
SystemC Waiting-State Automata
Yu Zhang

Project Everest, INRIA Sophia-Antipolis
2004, Route des Lucioles, BP 93, 06902 Sophia-Antipolis, France

Yu.Zhang@sophia.inria.fr

Franck Védrine
CEA, LIST, Boîte 65, Gif-sur-Yvette, F-91191 France

Franck.Vedrine@cea.fr

Bruno Monsuez
UEI, ENSTA, 32 Bd Victor, 75739 Paris cedex 15, France

Bruno.Monsuez@ensta.fr

Abstract

Delta-cycles are basic units of SystemC modeling and they are supposed to provide
the guarantee of some critical properties about interactions between concurrent
processes, like determinism and liveness, which is the basis for higher-level
modeling and analysis. However, uncareful design may cause serious problems at
the transaction level, which break the properties that we want to ensure at the level
of delta-cycles. We propose a formal model based on SystemC waiting-state automata
for verifying properties of SystemC models at the transaction level within a delta-cycle
and show that this model conforms to the SystemC scheduler up to delta-cycles.

Keywords: SystemC, compositional verification, automata, model-checking

1. INTRODUCTION

SystemC becomes nowadays a popular language for modeling complex hardware systems.
Compared with other hardware description languages, SystemC is more feasible for designing
large-scaled complex systems and modeling high level behaviors — it comes with many
pre-defined constructs in its syntax, like channels, modules, clocks, etc., which make the
compositional system design much easier. SystemC is also equipped with a simulation engine
which allows us to simulate a model once it is designed, but pure simulation is not sufficient
if we want to ensure that the model satisfies certain properties, especially those safety-related
properties. Simulation correctness does not imply logical correctness and verification is still a
major issue.

SystemC simulation engine introduces the important notion of delta-cycle as the fundamental
simulation unit. In fact, a simulation procedure can be seen as a sequence of delta cycles and
all the interactions within a delta cycle are abstracted from the modeling perspective. Such an
abstraction is supposed to provide a guarantee that all these interactions should work correctly
so that higher-level analysis or verification can be done without considering what goes on inside
delta-cycles. However, this is probably the most error-prone part of SystemC modeling, as the
final process space within a delta-cycle can be very large and the interaction in between might be
extremely complicated. A typical problem is the causality waiting cycles among processes, which
causes the unexpected halt of the object system. Furthermore, accessing shared resources may
cause competitions between processes, and consequently results in non-deterministic behavior
at the delta-cycle level, which is certainly not desired in hardware design.

We propose in this paper a formal model for verifying SystemC up to delta-cycle. This is based on
the observation that most important properties depends heavily on how processes get into and
get out of a waiting state, which is actually controlled by the underlying event-based engine. We
propose first a way of constructing small automata for single processes, by analyzing their waiting

SystemC Waiting-State Automata

write read

FIFOProducer

p_clock

Consumer

c_clock

FIGURE 1: A simple FIFO

status. Then we define algorithms for composing the small process automata and reducing it so as
to recognize the abstraction at the level of delta-cycle. These algorithms conform to the SystemC
scheduler, which defines the executing semantics of SystemC. Verifications can be done at both
the process automata and the final composed automata. We also discuss some extensions based
on this model, like adding counters into the automata, so that additional properties can also be
verified.

The rest of the paper is structured as follows: Section 2 is an introductory section on SystemC,
through a simple example — a clocked FIFO model. We describe in particular how processes
in a SystemC model communicate with each other and how the SystemC simulation engine
schedules these processes. Then we introduce in Section 3 our formal model — the SystemC
waiting-state automata and show how to derive them from single processes. In particular, we
define the composition and the reduction at the symbolic level, so that the final automata can
recognize the abstraction of the whole system at the level of delta-cycles. Section 4 introduces
an extension of the waiting-state automata, by adding counters to include more information in
the model and make it possible of verifying more properties. We also make some comparison, in
Section 5, between our model and other formal models for SystemC and we conclude the paper
in Section 6.

2. PRELIMINARY OF SYSTEMC

2.1. A simple FIFO model

Let us start by a simple SystemC model — an implementation of FIFO with clocks. The structure
of the model is shown in Figure 1. The model contains a First-In-First-Out buffer and two modules
cooperating through the buffer — a producer module which continuously puts data into the buffer
and a consumer module which continuously retrieves data from the buffer. The two processes
are triggered by two individual clocks: p_clock and c_clock. When a p_clock signal arrives, the
producer starts producing and tries to write the product into the buffer. Similarly, the c_clock
signals control the consumer. The two clocks are independent, hence the producing and the
consuming can be at different paces.

It is certainly possible that the producer fills all the slots of the buffer and continues writing, or the
consumer retrieves all the elements and still tries to consume. In this case, the producer/consumer
must wait for the other to release/fill the buffer and this is done by the SystemC events mechanism.
The implementation of the modules in SystemC is given in Figure 2.

2.2. Events

SystemC provides many different types of constructs in its syntax for system design, like modules,
channels, ports, signals, clocks, etc. Despite of the diversity in syntax, SystemC is essentially an
event-driven model, and all communications in SystemC models are implemented using events
and the associated wait/notify mechanism. For instance, the FIFO module in the previous example
is actually defined as a channel sc_channel, and the mutual access to the buffer is implemented
through the two events r_event and w_event.

SystemC events can be roughly classified into the following three sorts:

SystemC Waiting-State Automata

class fifo_if : virtual public sc_interface{
public:
virtual int write(char) = 0;
virtual int read(char &) = 0;
virtual int num_available() = 0;

};

class fifo :
public sc_channel, public fifo_if {
private:
enum e { max = 2 };
char buffer[max];
int num_elem;

public:
sc_event w_event, r_event;

fifo(sc_module_name name) :
sc_channel(name), num_elem(0) {}

void write(char c) {
if (num_elem == max)

wait(r_event);
put_in_buffer(c);
num_elem = num_elem + 1;
w_event.notify();

}

void read(char &c){
if (num_elem == 0)

wait(w_event);
c = get_from_buffer();
num_elem = num_elem - 1;
r_event.notify();

}

int num_available() { return num_elem;}
};

class producer : public sc_module {
public:
sc_port<fifo_if> fifo;
sc_in_clk p_clock;

SC_HAS_PROCESS(producer);
SC_MODULE(producer) {

SC_THREAD(main);
sensitive_pos << p_clock;

}

void main() {
while(true) {

wait();
produce(c);
fifo->write(c);

}
}

};

class consumer : public sc_module {
public:
sc_port<fifo_if> fifo;
sc_in_clk c_clock;

SC_HAS_PROCESS(consumer);
SC_MODULE(consumer){

SC_THREAD(main);
sensitive_pos << c_clock;

}

void main() {
while(true) {

wait();
fifo->read(c);
consume(c);

}
}

};

FIGURE 2: The FIFO modules: buffer, producer and consumer

SystemC Waiting-State Automata

• user-defined events. These are events defined by SystemC programmers in source code.
For instance, the w_event and the r_event as in Figure 2. Such events are usually triggered
by the command notify;

• channel events. These are pre-defined SystemC events and they are triggered when
something occurs on channels. For instance, an event denoting the arrival of a new value
will be triggered whenever some value is written to a sc_buffer channel. Channel events at
different types of channels have different semantics [5, 6];

• clock events1. Clock signals are also seen as events and they are usually defined as
sc_clock’s in the SystemC main program. SystemC core engine is in charge of generating
sc_clock events at proper time. We never notify a clock event in the program.

We shall not distinguish the first two sorts of events as both of them can be dynamically notified,
while the clock events are rather seen as the input events of SystemC models. In fact, we prefer
not considering any pre-defined channels or signals in our modeling, but rather taking into account
their event-driven implementation. For instance, the FIFO buffer in the previous example is defined
as a channel with two actions (write() and read()) and two internal events (w_event and
r_event), and modules connected to FIFO are allowed to call the channel methods but they are
not aware of the existence of the channel events. However, for our analysis within delta-cycles, we
shall put the method definitions inline in the codes of processes (see the analysis in the beginning
of Section 3).

2.3. SystemC simulation scheduler

The simulation of SystemC models is managed by the SystemC scheduler, which can be seen
as a total event-driven model: communications through ports and channels, clocks, and actions
of modules, are all triggered by (different types of) events. The basic unit of the simulation is the
so-called delta-cycle and a complete simulation procedure is just a sequence of delta-cycles. The
scheduler maintains several tables, among which we are particularly interested in the table of
runnable processes (processes that are ready to execute at the current delta-cycle).

Here is a brief description of a delta-cycle: a delta-cycle starts with a non-empty runnable process
table. The scheduler executes these processes one by one, in a pre-defined order; every runnable
process executes until it ends or it is pended again (by a wait command for instance); if any
immediate event (e.g. the w_event generated by the producer process in the FIFO example) is
notified during the execution of a runnable processes, it will add processes that are currently
sensitive to this event into the runnable process table; delta-events and timed events that are
generated during the execution of a process are stored in other tables. The process table
is emptied when all runnable processes are executed and the procedure of executing all the
runnable processes is called a evaluation phase. The scheduler then checks those delta-events
notified in the evaluation phase: if there are processes that are sensitive to these events, then add
them into the process table. This procedure is called a delta notification phase. If the process table
is non-empty, the scheduler enters the next delta-cycle and executes the evaluation phase again;
otherwise, it checks the timed events notified in the evaluation phase and adds processes that
sensitive to these timed events into the process table. This is called a timed notification phase.
The scheduler then advances the simulation clock and enters the next delta-cycle.

Above is what is defined as delta-cycles in SystemC scheduler. A detailed explanation and
implementation of delta-cycles can be found in SystemC documents [5, 6]. However, for the sake
of clarification, we prefer regarding a delta-cycle as starting from a delta notification phase or a
timed notification phase. In other words, a delta-cycle in this paper will start with a set of events
which add all sensitive processes into the process table, then continue with an evaluation phase.

Take the simple FIFO as an example. Suppose that at the beginning of a delta-cycle we have
both p_clock signal and c_clock signal, which will be seen as events in SystemC. The p_clock
event then adds the producer process into the process table if the producer is waiting for the clock

1Clocks are actually seen as typical channels in SystemC — sc_clock is implemented using sc_signal, but from the
analysis viewpoint, we would better differentiate them from channel events.

SystemC Waiting-State Automata

signal. Note that the producer may wait for a r_event instead of a clock signal, and in this case,
it will not be added into the process table. Similarly, the c_clock event will add the consumer into
the process table if it is waiting for the c_clock signal. The scheduler then runs the processes in
a pre-defined order. For instance, if we run the producer first then the consumer, according to the
status of the buffer, there are then two cases of what happens within a delta-cycle:

• if the buffer is not full, the producer will succeed in putting a new product into the buffer, get
hung up and wait for the next clock signal. The scheduler moves on to run the consumer
until it is pended. During this procedure, two extra events are generated — w_event and
r_event and they are added into the event table, but as no process is sensitive to them,
nothing is added into the process table and the evaluation phase is over, as well as the
present delta-cycle;

• if the buffer is full, the producer will be hung up and waits for a r_event. The scheduler
continues to run the consumer. This generates a r_event, which will add immediately the
producer process into the process table again, since it is now sensitive to r_event. The
scheduler then resumes the execution of the producer, until it is pended for the next clock
signal. The evaluation phase, as well as the current delta-cycle, stops here. Note that if there
is no c_clock at the same cycle, the delta-cycle just stops when the producer is pended for
the first time (when it waits for the r_event).

2.4. Cycles in SystemC scheduling engine

Cycles, like delta-cycle in the SystemC simulation engine, are important to the verification of
SystemC models. But cycles are not explicitly defined in the SystemC syntax, and there are
usually multiple levels of cycles in a SystemC model.

We give a rough classification here on what can be seen as a cycle in SystemC models:

• the minimal cycle, which is basically the interval between two continuous wait within a
single process. We call these cycles the minimal cycles, because we are not interested
in the detailed execution of the program. There are of course smaller cycles, e.g., a cycle
inside a loop which does not contain any wait, but they might be of little interest for SystemC
verification. A minimal cycle is usually used to abstract the transitions between two waiting
states within a single process;

• the delta-cycle, as defined in the SystemC scheduler. A delta-cycle contains usually multiple
minimal-cycles. Abstractions at this level of cycles should provide some fundamental
properties about interactions between processes;

• the gcd-cycle, i.e., the greatest common divisor of all clocks. For instance, in the example of
simple FIFO, the gcd-cycle might be defined as gcd(p_clock, c_clock). With this definition,
one can concentrate on behaviors at a higher level, and it is particularly useful for verifying
temporal properties, but it remains to clarify how to abstract the behavior of a SystemC
model at this level, when a gcd-cycle contains multiple delta-cycles.

The classification here is certainly not exhausted, but it should contain those cycles that appear
frequently in most SystemC models. Clearly, these cycles provide different levels of abstractions
and can be useful for verifications for particular purposes.

2.5. Liveness and determinism

Abstractions at the level of delta-cycles should guarantee some fundamental properties of
interactions between concurrent processes. Among others, we cite two properties here: liveness
and determinism.

The liveness property is probably the most common one in the field of formal verification. It simply
states that the implementation must be deadlock-free, and in SystemC modeling, it means that
there is no causality waiting cycles between processes. For instance, in the FIFO example, the
producer and the consumer should not wait for each other.

SystemC Waiting-State Automata

while (true) {

 produce(c);

 if (num_elem == max)

 put_in_buffer(c);

 num_elem = num_elem + 1;

 write_event.notify();

}

 wait();

 wait(read_event);

P3

P2

P1
p_wait_clk

exit−condition: (p_clock)

p_wait_c

exit−condition: (read_event)

entry−condition: (num_elem = max)

entry−condition: ()

FIGURE 3: Analysis of the producer module

Determinism is a very critical property for hardware design. In SystemC modeling, a deterministic
SystemC model should ensure that the behavior is independent of the order of internal process
executions. It stresses in particular the determinism at the level of delta-cycles, because non-
deterministic behaviors are caused by competitions when multiple processes are accessing
shared resources at the same time, and such competitions usually occur within a single delta-
cycle.

As an example, consider another implementation of FIFO: the producer/consumer does not wait
for the other to release/fill the buffer when it is full/empty, and instead, they just return a write/read
failure. It is clear that there might be a competition between the producer and the consumer: if at
the beginning of a delta-cycle, both producer and consumer are allowed to operate on the buffer
(both p_clock and c_clock are present), we might have different results. For instance, if the buffer
is full, producing first will cause the new product to be discarded, while consuming first will cause
a successful writing to buffer. Non-determinism is hard to detect through simulation, because the
SystemC scheduler will fix an execution order for process, though semantically, it should not be
fixed. For instance, it may always execute consumer first, then the simulation will return the same
result with the same input and we cannot see the non-deterministic behavior from the simulation.

3. SYSTEMC WAITING-STATE AUTOMATA

This section introduces a formal model of SystemC, based on the analysis of the “wait/notify”
mechanism of SystemC, which plays an important role in the SystemC scheduler and serves as
the basic engine of implementing interactions between processes. The basic idea of our model is
to consider only those states where processes are hung up, i.e., waiting for some events. In fact,
a delta-cycle always starts from a state where all the processes are hung up and the whole cycle
can be seen as a sequence of transitions between these waiting-states.

Let us start by an informal analysis of the producer process, as shown in Figure 3. The two wait
statements define the two waiting-states of the automaton, and they divide the program into three
pieces (P1, P2, P3 in Figure 3) according to the execution trace. Each piece of P1, P2 and P3

executes in an instant, and are seen actually as transitions between the waiting-states.

The objective is then to represent formally how a process controls the transitions between the
waiting-states. As shown in Figure 3, we calculate, for every waiting-state, the entry-condition and
the exit-condition. One should not confuse these conditions with pre-conditions/post-conditions of
programs: the pre/post-condition assertion says that if a pre-condition of a program P holds before
the execution of P , then after the execution, the post-condition holds; the entry/exit-conditions are
rather seen as the guard condition for starting/stopping the execution of the wait statements.
The transition from one state to another is then determined by the condition of exiting the source

SystemC Waiting-State Automata

state plus the condition of entering the destination state. For instance, the condition for entering
the p_wait_c state is num_elem == max and the condition for exiting the p_wait_clk state is
a p_clock signal, so the guard condition for the transition from p_wait_clk to p_wait_c is an
event p_clock plus a predicate (num_elem == max), defined on the variable num_elem (max is a
pre-defined constant here). As a transition is actually a piece of program, it can also generate
new events and modify the values of variables. For instance, both P2 and P3 generate an event
w_event and make the variable num_elem decreased by 1. These are the effects of transitions.

3.1. SystemC waiting-state automata

Notice that transitions between waiting-states depend not only on the events, but also on variables,
especially those variables shared by several processes, e.g., the variable num_elem in the FIFO
example. Let V be a finite set of variables {x1, x2, . . . , xn}, where every variable xi has a domain
Di which contains the values that can be assigned to xi. D1 × · · · ×Dn is called the domain of V,
abbreviated as ~D. We call a function f : ~D → ~D, defined over these variables, an effect function
over V.

Definition 1 A SystemC waiting-state automaton, over a set V of variables, is a triple A(V) =
(S, E , T), where S is a finite set of states, E is a finite set of events, T is a finite set of transitions
where every transition is a 6-tuples (s, ein, p, eout, f, s′):

• s and s′ are two states in S, representing respectively the initial state and the end state of
the transition;

• ein and eout are two sets of events: ein ⊆ E , eout ⊆ E ;
• p is a predicate defined over variables in V, i.e., FV (p) ⊆ V where FV (p) denotes the set of

free variables in the predicate p;
• f is an effect function over V.

We often write s
ein, p

eout, f
// s′ for the transition (s, ein, p, eout, f, s′). The effect function set F(A) of

the automaton A(V) is the set of all effect functions in A(V): F(A) = {f | ∃t ∈ T s.t. proj56(t) = f},
where proj56 denotes the fifth projection of a 6-tuple. We also use T (s) to denote the set of
transitions from a given state s, i.e., T (s) = {t | t ∈ T and proj16(t) = s}.

Intuitively, ein and the predicate p act as a guard condition: the transition is triggered if and only
if all the events in ein are present and the predicate p holds; eout and the function f represents
an effect: the transition will generate all the events in eout and f will be applied to the current
instantiation of V.

Naturally, we expect that a SystemC automaton represents faithfully the process from which it
is derived. However, in a SystemC process, the transition from a waiting-state to another is only
triggered by the events and the predicates determine which state the process will enter after being
wake up, which means that transition from the same state must have the same set of incoming
events (ein). We say that a SystemC waiting-state automaton A(V) = (S, E , T) is faithful if for
every two transitions t, t′,

proj16(t) = proj16(t
′) ⇒ proj26(t) = proj26(t

′),

and for every state s ∈ S,
∨

t∈T (s) proj36(t) always holds.

The automata for the processes of the producer and the consumer are shown in Figure 4. where
we consider only one variable num_elem and the definitions of the effect functions inc and dec are
obvious:

inc(num_elem) = num_elem + 1,

dec(num_elem) = num_elem− 1.

The function id is the identity function and the empty predicate can be seen as the truth constant.
Clearly, these two automata are faithful if we consider the domain of the variable num_elem as the
interval [0, max].

SystemC Waiting-State Automata

p_wait_c

p_wait_clk

{p_clock}, (num_elem < max)

{p_clock}, (num_elem = max){r_event}, ()

{ }, id

{w_event},

{w_event},

inc

inc

c_wait_p

c_wait_clk

{c_clock}, (num_elem = 0)

{c_clock}, (num_elem > 0)

{w_event}, ()

{r_event},

{r_event}, { },

dec

dec id

FIGURE 4: The automata for the producer and the consumer

In fact, since the two automata are derived by analyzing the waiting states of processes, as
we have seen in the beginning of this section, a transition actually represents the execution
within a minimal cycle, i.e., the execution of a process between two continuous wait. We call
such an automaton a minimal-step waiting-state automata. We assume that every mininmal-step
automaton is total, i.e., every state has some successor. Otherwise, it means that the single
process itself may cause a deadlock, which is not the case we study here.

3.2. Symbolic composition and reduction

The global strategy of verifying SystemC models using waiting-state automata is to define first a
minimal-step automaton for every process, and compose them together so as to achieve a bigger
automaton for the whole SystemC model which can be finally passed to the model-checking
procedure.

The symbolic composition follows the parallel composition of labeled Kripke structures [1] derived
from CSP. However, our symbolic composition is followed by a reduction procedure, which enables
more aggressive abstractions on the result model. Abstraction is a common way to handle more
and more complex system. Other typical abstractions include, for instance, replacing internal
events of the composition with more abstract notions like counters and constraints on counters.
With respect to the hiding of variables [8], such replacements keep functionality properties after
the abstraction and to introduce progressively QoS properties.

3.2.1. Symbolic composition

Definition 2 Given two SystemC waiting-state automata A(V) = (S, E , T) and A′(V) =
(S ′, E ′, T ′), over the same set V of variables, the combination of the two SystemC waiting-state
automata is still a SystemC waiting-state automaton (S ×S ′, E ∪ E ′, T ′′) (written as A(V)×A′(V))
where T ′′ is the smallest set of transitions such that:

• (s1, s
′
1)

ein, p

eout, f
// (s2, s

′
1) ∈ T ′′, for every transition s1

ein, p

eout, f
// s2 ∈ T , and for every state

s′1 ∈ S ′ such that for every transition s′1
e′in, p′

e′out, f ′
// s′2 ∈ T ′, either e′in 6⊆ ein or p 6⇒ p′;

• (s1, s
′
1)

e′in, p′

e′out, f ′
// (s1, s

′
2) ∈ T ′′, for every transition s′1

e′in, p′

e′out, f ′
// s′2 ∈ T ′, and for every state

s1 ∈ S such that for every transition s1
ein, p

eout, f
// s2 ∈ T , either ein 6⊆ e′in or p′ 6⇒ p;

• (s1, s
′
1)

ein∪e′in, p∧p′

eout∪e′out, f◦f ′
// (s2, s

′
2) ∈ T ′′, for every pair of transitions s1

ein, p

eout, f
// s2 ∈ T

and s′1
e′in, p′

e′out, f ′
// s′2 ∈ T ′.

The composed automaton of the two minimal-step automata in Figure 4 can be found in [14].

SystemC Waiting-State Automata

Note that in the last case of defining transitions of the composed automaton, we can replace the
effect function f ◦ f ′ of the new transition by f ′ ◦ f , but the composed automata might not be
equivalent since f ◦ f ′ and f ′ ◦ f are not always equal. This is the case where the composition
will result in potential non-deterministic behaviors and we call a transition with an effect function
f ◦ f ′ such that f ◦ f ′ 6= f ′ ◦ f a non-deterministic transition.

The symbolic composition of SystemC automata can be used to check the determinism of a
SystemC model: we define the corresponding minimal-step automaton for every process and
compose them together; if the composed automata does not contain any non-deterministic
transition, we can then assert that the model is deterministic.

Detecting non-deterministic transitions can be done without doing the composition. Because the
above definition includes all composes of effect functions of the two component automata, we
can simply check whether f ◦ f ′ = f ′ ◦ f , where f ∈ F(A), f ′ ∈ F(A′) (A, A′ are two component
automata). However, such a detection might be too strict in the sense that some non-deterministic
transitions may never be triggered and does not change the deterministic behavior of the model.
This is often because the guard condition of these “impossible transitions” will never be true, e.g.,
p and p′ in the above definition are two contradicting predicates. Actually, such transitions can
be removed after the composition as a refinement, and clearly, checking the non-existence of
non-deterministic transitions based on the refined composition will increase the precision of the
detection of the non-determinism of SystemC models.

SystemC processes running in parallel may cause causality waiting cycles and it is also
represented in the composition of SystemC waiting-state automata. This is related the liveness
property mentioned in Section 2 and the verification requires in the first place the detection of
“unsafe states” containing mutually waiting processes, for further analysis based on the automata,
e.g., the reachability analysis.

First, for every state s in a SystemC automaton, write ein(s) for the set
⋃

t∈T (S) proj26(t) (the set

of events that trigger transitions from this state), and eout(s) for the set
⋃

t∈T (S) proj46(t). Consider
two minimal-step automata A1(V) = (S1, E1, T1) and A2(V) = (S2, E2, T2). We say that a state
(s1, s2) (s1 ∈ S1, s2 ∈ S2) in the composed automaton A1 × A2 is a potential unsafe state if
ein(s1)∩eout(s2) 6= ∅ and ein(s2)∩eout(s1) 6= ∅. For instance, in the FIFO example, the composition
of the producer automaton and the consumer automaton (Figure 4) gives rise to a potential unsafe
state (p_wait_c, c_wait_p). Indeed, it is an unsafe state where the two processes are waiting for
each other.

Potential unsafe states can be effectively detected when the component automata are given, but
this is still a very coarse detection in the sense that potential unsafe states are not necessarily
unsafe. A precise detection of unsafe states require probably user interference.

Definition 2 of automata composition can be extended in a regular way to the case of more than
two processes, but the definition would be much more complicated, so we rest on the version of
composing two automata and the composition of more that two automata can be done by applying
repeatedly the composing in Definition 2.

3.2.2. Symbolic reduction

In a SystemC waiting-state automaton, it is possible that the effect of a certain transition will
immediately trigger another transition, e.g., the following two transitions

s1
ein, p

eout, f
// s2

e′in, p′

e′out, f ′
// s3 ,

where e′in ⊆ eout and p ⇒ f(p) (f(p) stands for the predicate
p[proj1n(f(~x))/x1, . . . , projnn(f(~x))/xn]). In this case, we can replace the two transitions by a

new transition s1
ein, p

e′out, f ′◦f
// s3 . We call the previous pair of transitions (t1, t2) a reducible

SystemC Waiting-State Automata

pair, where t1 = (s1, ein, p, eout, f, s2) and t2 = (s2, e
′
in, p′, e′out, f

′, s3). The new transition
(s1, ein, p, e′out, f

′ ◦ f, s3) is called the contractum of (t1, t2). In the FIFO example, we can find
examples of such reducible transitions (see [14] for details). Since the automaton is composed
from two small automata representing two processes, such a reduction actually represents an
interaction between the two processes within a single delta-cycle.

In general, a minimal-step waiting-state automaton does not contain any reducible transitions, and
in our verification strategy, reductions are usually required when we compose all the minimal-step
automata together. As we are intend to define a model that represents the behavior at the level
of delta-cycles and hides all interactions within a delta-cycle, the reduction algorithm should be
consistent with the SystemC scheduler.

Algorithm 1 (Symbolic reduction) Given a SystemC minimal-step waiting-state automaton
A(V) = (S, E , T), where T has reducible transitions, let T0 := T , Tremove := {} and Tnew := {}.
The following steps define an algorithm of removing the reducible transitions:

1. for every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let Tremove :=
Tremove ∪ {t1} and Tnew := Tnew ∪ {t3};

2. repeat the above step until all reducible pairs in T0 has been manipulated;
3. let T0 := (T0/Tremove) ∪ Tnew, Tremove := {} and Tnew := {};
4. if there are still reducible pairs in T0, go to the step 1 and repeat the above procedure;

otherwise, let T ′ := T0.

The reduced automaton is (S, E , T ′).

[14] gives an example of this reduction on the FIFO model.

If we are given a SystemC model with a set of parallel processes {P1, . . . , Pn}, let
A1(V), . . . , An(V) be the corresponding SystemC minimal-step waiting-state automata of all the
processes in the model, and let A(V) = (S, E , T) be the reduced automaton of A1 × · · · × An

by Algorithm 1, then every transition s1
ein, p

eout, f
// s2 in T represents a whole execution of the

SystemC model within a delta-cycle, in the sense that if at the beginning of a delta-cycle the model
is in the state s1 and the predicate p holds, and if all events in ein are provided by the environment,
then in the end of the delta-cycle, the model will be in the state s2.

A formal verification of SystemC models can be done at the level of delta-cycles, using the
SystemC waiting-state automata, together with the composition and the reduction algorithms.
Note that at this stage, we might divide the events in E of the final automaton into two sets
— the set of environment events and the other of internal events. The environment events are
events generated by the SystemC engine, which are typically “time events” such as clock events.
By distinguishing between these two sorts of events, we can again reduce the automaton by
removing those transitions depending on non-environment events, i.e., transitions whose ein

contains events that are not in the set of environment events.

Besides the automaton, the model-checking procedure requires in addition a sequence of event
sets, every set of which contains the environment events that the SystemC engine generate at the
beginning of the corresponding delta-cycle. Then we pass this sequence and the automaton of
the SystemC model to a model-checking tool as in [10, 8], and check whether those unsafe states
can be reached.

4. EXTENDING SYSTEMC WAITING-STATE AUTOMATA WITH COUNTERS

By counting how many times a transition is triggered during the execution of an automaton,
we obtain more information about the model and consequently, we are able to verify additional
relevant properties for system design. This can be done by adding a counter for every transition
in the automaton.

SystemC Waiting-State Automata

g
2

w

g
1

w
g

3

w

g
2

r

g
1

r
g

3

r

FIGURE 5: The automata for the producer and the consumer

Again, let us take the FIFO example and consider the two small automata for the processes of the
producer and the consumer. Figure 5 shows both automata annotated with counters. For instance,
γ3
w counts the times of executing the transition from p_wait_clk to p_wait_c, and it is actually the

number of times that the producer enters the waiting-state p_wait_c. These counters provide
meaningful information about the behavior of the whole system. For instance, a “read” can only
occur if a “write” occurs before it, and this property can be represented using counters, i.e., the
total count of transitions representing a “read” is always less or equal to the total count of those
representing a “write”. Formally, it should always hold that:

γ1
r + γ2

r ≤ γ1
w + γ2

w

We can furthermore formulate some properties that may require more precise information, using
both counters and system variables, e.g., the following property:

(γ1
w + γ2

w)− (γ1
r + γ2

r) ≤ num_elem

Also, the entry-conditions and exit-conditions presented in section 3.1 can be extended by adding
conditions on transition counters. For instance, the condition for exiting the c_wait_clk state is a
c_clock signal plus the condition γ1

r = γ3
r − 1.

Such relations on counters can be inferred during the construction stage of the waiting-state
automaton using for instance techniques based on abstract interpretation as in [12, 13, 11].
Abstract interpretation can also be done after the construction stage. In [9], Lustre descriptions
are generated from synchronous SystemC so that the tool NBAC verification and slicing tool can
be applied [7].

Definition 3 An extended SystemC waiting-state automaton over a set V of variables, is a
quadruple A(V) = (S, E , T , C), where S is a finite set of states, E is a finite set of events, C is
a set of transition counters, T is a finite set of transitions where every transition is a 7-tuples
(s, ein, p, eout, f, s′, γ):

• s and s′ are two states in S, representing respectively the initial state and the end state of
the transition;

• ein and eout are two sets of events: ein ⊆ E , eout ⊆ E ;
• p is a predicate defined over variables in V and counters C, i.e., FV (p) ⊆ V ∪ C;
• f is an effect function over V.
• γ ∈ C is the counter associated to the transition that increments each time it is executed.

Our strategy of verifying SystemC models using extended waiting-state automata is similar as
before, which requires first building a minimal-step automaton for every process, inferring relations
over transitions counters and finally composing them together to build a big automaton that can
be passed to a model-checking procedure.

The symbolic composition of two automata A(V) and A′(V) works similarly as in the case of
standard waiting-state automata. What makes the composition more complicated is that counters
of the automata A(V) and A′(V) do not correspond to the counters of the composed automaton

SystemC Waiting-State Automata

A(V) × A′(V). A transition t of the automata A(V) may be composed with many transitions
{t′1, . . . , t′n} of the automaton A′(V), and the value of γt the transition t in A(V) should be

represented in the values of counters for (t × t′1), . . . , (t × t′n). If γ
t′k
t denotes the counter

associated to the transitions (t × t′k) in the composed automaton, then γt =
∑n

k=1 γtk
t . As

the transition predicates (i.e., guard conditions) in extended waiting-state automata are defined
over the counters and system variables, the composition should ensure that these predicates of
component automata are properly translated in the composed automaton. In particular, we must
replace all the occurrence of a transition counter γt from component automata, with the sum of
the associated transition counters

∑n
k=1 γ

t′k
t in the composed automaton.

Definition 4 Given two SystemC waiting-state automata A(V) = (S, E , T , C) and A′(V) =
(S ′, E ′, T ′, C′), over the same set V of variables, the combination of the two SystemC waiting-
state automata is still a SystemC waiting-state automaton (S × S ′, E ∪ E ′, T ′′, C′′)) (written as
A(V) × A′(V)) where T ′′ is the smallest set of transitions, C′′ is the associated set of counters,
Γ(s, ein, p, eout, f, s′, γ) is the set of counters of C′′ associated to a transition in T ∪ T ′′ and M a
morphism that maps the counters in C ∪ C′ to C′′ such that:

• Γ(s1, ein, p, eout, f, s2, γ) = {γ∗} ∪ Γ(s1, ein, p, eout, f, s2, γ) and (s1, s
′
1)

ein, M(p), γ∗

eout, f
// (s2, s

′
1) ∈ T ′′,

for every transition s1
ein, p,γ

eout, f
// s2 ∈ T , and for every state s′1 ∈ S ′ such that for every transition

s′1
ein, p′,γ′

eout, f ′
// s′2 ∈ T ′, either e′in 6⊆ ein or p 6⇒ p′;

• Γ(s′1, ein, p, eout, f, s′2, γ
′) = {γ∗}∪Γ(s′1, ein, p, eout, f, s′2, γ

′) and (s1, s
′
1)

ein M(p) γ∗

eout, f
// (s1, s

′
2) ∈ T ′′,

for every transition s′1
ein, p,γ′

eout, f
// s′2 ∈ T ′, and for every state s1 ∈ S ′ such that for every transition

s1
ein, p,γ

eout, f
// s2 ∈ T , either ein 6⊆ e′in or p 6⇒ p′;

• Γ(s1, ein, p, eout, f, s2, γ) = {γ∗} ∪ Γ(s1, ein, p, eout, f, s2, γ) and Γ(s′1, ein, p, eout, f, s′2, γ
′) = {γ∗} ∪

Γ(s′1, ein, p, eout, f, s′2, γ
′) and (s1, s

′
1)

ein∪e′in, M(p∧p′), γ∗

eout∪e′out, f◦f ′
// (s2, s

′
2) ∈ T ′′, for every pair of

transitions s1
ein, p,γ

eout, f
// s2 ∈ T and s′1

ein, p,γ′

eout, f
// s′2 ∈ T ′

• for each counter γ associated to the transition (s1, ein, p, eout, f, s2, γ
s2
s1), the morphism M maps the

counter γ to the sum of transition counters defined in Γ(s1, ein, p, eout, f, s2, γ)

M(γ) −→
X

γ∗∈Γ(s1,ein,p,eout,f,s2,γ
s2
s1)

γ∗

The algorithm that performs symbolic reduction on extended waiting-state automata simply
merges those counters whose associated transitions are reduced.

Algorithm 2 (Symbolic reduction) Given a SystemC minimal-step waiting-state automaton
A(V) = (S, E , T , C), where T has reducible transitions, let T0 := T , C0 := C, let
Tremove, Tnew, Cremove, Cnew := {}. The following steps define an algorithm of removing the
reducible transitions:

1. for every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let Tremove :=
Tremove ∪ {t1} and Tnew := Tnew ∪ {t3};
let Cremove = Cremove ∪ { the counters associated to t1 and t2}, Cnew = Cnew ∪ {the counter
associated to t3};
replaces the counters associated to the removed transitions t1 and t2 that appear in all
the pre-conditions and post-conditions defined in T0 with the new counter associated to the
transition t3.

2. repeat the above step until all reducible pairs in T0 have been manipulated;
3. let T0 := (T0/Tremove)∪Tnew, C0 := (C0/Cremove)∪Cnew, let Tremove, Cremove, Tnew, Cnew := {}

SystemC Waiting-State Automata

4. if there are still reducible pairs in T0, go to the step 1 and repeat the above procedure;
otherwise, let T ′ := T0, C′ := C0,.

The reduced automaton is (S, E , T ′, C′).

5. RELATED WORK

Several attempts have been made to apply formal verification methods to SystemC. Early work
in this direction, notably by Drechsler and Große, focused on verifications at the gate level [2, 3]
and were somehow limited to it. In recent years, several formal models are proposed aiming at
verifying properties at the transaction level [8, 9, 10], but to the authors’ knowledge, none of them
stresses specifically the correctness at the level of delta-cycles, which is mainly the contribution
of our model presented in this paper.

Among others, we have mentioned the work by Kroening et al. [8], pointing out that our symbolic
composition is similar to their parallel composition but we do more. In fact, the model in [8]
is based on the state/event analysis and it makes use of the formalization of labeled Kripke
structures [1]. Having separated labels on states and transitions in the model provides a syntactic
way of partitioning a SystemC model into a hardware and a software part. But states in their
model include all possible intermediate states within a process, not just those waiting-states as
in our model, and they also make a classification of processes as runnable processes, waiting
processes, etc., which is basically the implementation idea of SystemC scheduler and is avoided
in our model. On the other side, their labels on states allow effective manipulation of program
data, which can be a nice mechanism to be introduced into our model so that more properties can
be verified.

As for the generation of automata from SystemC models, two algorithms of generating finite state
machines are proposed in [4]. These are generation algorithms for traditional model-checking
adapted for SystemC and their model generates the states for the whole system from the very
beginning, then the algorithms focus on solving the state exploration problem using the grouping
technique. Instead, our approach has rather the component assembly nature, where predefined
abstractions are done during composition. State exploration is not a big problem in our model, at
least at the symbolic level, but these algorithms might be adapted in generating some extended
waiting-state automata where more information required to represented in states for further
verifications.

6. CONCLUSION

We propose in this paper a formal model based on traditional model-checking techniques. We
define a new form of automata — SystemC waiting-state automata, based on the analysis of the
waiting status of SystemC processes. The main goal of this model is to provide the capacity of
verifying SystemC models at the level of delta-cycles, but not limited to it. Further extensions of
the model are surely feasible for verifications at higher levels.

The procedure of the verification using SystemC waiting-state automata is clear: translate first
SystemC processes into SystemC minimal-step waiting-state automata, eventually infer affine
relations regarding transition counts of those small automata, combine these small automata
together and reduce the resulted automaton to the final one which conforms to the SystemC
scheduler, and pass the final automaton to the model-checking procedure. While the composition
and the reduction are clearly defined in the paper, the compilation is remained unclarified. A
possible approach of compiling SystemC code to waiting-state automata, is to integrate the
waiting states into the control flow graphs of processes, with every arrow getting out of a state
being labeled by a set of triggering events (ein in SystemC waiting-state automata), and every
arrow getting into a state being labeled by a set of effect events (eout in SystemC waiting-
state automata). Such an intermediate format can be translated into pure SystemC waiting-state
automata by abstracting the control information using predicates and symbolic functions.

SystemC Waiting-State Automata

Future work include case studies of large examples besides the long-term compilation work. Also,
the model itself demands probably further refinement so as to fit well in real cases, and proper
extensions might be necessary for verifying particular properties.

REFERENCES

[1] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant Sinha.
State/event-based software model checking. In Eerke A. Boiten, John Derrick, and Graeme
Smith, editors, Proceedings of the 4th International Conference on Integrated Formal
Methods (IFM ’04), volume 2999 of Lecture Notes in Computer Science, pages 128–147.
Springer-Verlag, April 2004.

[2] Rolf Drechsler and Daniel Große. Reachability analysis for formal verification of systemc.
In Euromicro Symposium on Digital Systems Design (DSD 2002), pages 337–340. IEEE
Computer Society, 2002.

[3] Daniel Große and Rolf Drechsler. Formal verification of LTL formulas for systemc designs.
In IEEE International Symposium on Circuits and Systems (ISCAS 2003), volume 5, pages
245–248, 2003.

[4] Ali Habibi, Haja Moinudeen, and Sofiène Tahar. Generating finite state machines from
systemc. In Georges G. E. Gielen, editor, DATE Designers’ Forum, pages 76–81. European
Design and Automation Association, Leuven, Belgium, 2006.

[5] Open SystemC Initiative. Systemc v2.0 functional specification, 2002.
[6] Open SystemC Initiative. Systemc v2.1 language reference manual, 2005.
[7] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical

properties. In Proceedings of the Sixth International Symposium on Static Analysis
(SAS’99), 1999.

[8] D. Kroening and N. Sharygina. Formal verification of systemc by automatic
hardware/software partitioning. In Proceedings of the Third ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2005. MEMOCODE ’05, pages
101–110, 2005.

[9] L. Maillet-Contoz M. Moy, F. Maraninchi. Lussy: a toolbox for the analysis of systems-
on-a-chip at the transactional level. In Proceedings of Fifth International Conference on
Application of Concurrency to System Design (ACSD 2005)., 2005.

[10] K.L. Man, Andrea Fedeli, Michele Mercaldi, and M.P. Schellekens. Systemcfl: An
infrastructure for a tlm formal verification proposal (with an overview on a tool set for practical
formal verification of systemc descriptions). In Proceedings of the IEEE East-West Design
& Test Workshop EWDTW, 2006.

[11] N. Mercouroff. An algorithm for analyzing communicating processes. In Mathematical
Foundations of Programming Semantics, 7th International Conference, Pittsburgh, PA, USA,
March 25-28, 1991, Proceedings, volume 598 of Lecture Notes in Computer Science.
Springer, 1992.

[12] A. Venet. Automatic determination of communication topologies in mobile systems. In
Proceedings of the Fifth International Symposium on Static Analysis (SAS’98), 1998.

[13] Arnaud Venet. Abstract interpretation of the pi-calculus. In Analysis and Verification of
Multiple-Agent Languages, 5th LOMAPS Workshop, Stockholm, Sweden., volume 1192 of
Lecture Notes in Computer Science. Springer, 1997.

[14] Yu Zhang, Franck Védrine, and Bruno Monsuez. Systemc waiting-state automata, 2007.
http://www-sop.inria.fr/everest/Yu.Zhang/docs/ZVM-systemc-long.pdf.

