
Zenoness detection and timed model
checking for real time systems

Rachid Hadjidj 1, Hanifa Boucheneb 1, Drifa Hadjidj 2

1 École Polytechnique de Montréal, Canada.
2 Univesite de Boumerdes, Algeria.

E-mail: {rachid.hadjidj,hanifa.boucheneb}@polymtl.ca, dhadjidj@umbb.dz

Abstract

In this paper, we consider the time Petri net model (TPN model) and show how to
detect zenoness using the state class method. Zenoness is a situation which suggests
that an infinity of actions may take place in a finite amount of time. This behavior is
often considered as pathological since it violates a fundamental requirement for timed
systems for they cannot be infinitely fast. Models violating this property are called
zeno. We state a necessary and sufficient condition for T-safe TPNs to be zeno and
derive an algorithm to verify zenoness in the case of bounded TPN models. We also
adapt a model checking approach to verify on-the-fly a subset of TCTL properties
while taking into account zeno behaviors.

Keywords: Formal methods, real time systems, time Petri nets, timed properties, on-the-fly TCTL model
checking, zeno models.

1. INTRODUCTION

Time Petri nets provide a formal framework to model and verify the correct functioning of
real-time systems. Petri nets extended with timing dependencies are very numerous in the
literature [1, 11, 17, 22, 24]. The best known timed extensions are timed Petri nets proposed
by Ramchandani [24] and time Petri nets proposed by Merlin and Farber [22]. We focus, in this
paper, on the time Petri net model [22], referred in the sequel as the TPN model, for both zenoness
detection and timed properties model-checking. Zenoness is a behavior which suggests that an
infinity of actions may take place in a finite amount of time. This behavior is often considered
as pathological since it violates a fundamental requirement for timed systems for they cannot
be infinitely fast. Models violating this property are called zeno. To detect zenoness for bounded
TPNs, the authors in [8], propose to translate the TPN model under study to an equivalent timed
automata, then verify zenoness using the method developed in [18]. We proposed in this paper an
approach to verify zenoness directly on the TPN model. We also state a necessary and sufficient
condition for T-safe TPNs to be zeno and derive an algorithm to verify zenoness in the case of
bounded TPNs. Our approach is based on the state class method [4] which allows to construct
an abstraction for the TPN state space that preserving linear properties of the model. Several
abstractions of the TPN model state space have been proposed in the literature to verify its
untimed temporal properties [4, 6, 7, 5, 13, 15, 20, 26]. These approaches allow to construct state
class spaces that preserve reachability [5, 20], linear properties [4], and branching properties
[6, 7, 15, 26]. The verification is then performed using standard model-checking techniques [10].

In [16], we proposed an approach to verify on-the-fly timed properties for the TPN models using
the state class method. The objective was to bridge the gap between timed automata [2] and
time Petri nets. In fact, most proposed verification techniques of timed properties for TPNs define
translation procedures from the TPN model into a semantically equivalent timed automata [2], in
order to make use of available model checking tools [8, 12, 14, 21, 26]. Model checking is then
performed on the resulting timed automaton, with results interpreted back on the original TPN
model. Though effective, these techniques face the difficulty to interpret back and forth properties
between the two models. The use of observers [25], on the other hand, allows to express some
timed properties in the form of TPNs, but properties on markings are quite difficult to express

Zenoness detection and timed model checking for real time systems

with observers [9]. With our verification approach, we were able to verify timed properties with the
same versatility as for timed automata with tools like UPPAAL [3], but only non zeno models were
considered. With the results we present in this paper for characterizing zenoness, we show how
to adapt our timed model checking approach to take into account zeno behaviors.

The rest of the paper is organized as follows: Section 2 introduces the TPN model and its
semantics. Section 3 presents the state class method and shows how to construct the state class
graph (SCG). In Section 4, we state a necessary and sufficient condition to detect zenoness and
propose a detection algorithm using the SCG. In Section 5, we propose to contract the SCG
by inclusion for better performances. In Section 6.2, we complete our model checking technique
proposed in [16] to the case of zeno models.

2. TIME PETRI NETS

Let Q+ and R+ be respectively the set of positive rational numbers and the set of positive real
numbers. LetQ+

[] be the set of non empty intervals of R+ which bounds are respectively inQ+ and

Q+ ∪ {∞}. For an interval I ∈ Q+
[], ↓ I and ↑ I denote respectively its lower and upper bounds.

Definition 1 : Time Petri Net (TPN)
A TPN is a tuple (P, T, Pre, Post, m0, Is) where:

• P is a finite set of places,
• T is a finite set of transitions, with P ∩ T = ∅,
• Pre and Post are respectively the backward and forward incidence functions: P × T → N,

where N is the set of nonnegative integers,
• m0 : P → N, is the initial marking,
• Is : T → Q+

[] associates with each transition t an interval [↓ Is(t), ↑ Is(t)] called its static
firing interval. The bounds tmin(t) =↓ Is(t) and tmax(t) =↑ Is(t) are called the minimal
and maximal static firing delays of t.

Informally, a TPN is a Petri net with time intervals attached to its transitions [22]. A transition can
fire iff it is enabled and the time elapsed since it has been enabled most recently is within its time
interval. A transition t with ↓ Is(t) = 0 will be called a zero lower bound transition. Let M be the
set of all markings of the TPN model, m ∈ M a marking, and t ∈ T a transition. t is said to be
enabled in m, iff all tokens required for its firing are present in m, i.e.: ∀p ∈ P, m(p) ≥ Pre(p, t).
We denote by En(m) the set of all transitions enabled in m. If m results from firing transition
tf from another marking, New(m, tf) denotes the set of all newly enabled transitions in m, i.e.:
New(m, tf) = {t ∈ En(m)|∃p, m(p)− Post(p, tf) < Pre(p, t)}. For reasons of clarity, we consider
in the sequel only T-safe TPNs (no multi-enabled transitions).

2.1. The TPN state

The TPN state is a couple (m, I), where m is a marking and I is an interval function, I : En(m) →
Q+

[] [4]. For a state s = (m, I), and t ∈ En(m), I(t) is called the firing interval of t, and is the
interval of time where t can fire. I is also called the firing domain of s, since it can be interpreted
as a set of tuples {i|i(t) ∈ I(t), ∀t ∈ En(m)}. The initial state of the TPN model is s0 = (m0, I0),
where I0(t) = Is(t), for all t ∈ En(m0). The TPN state evolves either by time progression or by
firing transitions. When a transition t becomes enabled, its firing interval is set to its static firing
interval Is(t). The bounds of this interval decrease synchronously with time, until t is fired or
disabled by another firing. t can fire, if the lower bound ↓ I(t) of its firing interval reaches 0, but
must be fired, without any additional delay, if the upper bound ↑ I(t) of its firing interval reaches 0.
The firing of a transition takes no time. Let s = (m, I) and s′ = (m′, I ′) be two states of the TPN

model. We write s
θ→ s′, iff state s′ is reachable from state s after a time progression of θ time

units (s′ is also denoted s + θ), i.e.:

Zenoness detection and timed model checking for real time systems

∃θ ∈ R+,

∧
t∈En(m) θ ≤ ↑ I(t),

m′ = m,
∀t′ ∈ En(m′), I ′(t′) = [max(↓ I(t′)− θ, 0), ↑ I(t′)− θ].

We write s
t→ s′ iff state s′ is immediately reachable from state s by firing transition t. i.e.:

t ∈ En(m),
↓ I(t) = 0,
∀p ∈ P, m′(p) = m(p)− Pre(p, t) + Post(p, t),

∀t′ ∈ En(m′)
{

I ′(t′) = Is(t′) if t′ ∈ New(m′, t),
I ′(t′) = I(t) otherwise.

As a shorthand we write:

• s
θ:t→ s′ iff s

θ→ s′′ and s′′ t→ s′ for some state s′′,
• s

tÃ s′ iff s
θ:t→ s′ for some θ ∈ R+,

• s Ã s′ iff s
tÃ s′ for some t ∈ T .

2.2. The TPN state space

Definition 2 : TPN state space
The state space of a TPN model is the structure (S,→, s0), where:

• s0 = (m0, I0) is the initial state of the TPN model,

• s → s′ iff either s
θ→ s′ for some θ ∈ R+ or s

t→ s′ for some t ∈ T ,
• S = {s|s0

∗→ s}, where ∗→ is the reflexive and transitive closure of →, is the set of reachable
states of the TPN model.

An execution path in the TPN state space, starting from a state s, is a maximal sequence

ρ = s0 θ0:t0→ s1 θ1:t1→ s2....., such that s0 = s. When no starting state is specified, the initial state
s0 of the TPN model is intended. The execution path suffix of ρ and starting from state si (i ≥ 0)
is denoted ρ(i). The sequence of transitions associated with ρ is the sequence of transitions
(potentially infinite) ωρ = t0, t1, t2, that occur on the execution path. We denote by π(s) the set
of all execution paths starting from state s. π(s0) is therefore the set of all execution paths of the
TPN. The TPN state space defines the branching semantics of the TPN model, whereas π(s0)
defines its linear semantics. The total elapsed time during an execution path ρ, denoted time(ρ),
is the sum

∑
i≥0 θi. An infinite execution path is diverging iff time(ρ) = ∞, otherwise it is said to

be zeno. A TPN model is said to be zeno if at least one of its execution paths is zeno.

3. ABSTRACTION OF THE TPN STATE SPACE: THE STATE CLASS METHOD

Because of time density1, a state in the TPN state space may have an infinity of successors. To
finitely represent the state space of a TPN model, Berthomieu and Menasche proposed in [4] to
abstract time, and group states in what is called state classes.

3.1. The TPN concrete state space

The abstraction of time consists in hiding time progressions in the TPN state space, while keeping
only those states which are immediately reachable after firing transitions. This operation results
in a graph called concrete state space [23].

Definition 3 : TPN concrete state space
The concrete state space of the TPN model is the structure (Σ, Ã, s0) where:

1The domain of clocks is R+ (continuous domain).

Zenoness detection and timed model checking for real time systems

• s0 is the initial state of the TPN model,
• Σ = {s|s0

∗Ã s}, where ∗Ã is the reflexive and transitive closure of Ã, is the set of reachable
concrete states of the TPN model.

3.2. The state class method

A state class is a symbolic representation for some infinite set of concrete states sharing the same
marking. All concrete states reachable from the initial state by the firing of the same sequence
of transitions are agglomerated in the same state class. The resulting graph is called state class
graph (SCG) [4]. Let ω = t0, t1, t2, ...tn be a sequence of transitions firable from the initial TPN
state. The state class corresponding to ω (i.e., {s ∈ S|∃s1, ..., sn ∈ S, s0

t0Ã s1
t1Ã s2...sn

tnÃ s}) is
represented by the pair (m, F), where m is the common marking of all states agglomerated in the
state class, and F is a formula that characterizes the union of all firing domains of these states. In
F , each transition enabled in m is represented with a variable of the same name. The initial state
class (m0, F0) coincides with the initial state of the TPN model (i.e., m0 is the initial marking and
F0 = (

∧
t∈En(m0)

tmin(t) ≤ t ≤ tmax(t))). Let α = (m,F) be a state class and tf a transition. The
class α has a successor by tf , denoted succ(α, tf), iff tf is enabled in m and can be fired before
any other transition enabled in α. If this is the case, tf is said to be firable from α. Algorithm 1
shows how to perform such a test.

Algorithm 1 : isF irable(α = (m,F), tf)

if tf /∈ En(m) then1

Return false2

if (F ∧ (
V

t∈En(m)−{tf} tf ≤ t)) is consistent then3

Return true4

Return false5

Step 1 checks if tf is enabled in m. Step 3 computes and checks the consistency of the formula
corresponding to the part of the firing domain of α where tf can be fired before any other enabled
transition. Note that if a zero lower bound transition is enabled in a state it is also immediately
firable from that state with out any condition. If tf is firable from α, α′ = succ(α, tf) is computed
according to algorithm 2:

Algorithm 2 : succ(α = (m, F), tf)

Let m′(p) = m(p)− Pre(p, tf) + Post(p, tf), ∀p ∈ P1

Let F ′ = F ∧ (
V

t∈En(m)−{tf} tf ≤ t)2

Replace in F ′ each variable t 6= tf with t + tf3

Eliminate by substitution, in F ′, tf and all variables associated with transitions conflicting with tf for m4

forall t ∈ New(m′, tf) do5

Add to F ′ the constraint tmin(t) ≤ t ≤ tmax(t)6

Return α′ = (m′, F ′)7

Step 1 computes the marking after firing tf . Step 2 selects in F ′ states from which tf is firable.
Steps 3 and 4 decrease each firing delay by tf time units to coincide with the moment tf is fired.
Steps 5 and 6 add constraints corresponding to the newly enabled transitions.

From algorithm 2, it is easy to see that the formula F of a state class can be rewritten as a
conjunction of atomic constraints of the form t− t′ ≺ c (called also triangular constraints) or t ≺ c
(called also simple constraints), where c ∈ Q ∪ {∞,−∞}, ≺∈ {=,≤,≥} and t, t′ ∈ T . The
domain of F is therefore convex and has a unique canonical form defined by:

∧
(x,y)∈(En(m)∪{o})2

x − y ≺x−y
F Sup(x − y, F) where: o represents the value zero, Sup(x − y, F) is the supremum of

x− y in the domain of F , ≺x−y
F is either ≤ or <, depending respectively on whether x− y reaches

its supremum in the domain of F or not. As an example, if F = (0 ≤ x < 20 ∧ 0 ≤ y ≤ 20 ∧ −10 ≤
x − y ≤ −10), its canonical form would be (0 ≤ x < 10 ∧ 0 ≤ y ≤ 20 ∧ − 10 ≤ x − y ≤ −10).

Zenoness detection and timed model checking for real time systems

State classes are considered modulo an equivalence relation, such that two state classes are
equivalent iff they have the same marking and their domains are equal (i.e., their formulae are
equivalent). To compare two state classes, each one is translated into its canonical form. They
are equal, if they have identical canonical forms [4]. Formally the SCG definition can be stated as
follows:

Definition 4 : State Class Graph (SCG)
The state class graph of a TPN model is the structure (C, ³, α0), where:

• α0 = (m0, F0) is the initial state class,

• α
t³ α′ iff isF irable(α, t) ∧ α′ = succ(α, t),

• C = {α|α0 ³∗ α}, where ³∗ is the reflexive and transitive closure of ³.

Similarly to the TPN state space, an execution path in the SCG starting from a state class α, is a

maximal sequence ζ = α0
t0³ α1

t1³ α2
t2³, where α0 = α. We also denote by π(α) the set of

all execution paths starting from α. Algorithm 3 shows how to progressively construct the SCG. It
starts from the initial state class and uses the list WAIT to store state classes which are not yet
explored. In [4], the authors prove that the SCG is finite for all bounded TPN models, and also
preserves reachability and execution paths (i.e., linear properties) [4]. In addition, each execution
path in the state space is inscribed2 within only one execution path of the SCG (The SCG is
deterministic3).

Algorithm 3 : SCG(N = (P, T, Pre, Post, m0, Is))
α0= (m0, F0)1

C= {α0}2

³= ∅3

WAIT={α0}4

while WAIT 6= ∅ do5

get α = (m, F) from WAIT6

forall t ∈ En(m) s.t. isF irable(α, t) do7

α′=succ(α, t)8

if (α′ /∈ C) then9

Add α′ to C and to WAIT10

Add (α, t, α′) to ³11

Return (C, ³, α0)12

In terms of implementation, a state class (m,F) is generally represented with a pair (m,D), where
D is the matrix representation of F , of order |En(m) ∪ {o}|, defined by: ∀(x, y) ∈ (En(m) ∪ {o})2,
Dxy = (Sup(x − y, F),≺x−y

F). D is known under the name Difference Bound Matrix (DBM) [19].
Its purpose is to render the implementation of operations on F simple. In fact, all operations
performed on state classes to construct the SCG are very well defined for DBMs. However, they
require each DBM to be put in its unique canonical form. The computation of this form is based
on the shortest path Floyd-Warshall’s algorithm, and is considered as the most costly operation
on DBMs, with a time complexity of O(n3), where n is the DBM order.

4. DETECTING ZENONESS USING THE STATE CLASS METHOD

Many properties such as freedom from livelock and deadlock are in general required from
correctly designed systems. One property specific to timed systems, called Non-Zenoness or
time progress, suggests that a timed system cannot perform an infinite number of actions within a
finite amount of time. In fact, such a behavior prevents time from converging. To detect zenoness

2A state space execution path ρ = s0
t0Ã s1

t1Ã s2..... is inscribed in the SCG execution path ζ = α0
t0³ α1

t1³ α2..... iff
si ∈ αi,∀i ≥ 0, with s = (ms, I) ∈ α = (mα, F) iff ms = mα ∧ I ⊆ F .
3No state class in the SCG exists with two outgoing arcs labelled with the same transition.

Zenoness detection and timed model checking for real time systems

for bounded TPNs, the authors in [8], proposed to translate the TPN model under study to
an equivalent timed automata, then verify zenoness using the method developed in [18] . We
propose, in this section, an approach to verify zenoness directly on the TPN model using the state
class method. Let ω = t0, t1, t2, be a sequence of transitions (potentially infinite). ω is called
a zero lower bound sequence iff all its transitions are zero lower bound transitions. The following
lemma states a necessary and sufficient condition for a TPN model to be zeno.

Lemma 1 : A TPN is zeno iff ∃ρ ∈ π(s0), i ≥ 0 s.t. ρ(i) is associated with an infinite zero lower
bound sequence.

Proof In words, the lemma states that a TPN is zeno iff it can reach a marking from which it can
perform an infinite sequence of zero lower bound transitions.
Note first that a finite execution path cannot be zeno since time diverges after the last transition

is fired. If an infinite execution path ρ = s0
θ0:t0→ s1

θ1:t1→ s2.... has no suffix associated with a
zero lower bound sequence, then ∀i ≥ 0, ∃j ≥ i s.t. ↓ Is(tj) > 0. With the fact that the TPN
model has a finite number of transitions, there must exist a transition t with ↓ Is(t) > 0 which
is fired an infinity of times. Each time t is fired, ↓ Is(t) time units (at least) would have elapsed
since it was enabled the last time. Adding the fact that the TPN model is T-safe, it is easy to
conclude that ρ is a diverging execution path. Now if ∃ρ ∈ π(s0), i ≥ 0 s.t. ρ(i) is associated with

a zero lower bound sequence, then ρ is of the form ρ = s0
θ0:t0→ s1

θ1:t1→ s2....si
θi:ti→ si+1...., with

ρ(i) = si
θi:ti→ si+1

θi+1:ti+1→ si+2..... Since ∀j ≥ i, ↓ Is(j) = 0 then the firing sequence ρ′ obtained
from ρ by replacing θj (∀j ≥ 0) with the value zero is also an execution path of the TPN model. In
fact this replacement is possible because if a zero lower bound transition is enabled in a state it
is also immediately firable from that state. The result is a zeno execution path.

The next theorem characterizes zenoness in the case of bounded TPNs useful to derive a
detection algorithm.

Theorem 1 : A bounded TPN is zeno iff its state class graph has a cycle where all transitions are
zero lower bound transitions (a zero lower bound cycle).

Proof Note first that since the TPN is bounded its SCG is finite [4]. In the case the SCG has a
zero lower bound cycle, there must exist an execution path that has a suffix inscribed inside this
cycle, i.e., circles infinitely in the cycle. The sequence of transitions associated with this suffix is
a zero lower bound sequence, and lemma 1 assures that the TPN is zeno. In case the SCG has
no zero lower bound cycle, either the SCG has no cycle at all, or each cycle contains at least one
non zero lower bound transition. If the SCG has no cycle, all its execution paths must be finite,
and hence not zeno. In the other case, any infinite execution path must go through one or more
of the cycles of the SCG an infinity of times, which assures that this execution path cannot have
a suffix associated with a zero lower bound sequence, and lemma 1 assures that the TPN is not
zeno in this case.

From theorem 1, an algorithm to check the zenoness of a bounded TPN models is straightforward.
It consists only in constructing the SCG of the TPN model and detecting if it contains a zero lower
bound cycle or not. If such a cycle exists, the TPN is zeno otherwise it is not (see algorithm 4).

5. CONTRACTING THE SCG FOR BETTER PERFORMANCE: THE I-SCG

In this section, we propose a contraction of the SCG by inclusion, we call I-SCG (Inclusion
contracted SCG), and use it as an alternative in algorithm 4 to detect zenoness. The objective it to
improve performances. The contraction by inclusion of the SCG consists in agglomerating its state
classes into the most including ones. The inclusion test is performed as follows: Let (m,F) and
(m,F’) be two state classes in canonical forms sharing the same marking, and let (m,D) and (m,D’)

Zenoness detection and timed model checking for real time systems

Algorithm 4 : isZeno(N = (P, T, Pre, Post, m0, Is))

Construct the SCG of N1

Remove all arcs of the SCG corresponding to non zero lower bound transitions2

Repeatedly remove all nodes with no ingoing arcs until no arcs can be removed3

if the resulting graph is empty then4

return false5

else6

return true7

be their representations using DBMs. (m,F) is included in (m,F ′) iff: ∀(x, y) ∈ (En(m) ∪ {o})2,
(D(x, y) ≤ D′(x, y)). Note that if (v,≺) and (v′,≺′) are elements of D and D′, (v,≺) ≤ (v′,≺′)
iff (v < v′ or v = v′∧ ≺≤≺′), with ”<” less than ”≤”. The resulting graph will be denoted I-
SCG (Inclusion contracted SCG). The I-SCG could be obtained by first constructing the SCG
then repeatedly agglomerating its state classes by inclusion, until no more agglomerations are
possible. It is however more interesting to perform this operation during the construction itself. By
doing so, most state classes are not computed, which saves time and space. Algorithm 5 shows
how to progressively compute the I-SCG.

Algorithm 5 : I-SCG(N = (P, T, Pre, Post,m0, Is))
α0= (m0, F0)1

C= {α0}2

³= ∅3

WAIT={α0}4

while WAIT 6= ∅ do5

get α = (m, F) from WAIT6

forall t ∈ En(m) s.t. isF irable(α, t) do7

α′=succAC(α, t)8

if ∃α” ∈ C s.t. α′ ⊆ α” then9

add (α, t, α”) to ³10

11

else12

if ∃α” ∈ C s.t. α” ⊆ α′ then13

forall α” ∈ C s.t. α” ⊆ α′ do14

remove α” from C and from WAIT15

replace α” by α′ in all transitions of ³16

add α′ to C and to WAIT17

add (α, t, α′) to ³18

return (C, ³, α0)19

Note that the way the I-SCG is constructed, it must be a deterministic graph like the SCG. This is

because whenever α1
t³ α′1 and α2

t³ α′2 with α1 ⊆ α2 then α′1 ⊆ α′2. So when α1 is merged in
α2, α′1 is also merged in α′2 which prevents non determinism in the I-SCG.

To illustrate the difference in size and computing time between the SCG and the I-SCG, we
consider TPNs obtained as the parallel composition of the simple model shown in figure 1. Table
1 reports the results in terms of the size of the obtained graphs (nodes/arcs) and the computing
time. The parallel composition of n copies of the simple model is denoted S(n) in the table. The
last column in the table compares the results obtained for the SCG and I-SCG, and shows the
big difference in their size and computing time. The following theorem states some interesting
properties preserved in the I-SCG which makes it a better alternative to verify reachability for the
TPN model than the SCG.

Zenoness detection and timed model checking for real time systems

t0
[2,6] P0

FIGURE 1: A simple TPN model

TPN SCG I-SCG Ratio (SCG/I-SCG)

S(3) 79/210 6/21 11
cpu(s) 0 0 -
S(4) 837/3032 24/132 25

cpu(s) 0.01 0 -
S(5) 10951/50570 120/850 63

cpu(s) 0.40 0.05 8

TABLE 1: A comparison between the SCG and the I-SCG

Theorem 2 :
(i) The I-SCG is finite iff the TPN model is bounded.
(ii) The I-SCG preserves reachability properties of the TPN model.

Proof (i) Since the SCG is finite for all bounded TPN models, the I-SCG, which is its contraction,
is also finite.
(ii) In an agglomeration step where a state class α is agglomerated in a state class α′, α must
be included in α′. Any marking reachable from α is also reachable from α′. Hence, reachability
properties are preserved.

Another property which allows to use the I-SCG instead of the SCG in algorithm 4 to detect
zenoness is stated in the next theorem.

Theorem 3 : The SCG contains a zero lower bound cycle iff the I-SCG contains a zero lower
bound cycle.

Proof Note first that the deterministic aspect of both the SCG and I-SCG assures that any
execution path in the state space of the TPN model is inscribed in exactly one execution path in
either the SCG or the I-SCG. So if the SCG contains a zero lower bound cycle, it must contain a
zeno execution path, which in turn should be inscribed in an execution path in the I-SCG. So we
conclude that the I-SCG, which is finite, must contain a zero lower bound cycle. Now if the I-SCG
contains a zero lower bound cycle, a zeno execution path with a suffix inscribed in this cycle must
exist in the state space of the TPN model. This is because, if we take a state from a state class
of the cycle, it must be reachable from the initial state of the TPN model. Knowing that each zero
lower bound transition in the cycle is enabled and firable from its outgoing state class in the cycle,
and its firing leads to the marking of its ingoing state class in the cycle, a zeno execution path
that cycles around these markings must exist in the state space of the TPN model. This in turn
assures that a zero lower bound cycle exists in the SCG.

6. ADAPTING TCTL MODEL-CHECKING TO ZENO MODELS

In [16], we proposed an approach to verify a subclass of the TCTL timed logic for the TPN model,
but only non zeno models were considered. In the following, we repeat this verification approach
in some details, then show how to adapt it to the case of zeno models using the results presented
in sections 4 and 5.

6.1. The timed temporal Logic we consider

We define a timed temporal logic for which we give algorithms to verify the satisfaction of its
formulae in the context of the TPN model. The logic we consider is mostly a subset of the

Zenoness detection and timed model checking for real time systems

TCTL timed logic, for which atomic propositions are expressed on markings. Let M be the
set of reachable markings of a TPN model N , and PR the set of propositions on M , i.e.,
{℘|℘ : M → {true, false}}. Before introducing our temporal logic we recall the syntax and
semantics of TCTL logic in the context of the TPN model. The syntax of TCTL formulae is
defined by the following grammar (in the grammar, ℘ ∈ PR and index I is an element of Q+

[]):

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ∀(ϕ UI ϕ) | ∃(ϕ UI ϕ)

TCTL formulae are interpreted on states of a model M = (S,V), where S = (S,→, s0) is
the state space of the TPN model and V : S → 2PR is a valuation function such that: if
s = (m, I) is a TPN state, V(s) = {℘ ∈ PR|℘(m) = true}. To interpret a TCTL formula on
an execution path, we introduce the notion of dense execution path. Let s ∈ S be a TPN state

and ρ = s0 θ0:t0→ s1 θ1:t1→ s2..... an execution path such that s0 = s (i.e., ρ ∈ π(s)). The dense
execution path corresponding to ρ is the mapping ρ̆ : R+ → S defined by: ρ̆(r) = si + δ such that
r =

∑i−1
j=0 θj + δ, i ≥ 0 and 0 ≤ δ < θi. The formal semantics of TCTL is given by the satisfaction

relation |= defined as follows:

-M, s |= p iff p ∈ V(s),
-M, s |= ¬p iff p /∈ V(s),
-M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,
-M, s |= ∀(ϕUIψ) iff ∀ρ ∈ π(s), s.t time(ρ) = ∞, ∃r ∈ I,M, ρ̆(r) |= ψ and ∀r′ < r,M, ρ̆(r′) |= ϕ,
-M, s |= ∃(ϕUIψ) iff ∃ρ ∈ π(s), s.t time(ρ) = ∞, ∃r ∈ I,M, ρ̆(r) |= ψ and ∀r′ < r,M, ρ̆(r′) |= ϕ.

The TPN model N is said to satisfy a TCTL formula φ iff M, s0 |= φ. To ease TCTL
formulae writing, some abbreviations are used: ∃♦Iϕ = ∃(trueUIϕ), ∀♦Iϕ = ∀(trueUIϕ),
∃¤Iϕ = ¬∀♦I¬ϕ, ∀¤Iϕ = ¬∃♦I¬ϕ. When interval I is omitted, its value is [0,∞[by default.
Our timed temporal logic, we call TCTLTPN , is defined as follows:

TCTLTPN ::= ∃(℘1UI℘2) | ∀(℘1UI℘2) | ℘1 7→I ℘2

| ∃♦I℘1 | ∀♦I℘1 | ∃¤I℘1 | ∀¤I℘1 | ℘1 ÃIr
℘2

℘1 and ℘2 are propositions on markings (i.e., ℘1, ℘2 ∈ PR). Index I is an element of Q+
[]. Ir

is a time interval which starts from 0. Formula ℘1 ÃIr
℘2 is a shorthand for TCTL formula

∀¤(℘1 ⇒ ∀♦Ir
℘2) which expresses a bounded response property. Formula ℘1 7→I ℘2 expresses

also a bounded response property, but with a slightly different semantics. Intuitively, φ = ℘1 7→I ℘2

holds at a state s iff for each execution path ρ starting from s, if ℘1 is true for the first time on ρ at
a state s′, then ℘2 should be true the first time at a state s′′, reachable from s′, within time interval
I (starting from s′). Furthermore, φ must be recursively valid starting from s′′. More precisely, this
means that if ℘1 holds the first time on ρ at state s′, then:
1 - In case ℘2 does not hold at state s′ then ℘2 will eventually hold the first time at a state s′′,
within time interval I (relatively to the time s′ occurred), while φ holds also at state s′′.
2 - In case ℘2 holds at state s′ then ↓ I must be equal to zero, and φ must hold at the first following
state which does not satisfy both ℘1 and ℘2.

Formally, M, s |= ℘1 7→I ℘2 iff ∀ρ ∈ π(s), s.t time(ρ) = ∞, if (∃r1 ≥ 0, ρ̆(r1) |= ℘1 and ∀r < r1,
ρ̆(r) 2 ℘1) then:
1 - (M, ρ̆(r1) 2 ℘2) ⇒ (∃r2, r2 − r1 ∈ I, ρ̆(r2) |= ℘2, ∀r, r1 < r < r2, ρ̆(r) 2 ℘2 and
M, ρ̆(r2) |= ℘1 7→I ℘2).
2 - (M, ρ̆(r1) |= ℘2)⇒ ↓ I = 0 and ∃r2 > r1 s.t. M, ρ̆(r2) |= ¬(℘1 ∧ ℘2) and ∀r, r1 ≤ r < r2,
M, ρ̆(r) |= (℘1 ∧ ℘2) and M, ρ̆(r2) |= ℘1 7→I ℘2).

In the sequel, ℘1 7→I ℘2 will be called the bounded first response property. One remark about
this property is that it does not seem to have a simple TCTL equivalent4 as it is the case for the

4In fact, it seems to have no equivalent at all. However, a full proof of this claim is necessary but is out of the scope of this
paper.

Zenoness detection and timed model checking for real time systems

bounded response property. However, the next theorem states that, for intervals starting from 0,
the bounded response and the bounded first response are equivalent.

Theorem 4 : [16] M, s |= ℘1 7→Ir ℘2 iff M, s |= ℘1 ÃIr ℘2.

6.2. On-the-fly TCTLTPN model checking

First we give an algorithm to model check the bounded first response property, then show how to
adapt this algorithm to model check remaining TCTLTPN properties.

6.2.1. Model checking the bounded first response property

Let N be a TPN model and φ = ℘1 7→I ℘2 where I = [a, b]. Model checking φ on N could be
performed by analyzing each execution path of N ’s SCG, until the truth value of φ is established.
The SCG is progressively constructed, depth first, while looking for the satisfaction of property ℘1.
If ℘1 is satisfied at a state class α, ℘2 is looked for in each execution paths which starts from α
(i.e., ∀ρ ∈ π(α)). For each execution path ρ ∈ π(α), ℘2 is required to be satisfied the first time at a
state class α′ such that the time separating α and α′ is within the time interval I. If this is the case
the verification of φ is restarted again from α′, and so forth, until all state classes are explored.
Otherwise, the exploration is stopped, and φ is declared invalid.

Two important issues need to be addressed in this technique: how to count time between the
moments ℘1 and ℘2 are satisfied on a execution path, and how to deal with infinite paths resulting
from cycles. To resolve these two issues, we propose to put the TPN model N in parallel with the
TPN model of figure 2, we call Alarm-clock. The resulting TPN we denote N||Alarm, will be used
instead of N to verify φ.

ta

[a,a]

Pa

tb

[b-a,b-a]

Pb

FIGURE 2: The Alarm-clock TPN

The verification of φ now proceeds as follows: During the generation of the SCG of N||Alarm,
if ℘1 is satisfied in a state class α = (m,F), transition ta is enabled in α to capture the event
corresponding to the beginning of time interval I. ta is enabled by changing the marking m in α
such that place Pa would contain one token, and replacing F with F ∧ ta = a. These two actions
correspond to artificially putting a token in place Pa of Alarm-clock. The generation process
continues while checking ℘2. If ℘2 is satisfied before ta is fired, φ is declared invalid and the
exploration stops. When ta is fired (which means that time has come to start looking for ℘2), tb
gets enabled in the resulting state class α′ = (m′, F ′) to capture the event corresponding to the
end of interval I. If tb is fired during the exploration, φ is declared invalid and the exploration stops.
If before firing tb, ℘2 is satisfied in a state class α′′ = (m′′, F ′′), transition tb is disabled in α′′ by
changing the marking m′′ such that place Pb would contain zero tokens, and eliminating variable
tb from F ′′. These two actions corresponds to artificially removing the token in place Pb. After α′′

is modified, φ is checked again starting from α′′. Note that in this technique, the fact of knowing a
state class and the transition that led to it, is sufficient to know which action to take5. This means
that there is no need to keep track of execution paths during the exploration, and hence, the
exploration strategy of the SCG (depth first, breadth first,..) is irrelevant. This in turn solves the
problem of dealing with cycles and infinite execution paths for bounded TPN models.

Let α = (m,F) be a state class and t the transition that led to it. The different cases that might
arise during the exploration are given in what follows:

5For uniformity reasons, we assume a fictitious transition tε as the transition which led to the initial state class.

Zenoness detection and timed model checking for real time systems

1- The case where ta, tb /∈ En(m) and t /∈ {ta, tb} corresponds to a situation where we are
looking for ℘1.

• In case ℘1 is satisfied in α while ℘2 is not, we enable ta in α,
• In case ℘1 and ℘2 are both satisfied in α while a 6= 0, we stop the exploration and

declare φ invalid.

2- The case where ta ∈ En(m) corresponds to a situation where ℘1 has been satisfied before,
and where we need to make sure that ℘2 is not satisfied, unless a = 0. If ℘2 is satisfied in α
while a > 0, we stop the exploration and declare φ invalid.

3- The case where tb ∈ En(m) corresponds to a situation where we are looking for ℘2. If ℘2 is
satisfied in α then we disable tb and get in a situation where we are looking for ℘1 (i.e., (1)).

4- The case where t = tb corresponds to a situation where interval I has expired while we are
looking for ℘2. In this case, we stop the exploration and declare φ invalid.

Some attention is required when dealing with transitions ta and tb. If transition ta can be fired
at exactly the same time as another transition t, and t is fired before ta, ϕ might be declared
wrongly false if the resulting state class satisfies ℘2. A similar situation might arise for transition
tb if it is fired before a transition t which can be fired at exactly the same time. To deal with these
two special situations, we assign a high firing priority to transition ta, so that it is fired before any
other transition which can be fired at exactly the same time. At the contrary, we assign a low firing
priority to tb so that it is fired after any other transition which can be fired at exactly the same
time. To cope with this priority concepts, we need to change the way we decide if a transition is
firable or not (i.e., operation isfirable), and the way the successor of a state class α = (m,F), by
a transition t, is computed (i.e., operation succ).

Algorithm 6 : isF irableAC(α = (m,F), tf)

if tf /∈ En(m) then Return false1

Let F ′ = F ∧ (
V

t∈En(m)−{tf} tf ≤ t)2

if ta ∈ En(m) ∧ tf 6= ta then3

F ′ = F ′ ∧ tf < ta4

else if tb ∈ En(m) ∧ tf = tb then5

F ′ = F ∧ (
V

t∈En(m)−{tf} tf < t)6

if F ′ is consistent then Return true7

Return false8

isF irableAC(α, tf) replaces isF irable(α, tf) to check whether a transition is firable or not. What
changes is the way formula F ′ is computed. In case ta is enabled while we want to fire a different
transition tf (step 4), we need to make sure that tf is fired ahead of time of ta. In case tb is enabled
and is the one we want to fire (step 6), we need to make sure that tb is the only transition that can
be fired. The remaining cases are handled exactly as before. succAC(α, tf) replaces succ(α, tf) for
generating successor state classes during the exploration. What changes is also the way formula
F ′ is computed.

6.2.2. Model checking algorithms

The on-the-fly TCTLTPN model checking of formula φ is based on the exploration algorithm 8.
The algorithm uses two lists: WAIT and COMPUTED, to manage state classes, and calls
a polymorphic satisfaction function checkStateClassφ to check the validity of formula φ.
COMPUTED contains all computed state classes, while WAIT contains state classes of
COMPUTED which are not yet explored. As a consequence WAIT is just a sublist of
COMPUTED6. The algorithm generates state classes by firing transitions. The initial state class is
supposed to result from the firing of a fictive transition tε. Each time a state class α is generated as
the result of firing a transition t, α and t are supplied to checkStateClassφ to perform actions and
take decisions. In general, checkStateClassφ enables or disables transitions ta and tb in α. It also

6From an implementation point of view, the list WAIT is a list of references to states classes in the list COMPUTED.

Zenoness detection and timed model checking for real time systems

Algorithm 7 : succAC(α = (m, F), tf)

Let m′(p) = m(p)− Pre(p, tf) + Post(p, tf),∀p ∈ P1

if tf /∈ En(m) then Return false2

Let F ′ = F ∧ (
V

t∈En(m)−{tf} tf ≤ t)3

if ta ∈ En(m) ∧ tf 6= ta then4

F ′ = F ′ ∧ tf < ta5

else if tb ∈ En(m) ∧ tf = tb then6

F ′ = F ∧ (
V

t∈En(m)−{tf} tf < t)7

Replace in F ′ each variable t with t + tf8

Eliminate by substitution, in F ′, tf and all variables associated with transitions conflicting with tf for m9

forall t ∈ New(m′, tf) do10

Add to F ′ the constraint tmin(t) ≤ t ≤ tmax(t)11

Return (m′, F ′)12

Algorithm 8 : modelCheck(φ)
Let continue=true /* global variable */1

Let valid=true /* global variable */2

Let COMPUTED= ∅3

Let α0= (m0, F0)4

Let α′0=checkStateClassφ(α0, tε)5

Let WAIT={α′0}6

while continue do7

remove α = (m, F) from WAIT8

forall t ∈ En(m) s.t. isF irableAC(α, t) provided continue do9

α′:=succAC(α, t)10

α′′:=checkStateClassφ(α′, t)φ11

if continue ∧ α′′ 6= ∅ ∧ @αp ∈ COMPUTED s.t. α′′ ⊆ αp then12

forall αp ∈ COMPUTED s.t. αp ⊆ α′′ do13

remove αp from COMPUTED and from WAIT14

Add α′′ to COMPUTED and to WAIT15

Return valid16

takes decisions, and record them in two global boolean variables continue and valid, to guide the
exploration process. Finally, it returns either α after modification or ∅ in case α needs to be no more
explored (i.e., ignored). The exploration continues only if continue is true. valid is used to record
the truth value of φ. After checkStateClassφ is called, the state class α′ it returns is inserted in the
list WAIT only if it is not included in a previously computed state class (i.e., @α ∈ COMPUTED s.t.
α′ ⊆ α). Otherwise, α′ is inserted in the list WAIT, while all state classes of the list COMPUTED
which are included into α′ are deleted from both COMPUTED and WAIT. This strategy, which
is also used in the tool UPPAAL [3], attenuates considerably the state explosion problem. So
instead of exploring both α and α′, exploring α′ is sufficient. Operation checkStateClassφ takes
as parameters: a state class, and the transition that led to it. Three different implementations of
checkStateClassφ are required for the three principal forms of φ, i.e., ℘1 7→I ℘2, ∀(℘1UI℘2) and
∃(℘1UI℘2), with I = [a, b] (bound b can be either finite or infinite). All of these implementations
handle four mutually exclusive cases corresponding to four types of state classes that can be
encountered on an execution path. The first implementation (algorithm 9) corresponds to property
φ = ℘1 7→I ℘2. Its steps match exactly those described in section 6.2.1. The first case it handles
corresponds to a state class not reached by the firing ta nor tb, and neither of them is enabled in
it. The remaining cases correspond respectively to: a state class where transition ta is enabled, a
state class where transition tb is enabled, and a state class reached by the firing of transition tb.

The second implementation corresponds to property φ = ∀(℘1UI℘2) [16]. In it first case, this
implementation looks for the initial state class only. The remaining cases are similar to those
of the first implementation, but different actions are taken for each one of them. Intuitively the

Zenoness detection and timed model checking for real time systems

Algorithm 9 : checkStateClass℘1 7→I℘2(α = (m,F), t)

if ta, tb /∈ En(m) ∧ t /∈ {ta, tb} then /* case 1 */1

if ℘1(m) ∧ ¬℘2(m) then2

enable ta in α;3

if ℘1(m) ∧ ℘2(m) ∧ a > 0 then4

valid=false; continue=false ;5

if ta ∈ En(m) ∧ ℘2(m) then /* case 2 */6

valid=false; continue=false;7

if tb ∈ En(m) ∧ ℘2(m) then /* case 3 */8

disable tb in α;9

if t = tb then /* case 4 */10

valid=false ; continue=false;11

Return α;12

verification of property φ = ∀(℘1UI℘2) checks if proposition ℘1 is true in the initial state class and
all state classes following it, until ta fires. From the moment ta is fired, the verifier checks for the
satisfaction of either ℘1 or ℘2, until ℘2 is true or tb is fired. If ℘2 becomes true in a state class α,
α is no more explored. In case tb is fired, the exploration is stopped and the property is declared
invalid. The last implementation of checkStateClassφ corresponds to property φ = ∃(℘1UI℘2)
[16]. It handles four similar cases as the previous implementation, but different actions are taken.
For instance, this implementation initializes variable valid to false as soon as the initial state class
is entered, and stops the exploration of a state class α if it does not comply with the semantics of
φ. It also aborts the exploration as soon as a satisfactory execution path is found. The following
theorem states the decidability of our model checking approach for all bounded TPNs.

Theorem 5 : [16] TCTLTPN model checking is decidable for Bounded TPN models.

6.3. Adapting the verification to the case of zeno TPNs

In the case of a zeno TPN model, the model checking approach described above may yield
false results in some situations. The problem may arise only for formulae of the form ∀(℘1UI℘2),
℘1 7→I ℘2 and those which are derived from them. For these formulae, the model checking
approach start by assuming that the formula is true7 (step 2, algorithm 8) at the beginning of
the verification process and the property is declared invalid if a situation is encountered where
a counter example is found. A counter example is found if transition tb gets fired, which means
that the end of interval I has occurred and property ℘2 was not found to be true yet (steps 11,
algorithm 9). Now consider that the TPN model is zeno, with only one zeno execution path ρz,
and we are verifying property ∀(℘1UI℘2) with I = [a, b]. Suppose also that this property is true
on all execution paths except on ρz. If ℘1 is true in all states of ρz and time(ρz) < b , transition
tb will never get fired to signal the end of interval I, and the verification would conclude that the
property is valid while it is not. Note that a similar scenario may happen for formula ℘1 7→I ℘2. To
correct this problem, our solution consists in detecting zeno cycles during the verification, but not
any zeno cycle. The zeno cycles of interest are only those which arise when we are looking for
property ℘2, i.e., when transition tb is enabled. To do so, we modify the exploration algorithm 8 to
keep track of zero lower bound transitions when they are fired from state classes where transition
tb is enabled. So each time a zero lower bound transition is fired from a state class α where tb is
enabled, we connect α with the resulting state class with an arc. At the end of the verification, if
the property is found to be valid, we check the connection between computed state classes to see
if a cycle is present. If it is case the property is declared invalid, otherwise it is valid. Algorithm 10
is an adapted version of algorithm 8 that take into account zeno TPNs.

7This is not true in the case ∃(℘1UI℘2) where the formula is assumed to be false at the beginning of the verification by
resetting the value of the variable valid to false.

Zenoness detection and timed model checking for real time systems

Algorithm 10 : modelCheck − with− zeno− detection(φ)
Let continue=true /* global variable */1

Let valid=true /* global variable */2

Let COMPUTED= ∅3

Let α0= (m0, F0)4

Let α′0=checkStateClassφ(α0, tε)5

Let WAIT={α′0}6

while continue do7

remove α = (m, F) from WAIT8

forall t ∈ En(m) s.t. isF irableAC(α, t) provided continue do9

α′:=succAC(α, t)10

if φ 6= ∃(℘1UI℘2) and tb ∈ En(m) ∧ ↓ Is(t) = 0 then11

connect α to α′12

α′′:=checkStateClassφ(α′, t)φ13

if continue ∧ α′′ 6= ∅ ∧ @αp ∈ COMPUTED s.t. α′′ ⊆ αp then14

forall αp ∈ COMPUTED s.t. αp ⊆ α′′ do15

remove αp from COMPUTED and from WAIT while substituting αp by α′′ for all arcs of αp16

Add α′′ to COMPUTED and to WAIT17

if φ 6= ∃(℘1UI℘2) and valid then18

if COMPUTED has a cycles then19

valid=false20

Return valid21

7. CONCLUSION

In this paper, we considered the time Petri net model and proposed an efficient approach to detect
zeno behaviors using the state class method. Zenoness is in general considered as a pathological
behavior for timed systems since it suggests that an infinity of actions may take place in a finite
amount of time. The approach we proposed is based on the fact that a TPN is zeno iff it can
reach a marking from which zero lower bound transitions are fired to infinity. As a consequence,
a bounded TPN is zeno iff its state class graph has a cycle where all transitions are zero lower
bound transitions (a zero lower bound cycle). An algorithm to check the zenoness of a bounded
TPN model is straightforward from these observations. It consists in constructing the SCG of the
TPN model and detecting if it contains a zero lower bound cycle or not. If such a cycle exists,
the TPN is zeno, otherwise it is not. To improve performance we proposed to contract the SCG
in what we called I-SCG (Inclusion contracted SCG) and use it as an alternative to the SCG in
the zenoness detection algorithm. The I-SCG is much smaller than the SCG, and much faster
to compute. It also preserves reachability of the TPN model which makes it a better alternative
than the SCG to verify this kind of properties. We also adapted the model checking approach,
we proposed in [16] to verify a subset of TCTL properties, to take into account zeno behaviors.
As a future work we expect to extend the characterization of zenoness to the case of TPN with
multi-enabled transitions.

REFERENCES

[1] P. A. Abdulla and A. Nyln. Timed Petri Nets and BQOs. In Proc. of ICATPN’01, volume 2075
of LNCS, pages 53–70. Springer-Verlag, 2001.

[2] R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. Of ICALP’90, volume
443 of LNCS, pages 322–335. Springer-Verlag, 1990.

[3] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Uppaal
implementation secrets. In Proc. of the 7th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, 2002.

[4] B. Berthomieu and M. Menasche. An enumerative approach for analyzing Time Petri Nets.
In Proc. of the IFIP 9th World Computer Congress, volume 9 of Information Processing,

Zenoness detection and timed model checking for real time systems

pages 41–46. IFIP, North Holland, September 1983.
[5] H. Boucheneb and G. Berthelot. Towards a simplified building of Time Petri Nets reachability

graph. In Proc. of the 5th Int. Workshop on Petri Nets and Performance Models, pages 46–
55, October 1993.

[6] H. Boucheneb and R. Hadjidj. Towards optimal CTL* model checking of Time Petri Nets. In
Proc. of the International Workshop on Discrete Event Systems, WODES’04. Reims-France,
May 2004.

[7] H. Boucheneb and R. Hadjidj. CTL* model checking for time Petri nets. Theoretical
Computer Science, 353(1-3)(1-3):208–227, 2006.

[8] F. Cassez and O. H. Roux. Structural translation from Time Petri Nets to timed automata. In
Electronic Notes in Theoretical Computer Science, 128(6)(145-160), 2005.

[9] F. Cassez and O. H. Roux. Structural translation from time petri nets to timed automata.
Journal of Systems and Software, 29:1456–1468, 2006.

[10] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

[11] J. Coolahan and N. Roussopoulos. Timing requirements for time-driven systems using
augmented Petri nets. IEEE Trans. on Software Eng, SE-9(5):603–616, 1983.

[12] L. A. Corts, P. Eles, and Z. Peng. Verification of real-time embedded systems using Petri net
models and timed automata. In Proc. of the 8th Int. Conf. on Real-Time Computing Systems
and Applications (RTCSA’02), pages 191–199, March 2002.

[13] G. Gardey, O. H. Roux, and O. F. Roux. Using zone graph method for computing the state
space of a Time Petri Net. In Proc. of FORMATS’03, volume 2791 of LNCS. Springer-Verlag,
2004.

[14] Z. Gu and K. Shin. Analysis of event-driven real-time systems with Time Petri Nets. In Proc.
of DIPES’02, volume 219 of IFIP, pages 31–40. Kluwer, 2002.

[15] R. Hadjidj and H. Boucheneb. Much compact Time Petri Net state class spaces useful to
restore CTL* properties. In Proc. of of the Fifth International Conference on Application of
Concurrency to System Design (ACSD’05). IEEE Computer Society Press, 2005.

[16] R. Hadjidj and H. Boucheneb. On-the-fly tctl model checking for time Petri nets using
the state class method. In Proc of the Sixth International Conference on Application of
Concurrency to System Design (ACSD’06), pages 111–120. IEEE Computer Society Press,
2006.

[17] H-M. Hanisch. Analysis of place/transition nets with timed arcs and its application to batch
process control. In Proc. of ICATPN’93, volume 691 of LNCS, pages 282–299. Springer-
Verlag, 1993.

[18] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111(2)(2):193–224, 1994.

[19] K. G. Larsen, C. Weise, W. Yi, and J. Pearson. Clock difference diagrams. Nordic Journal
of Computing, 26(3), 1999.

[20] J. Lilius. Efficient state space search for Time Petri Nets. In Proc. of MFCS Workshop on
Concurrency, Brno’98, volume 18 of ENTCS. Elsevier Science Publishers, 1999.

[21] D. Lime and O. H. Roux. State class timed automaton of a time Petri net. In Proc. of the 10th
Int. Workshop on Petri Nets and Performance Models (PNPM’03). IEEE Comp. Soc. Press,
September 2003.

[22] P. Merlin and D. J. Farber. Recoverability of communication protocols - implication of a
theoretical study. IEEE Trans. on Communications, 24(9):1036–1043, 1976.

[23] W. Penczek and A. Polrola. Abstractions and partial order reductions for checking branching
properties of Time Petri Nets. In Proc. of ICATPN’01, volume 2075 of LNCS, pages 323–342.
Springer-Verlag, 2001.

[24] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets.
Technical report, February 1974.

[25] J. Toussaint, F. Simonot-Lion, and J.-P. Thomesse. Time constraint verifications methods
based time Petri nets. In Proc. of the 6th Workshop on Future Trends in Distributed
Computing Systems (FTDCS97), pages 262–267. Tunis, Tunisia, 1997.

[26] T. Yoneda and H. Ryuba. CTL model checking of time Petri nets using geometric regions.
IEICE Trans. Inf. and Syst., 3:1-10, 1998.

