training set. (B1) ROC curve of the full model in the training set. (C1) ROC curve of the optimal subset model in the training set. (A2) ROC 
curves of the full model and optimal subset model in the validation set. (B2) ROC curve of the full model in the validation set. (C2) ROC curve of the 
optimal subset model in the validation set.
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and living habits, has a completely different background 
for the eventual development of IR. Therefore, we believe 
that it may be more reasonable to divide the population by 
country or region. We first propose an insulin resistance 
model suitable for the American population and provide a 
theoretical basis for related research in other countries and 
regions in the future.

To the best of our knowledge, this study is the first 
to successfully establish a predictive model of IR by a 
large, cross-ethnic, nationally representative sample of 
the US population. The model benefits from the national 
population representation of the NHANES database, and 

our results apply to ethnically diverse US populations. 
However, it must be pointed out that our study has some 
limitations: First, our research is a cross-sectional study, 
which makes it difficult for us to explore the causal 
relationship between these factors and IR. Secondly, due 
to differences between races, as we have emphasized, the 
accuracy of the model still requires additional evaluation 
when applied to races in other countries or regions.  
In addition, the absence of lifestyle factors is also a 
limitation of this study. Therefore, the actual predictive 
value of this model still needs to be confirmed by 
prospective randomized controlled trials.

Figure 5
Calibration curves for the full factor model and the optimal subset model. (A1) Calibration curve for the full factor modeling cohort. (A2) Calibration curve 
for the full factor validation model cohort. (B1) Calibration curve for the optimal subset regression modeling cohort. (B2) Calibration curve for optimal 
subset regression validation cohort.

Table 4 Evaluation of prediction model.

Scoring system AUC 95% CI Optimal cut-off Sensitivity (%) Specificity (%) Youden’s index

All-factor model
 Training set 0.870 0.864–0.875 0.422 78.3 80.1 0.584 
 Validation set 0.874 0.869–0.880 0.407 80.3 79.4 0.596 
Optimal subset model
 Training set 0.851 0.845–0.857 0.450 74.4 80.2 0.446 
 Validation set 0.857 0.851–0.863 0.476 76.0 80.0 0.560 
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Conclusion

The optimal subset predictive model proposed in this 
study has great performance in predicting IR, and the 
decision curve analysis shows that it has a high clinical net 
benefit, which can help clinicians and epidemiologists to 
detect IR easily, and take appropriate interventions as early 
as possible. The model works across racially diverse US 
populations, but its predictive value in other countries or 
regions remains to be proven.
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