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ABSTRACT

Sign language recognition is an effective solution for individuals with disabilities to communicate with others. It helps to convey information using 
sign language. Recent advances in computer vision (CV) and image processing algorithms can be employed for effective sign detection and classi-
fication. As hyperparameters involved in Deep Learning (DL) algorithms considerably affect the classification results, metaheuristic optimization 
algorithms can be designed. In this aspect, this manuscript offers the design of Sign Language Recognition using Artificial Rabbits Optimizer with 
Siamese Neural Network (SLR-AROSNN) technique for persons with disabilities. The proposed SLR-AROSNN technique mainly focused on the 
recognition of multiple kinds of sign languages posed by disabled persons. The goal of the SLR-AROSNN technique lies in the effectual exploitation 
of CV, DL, and parameter tuning strategies. It employs the MobileNet model to derive feature vectors. For the identification and classification of sign 
languages, Siamese neural network is used. At the final stage, the SLR-AROSNN technique makes use of the ARO algorithm to get improved sign 
recognition results. To illustrate the improvement of the SLR-AROSNN technique, a series of experimental validations are involved. The attained 
outcomes reported the supremacy of the SLR-AROSNN technique in the sign recognition process.

KEYWORDS

deep learning, disabled persons, computer vision, artificial rabbits optimizer, sign language recognition

INTRODUCTION

Sign languages are categorized as natural languages and 
display every feature of other natural languages. The spa-
tial nature and visual of sign languages and their changea-
bility provide a challenge for study in numerous domains, 
like computer vision (CV), linguistics, machine learning, 
computer graphics, natural language processing (NLP), and 
medicine (Bora et  al., 2023). Interpretation and linguistics 
of sign languages were considered with the meaning taken 
with the use of the sign language. In the early 1980s and late 
1970s with the detection of sign languages as a natural lan-
guage, linguist research got deep into this domain (Katoch 
et al., 2022). Neural aspects were regarded for completely 
grabbing the connection between phonetic and sign lan-
guages. NLP is concerned with analysis, a task similar to 
comprehension and interpretation issues (Novopoltsev et al., 

2023). Visualization and sign language synthesis is an area 
that manages the creation of signed speech and visualiza-
tion problems of sign languages. Sign language recognition 
is the scientific area accountable for capturing and trans-
lating sign speech utilizing artificial intelligence and CV 
methods (Mannan et al., 2022). In this concern, the effect of 
digital divide on the urban knowledge of people with disa-
bilities becomes a critical problem that needs to be solved. 
Considering the elderly in the global population, the percent-
age of susceptible, underrepresented people in the monarchy 
of smart city practices can be high (Das et al., 2023).

Deep learning (DL) remains a class of learning methods 
developed to define difficult structures by merging several 
nonlinear adjustments (Rwelli et al., 2022). The NNs related 
to building deep neural networks are the vital building blocks 
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of DL (Duy Khuat et al., 2021). Such approaches have ena-
bled progression in picture and sound processing, encom-
passing automated language processing, face identification, 
CV, voice recognition, spam identification, and various other 
fields like genomics and drug diagnosis. There are numerous 
potential uses (Aarthi et al., 2023). First, DL enabled compu-
tational processes with numerous processing layers to obtain 
a representation of various abstracted dimensions (Herath 
and Ishanka, 2022). DL finds unpredictability in large data-
sets with the use of the backpropagation approach to express 
how a mechanism must alter its inner variables that can be 
used to achieve a presentation in all levels from the symboli-
zation in the preceding layer (Grover et al., 2021).

This manuscript offers the design of Sign Language 
Recognition using Artificial Rabbits Optimizer with Siamese 
Neural Network (SLR-AROSNN) technique for persons 
with disabilities. The proposed SLR-AROSNN technique 
mainly focused on the recognition of multiple kinds of 
sign languages posed by disabled persons. The goal of the 
SLR-AROSNN technique lies in the effectual exploitation 
of CV, DL, and parameter tuning strategies. It employs the 
MobileNet model to derive feature vectors. For the identifi-
cation and classification of sign languages, Siamese neural 
network (SNN) is used. At the final stage, the SLR-AROSNN 
technique makes use of the ARO algorithm to get improved 
sign recognition results. To illustrate the improvement of the 
SLR-AROSNN technique, a series of experimental valida-
tions are involved.

RELATED STUDIES

Obi et  al. (2023) present American Sign Language (ASL) 
data and the CNN system. During the classifying process, 
the hand image can be sent over a filter and after filter was 
adopted, the hand was sent through a classifier that fore-
casts the class of the hand gesture. AlKhuraym et al. (2022) 
intend to address the ASL recognition issue and make sure 
tradeoffs are made between enhancing the classifier perfor-
mance and reducing the design of deep networks to diminish 
the computing cost. To be specific, we modified EfficientNet 
methods and produced lightweight DL methods for catego-
rizing Arabic Sign Language gestures. Alsaadi et al. (2022) 
present a real-time ArSLA detection method with the use of 
the DL structure. As a method, the proceeding steps were 
followed. Initially, trusted scientific ArSLA data are located. 
Then, better DL structures are selected by inspecting related 
studies. Next, an experiment is directed to test the earlier DL 
selected structure. Then, the DL structure is constructed on 
extracted outcomes. Eventually, a real-time detection system 
is designed.

Athira et  al. (2022) modeled a signer-independent 
vision-relevant gesture detection mechanism that can detect 
single-handed dynamic and static gestures, double-handed 
static gestures, and finger spelling words of the Indian Sign 
Language. In the preprocessing stage, utilizing skin color 
segmentation, the signs are extracted from real videos. A 
suitable feature vector was mined from the gesture series 
after the co-articulation elimination stage. The acquired 

features are utilized for classification with SVM. Galván-
Ruiz et  al. (2023) described one method devised for tran-
scribing Spanish Sign Language. In this study, a leap motion 
volumetric sensor was leveraged because of its capability to 
find hand movement in three dimensions.

Li et  al. (2020) explored the temporal semantic struc-
ture of sign videos for learning discriminatory features. 
To this end, the author developed new sign video segment 
representations that consider many temporal granularities, 
therefore easing the necessity for precise video segmenta-
tion. Using the presented segment representation, the author 
designed a new hierarchical sign video feature learning 
approach through a temporal semantic pyramid network 
named TSPNet. Jiang et  al. (2020) devised a new finger-
spelling detection approach that tested four different config-
urations of TL. Moreover, Adam algorithm was compared 
with root mean square propagation methods, and SGD with 
momentum, and comparison of utilizing data augmentation 
against not utilizing DA was implemented to get higher 
performance.

THE PROPOSED MODEL

This manuscript is aimed to develop an automated sign lan-
guage detection model, named SLR-AROSNN technique, 
for persons with disabilities. The proposed SLR-AROSNN 
technique mainly focused on the recognition of multiple 
kinds of sign languages posed by disabled persons. The 
goal of the SLR-AROSNN technique lies in the effectual 
exploitation of CV, DL, and parameter tuning strategies. 
Figure 1 illustrates the overall process of the SLR-AROSNN 
method.

Phase I: MobileNet model

Primarily, the presented model employs the MobileNet 
model to derive feature vectors. The MobileNet architec-
ture is designed for possibly running in mobile devices 
or embedded devices and is designed for efficiency 
(Taufiqurrahman et  al., 2020). The DW convolution is 
the initial layer of this model for reducing the amount of 
features. The DW separable convolution consists of two 
layers: pointwise and DW convolutions. With DW and sep-
arable convolutions, MobileNet significantly decreased the 
parameter of the convolutional layer while retaining bet-
ter classification performance. Also, a residual bottleneck 
block was introduced for reusing the feature map. Thus, 
MobileNetV2 could accomplish good classification per-
formance with a lesser training time. In the current study, 
we applied both pretrained networks. MobileNetV2 can 
be the same as original MobileNet, except that it exploits 
an inverted residual block with bottle necking feature. 
Compared to original MobileNet, it has a considerably 
lesser parameter number. MobileNet supports any input 
size bigger than 32 × 32, with bigger image sizes providing 
best performance. The major difference between both ver-
sions lies in the convolution layer.
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Phase II: the SNN model

For the identification and classification of sign languages, 
the SNN classifier is used. The SNN comprises a set of 
interconnected NN with similar parameters that are trained 
simultaneously, where learning and unified architecture can 
be directed by the contrastive loss function (Vasconcellos 
et al., 2023).

	 � ��� � � �
1 1

 (1 ) ( ) ( )  max 0,  
2 2

CLoss y d y d ,� (1)

where

	 � �1 2 1 2( ,  ) ( ) ( )d x x g x g x .� (2)

The contrastive loss function’s aim is to enhance clas-
sification accuracy by evaluating the difference between 
pairs of samples, represented by the binary label y, where 
y = 1 indicates dissimilarity and y = 0 represents similarity 
between samples. The function takes in two input samples, 
x

1
 and x

2
, and evaluates the Euclidean distance between 

their corresponding embedding’s (g(x
1
) and g(x

2
) mapping 

functions). Next, the similarity between embeddings is nor-
malized and calculated to form the d(x

1
, x

2
) distance meas-

ure. In the training, the parameter of g(x
n
) is adjusted to 

minimalize the error rate (loss) by decreasing the distance 
measure between identical samples when maximizing it 
between different examples. This can be accomplished by 
setting a threshold value (α) so that the distance between 

identical samples is lesser than α, whereas the distance 
between different samples is greater than α. This archi-
tecture is same as binary cross-entropy loss function that 
is widely applied in binary classification problems whose 
primary benefit is that it enables the multiclass problem 
to be transformed into binary classification problems. This 
allows to implementation of flexible comparisons namely 
comparing one class to several classes. In case of arthropod 
species, this flexibility can be highly effective in problems 
where there is countless classes and comparisons between 
classes are significant.

Phase III: ARO model

At the final stage, the SLR-AROSNN technique makes use of 
the ARO algorithm to get improved sign recognition results. 
ARO algorithm is based on the survival technique used by 
rabbits, namely random sheltering and detour searching 
(Pop et al., 2022). The exploration (detour searching) com-
pels a bunny to eat the grass nearby, toward other bunnies’ 
nests. A rabbit selects a shelter from the network of tunnels 
to hide in using the exploitation (random hiding) method. 
Additionally, energy levels of the rabbits are diminishing 
which makes them abandon the detour foraging strategy for 
transition (randomized hiding).

The detour foraging represents that every search agent 
is likely for updating the location toward another ran-
domly selected individual and contribute perturbation. The 

Figure 1:  Overall process of the SLR-AROSNN method. Abbreviation: SLR-AROSNN, Sign Language Recognition using 
Artificial Rabbits Optimizer with Siamese Neural Network.
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mathematical expression of detour foraging can be given as 
follows:

� � � � �
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Where +
�

1( )iV t  represents the updated ith candidate loca-
tion, n indicates the population size, L indicates the running 
length that defines the velocity of motion while conducting 
detour foraging, t represents the existing iteration, T char-
acterizes the count of iterations, d indicates the problem 
dimension, randperm produces a random permutation from 
1 to problem dimension, round indicates the rounding to the 
nearest integer, r

1
, r

2
, and r

3
 show the random value in the 

interval of [0,1], and n
1
 indicates the standard distribution 

number between. The perturbation in Equation (3) assists 
ARO to conduct a global search and escape local minima 

or maxima. This unique methodology of foraging includes 
going toward other bunny’s nests rather than their own, 
which considerably assists in exploration and ensures a 
global search.

At all the iterations of ARO, a rabbit continuously gen-
erates d holes along all the dimensions, randomly choos-
ing a tunnel for hiding to diminish the probability of being 
intruded upon. The jth burrows of the ith rabbits are shown 
below.
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Figure 2:  Flowchart of the ARO algorithm. Abbreviation: ARO, Artificial Rabbits Optimizer.

Table 1:  Details of the database.

Class No. of samples
0 100
1 100
2 100
3 100
4 100
5 100
6 100
7 100
8 100
9 100
Total number of samples 1000
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Figure 3:  Sample images.

Table 2:  Recognition outcome of the SLR-AROSNN 
approach under varying epochs.

Class   Accuy   Precn   Reca1   Fscore   Gmeasure

500 epochs
  0   98.50   91.26   94.00   92.61   92.62
  1   99.40   96.08   98.00   97.03   97.03
  2   99.20   96.00   96.00   96.00   96.00
  3   99.70   98.99   98.00   98.49   98.49
  4   99.00   96.88   93.00   94.90   94.92
  5   98.90   95.88   93.00   94.42   94.43
  6   99.80   99.00   99.00   99.00   99.00
  7   99.20   95.10   97.00   96.04   96.04
  8   98.60   93.00   93.00   93.00   93.00
  9   99.10   95.05   96.00   95.52   95.52
  Average   99.14   95.72   95.70   95.70   95.71
1000 epochs
  0   92.70   62.86   66.00   64.39   64.41
  1   93.80   70.65   65.00   67.71   67.77
  2   93.40   69.77   60.00   64.52   64.70
  3   92.10   58.68   71.00   64.25   64.55
  4   91.50   60.56   43.00   50.29   51.03
  5   90.60   52.78   57.00   54.81   54.85
  6   94.50   68.60   83.00   75.11   75.45
  7   92.20   62.22   56.00   58.95   59.03
  8   92.80   64.58   62.00   63.27   63.28
  9   91.80   58.18   64.00   60.95   61.02
  Average   92.54   62.89   62.70   62.42   62.61
1500 epochs
  0   95.50   76.70   79.00   77.83   77.84
  1   96.10   82.11   78.00   80.00   80.03
  2   95.90   79.80   79.00   79.40   79.40
  3   93.40   65.74   71.00   68.27   68.32
  4   93.10   67.42   60.00   63.49   63.60
  5   93.90   70.10   68.00   69.04   69.04
  6   95.70   77.14   81.00   79.02   79.05
  7   93.60   68.37   67.00   67.68   67.68
  8   95.10   72.97   81.00   76.78   76.88
  9   94.50   73.68   70.00   71.79   71.82
  Average   94.68   73.40   73.40   73.33   73.37
2000 epochs
  0   96.60   81.73   85.00   83.33   83.35
  1   98.10   90.10   91.00   90.55   90.55
  2   97.50   84.40   92.00   88.04   88.12

Class   Accuy   Precn   Reca1   Fscore   Gmeasure

  3   97.60   89.58   86.00   87.76   87.77
  4   96.50   85.71   78.00   81.68   81.77
  5   96.30   81.82   81.00   81.41   81.41
  6   98.60   93.00   93.00   93.00   93.00
  7   96.40   81.37   83.00   82.18   82.18
  8   97.50   87.13   88.00   87.56   87.56
  9   97.50   88.66   86.00   87.31   87.32
  Average   97.26   86.35   86.30   86.28   86.30
2500 epochs
  0   97.60   85.85   91.00   88.35   88.39
  1   97.20   88.30   83.00   85.57   85.61
  2   97.70   86.67   91.00   88.78   88.81
  3   97.30   86.14   87.00   86.57   86.57
  4   96.30   84.62   77.00   80.63   80.72
  5   96.20   81.63   80.00   80.81   80.81
  6   98.40   92.00   92.00   92.00   92.00
  7   96.80   82.08   87.00   84.47   84.50
  8   97.60   88.00   88.00   88.00   88.00
  9   96.90   84.85   84.00   84.42   84.42
  Average   97.20   86.01   86.00   85.96   85.98
3000 epochs
  0   96.60   80.56   87.00   83.65   83.72
  1   97.60   89.58   86.00   87.76   87.77
  2   97.40   87.00   87.00   87.00   87.00
  3   96.00   78.85   82.00   80.39   80.41
  4   96.00   83.33   75.00   78.95   79.06
  5   95.90   82.42   75.00   78.53   78.62
  6   97.10   82.57   90.00   86.12   86.20
  7   95.70   79.38   77.00   78.17   78.18
  8   97.50   85.71   90.00   87.80   87.83
  9   96.80   84.00   84.00   84.00   84.00
  Average   96.66   83.34   83.30   83.24   83.28

Abbreviation: SLR-AROSNN, Sign Language Recognition using 
Artificial Rabbits Optimizer with Siamese Neural Network.

Table 2:  Continued.
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where d is the burrows generated in the region of a rabbit, 
H indicates the hiding parameter and the value is declined 
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linearly from 1 to 1/T with the random perturbation through 
iteration. Mainly, hole was generated in a larger area of the 
bunny. This neighborhood decreases as the amount of itera-
tions increases. Equation (10) is recommended to model the 
random hiding method.

	 � � � � � �
�� � �

i 4 , i1 ( ( ) )( ) ( ) ( )i i jV t X t R r b t X t � (10)
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where r
4
 and r

5
 denote the random numbers within [0,  1]. �

, ( )i jb t  denotes a randomly chosen burrow for hiding, 

Afterward either random hiding or detour foraging, the 
location of the ith rabbit is upgraded using the following 
equation:
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If the candidate fitness of the ith rabbit is higher than 
the existing location fitness, the bunny departs the existing 
position and remains at the candidate location generated 
by using Equation (3) or Equation (10). A factor that aims 
to imitate the transition from exploration to exploitation is 
given below:

	
� �� �� �
� �

1
( ) 4 1  

t
A t ln

T r
.� (14)

In Equation (14), r indicates the random integer within 
[0, 1]. Once the factor A(t) > 1, the process finds the explora-
tion (solution globally); once the factor A(t) ≤ 1, the process 
finds the exploitation (solution locally). Figure 2 depicts the 
flowchart of the ARO algorithm.

The ARO method not only derives a fitness function 
to accomplish better classification performance but also 
defines a positive integer to represent the best performance 
of the candidate solution. The decline of the classification 
error rate is regarded as the fitness function, as given in 
Equation (15).

	 � �
.   

( ) 100 
 .  i

No of misclassified samples
fitness x

Total No of samples
� (15)

EXPERIMENTAL VALIDATION

Comprising 1000 samples with 10 classes as demonstrated 
in Table 1. Figure 3 represents the sample images.

Figure 4:  Average outcome of the SLR-AROSNN approach 
under varying epochs. Abbreviation: SLR-AROSNN, Sign 
Language Recognition using Artificial Rabbits Optimizer with 
Siamese Neural Network.

Figure 5:  Accuracy curve of the SLR-AROSNN approach under 500 epochs. Abbreviation: SLR-AROSNN, Sign Language 
Recognition using Artificial Rabbits Optimizer with Siamese Neural Network.
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In Table 2 and Figure 4, the recognition results of the 
SLR-AROSNN method are investigated under several 
epochs. The results highlighted that the SLR-AROSNN 
technique gains improved results under each epoch. On 
500 epochs, the SLR-AROSNN technique obtains aver-
age accu

y
, prec

n
, reca

1
, F

score
, and G

measure
 of 99.14, 95.72, 

95.70, 95.70, and 95.71%, respectively. Simultaneously, on 
1500 epochs, the SLR-AROSNN technique obtains average 
accu

y
, prec

n
, reca

1
, F

score
, and G

measure
 of 94.68, 73.40, 73.40, 

73.33, and 73.37%, respectively. Concurrently, on 2500 

epochs, the SLR-AROSNN method obtains average accu
y
, 

prec
n
, reca

1
, F

score
, and G

measure
 of 97.20, 86.01, 86, 85.96, 

and 85.98%, respectively. Lastly, on 3000 epochs, the SLR-
AROSNN technique obtains average accu

y
, prec

n
, reca

1
, 

F
score

, and G
measure

 of 96.66, 83.34, 83.30, 83.24, and 83.28%, 
respectively.

Figure 5 inspects the accuracy of the SLR-AROSNN 
method in the training and validation process on 500 epochs. 
The figure indicates that the SLR-AROSNN technique 
reaches increasing accuracy values over increasing epochs. 

Figure 6:  Loss curve of the SLR-AROSNN approach under 500 epochs. Abbreviation: SLR-AROSNN, Sign Language 
Recognition using Artificial Rabbits Optimizer with Siamese Neural Network.

Figure 7:  PR curve of the SLR-AROSNN approach under 500 epochs. Abbreviation: SLR-AROSNN, Sign Language 
Recognition using Artificial Rabbits Optimizer with Siamese Neural Network. PR, precision-recall.
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Furthermore, the increasing validation accuracy over train-
ing accuracy shows that the SLR-AROSNN method learns 
effectively on 500 epochs.

The loss analysis of the SLR-AROSNN method in train-
ing and validation is depicted on 500 epochs in Figure 6. The 
results indicate that the SLR-AROSNN technique obtains 
closer values of training and validation loss. The SLR-
AROSNN method learns efficiently on 500 epochs.

A brief precision-recall (PR) curve of the SLR-AROSNN 
technique is demonstrated on 500 epochs in Figure 7. The 
outcomes stated that the SLR-AROSNN method results in 
increasing values of PR. In addition, it is noticeable that the 
SLR-AROSNN technique can reach higher PR values in all 
classes.

In Figure 8, an ROC study of the SLR-AROSNN tech-
nique is revealed on 500 epochs. The figure described that 
the SLR-AROSNN system resulted in improved ROC val-
ues. Besides, the SLR-AROSNN technique can extend 
enhanced ROC values on all classes.

In Table 3 and Figure 9, the overall results of the SLR-
AROSNN method are compared with recent approaches 
(Dhulipala et al., 2022). Based on accu

y
, the SLR-AROSNN 

Figure 8:  ROC curve of the SLR-AROSNN approach under 500 epochs. Abbreviation: SLR-AROSNN, Sign Language 
Recognition using Artificial Rabbits Optimizer with Siamese Neural Network.

Table 3:  Comparative outcome of the SLR-AROSNN 
method with other algorithms.

Methods   Accuy   Precn   Reca1   Fscore

Random forest   98.77   93.34   94.5   94.03
Decision tree   98.62   94.51   94.78   93.80
LSTM model   95.41   93.22   94.02   93.22
CNN model   97.32   94.37   93.16   93.33
SHADU-DL   98.63   94.86   94.52   93.88
SLR-AROSNN   99.14   95.72   95.70   95.70

Abbreviation: SLR-AROSNN, Sign Language Recognition using 
Artificial Rabbits Optimizer with Siamese Neural Network.

Figure 9:  Comparative outcome of the SLR-AROSNN 
approach with other algorithms. Abbreviation: SLR-AROSNN, 
Sign Language Recognition using Artificial Rabbits Optimizer 
with Siamese Neural Network.

technique attains increasing accu
y
 of 99.14% while the 

RF, DT, LSTM, CNN, and SHADU-DL techniques obtain 
decreasing accu

y
 of 98.77, 98.62, 95.42, 97.32, and 98.63%, 

correspondingly. Also, based on prec
n
, the SLR-AROSNN 

technique attains increasing prec
n
 of 99.14% while the RF, DT, 

LSTM, CNN, and SHADU-DL techniques obtain decreasing 
prec

n
 of 98.77, 98.62, 95.42, 97.32, and 98.63%, correspond-

ingly. Similarly, based on reca
1
, the SLR-AROSNN tech-

nique attains increasing reca
1
 of 99.14% while the RF, DT, 

LSTM, CNN, and SHADU-DL techniques obtain decreasing 
reca

1
 of 98.77, 98.62, 95.42, 97.32, and 98.63%, correspond-

ingly. Finally, based on F
score

, the SLR-AROSNN technique 
attains increasing F

score
 of 99.14% while the RF, DT, LSTM, 

CNN, and SHADU-DL techniques obtain decreasing F
score
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of 98.77, 98.62, 95.42, 97.32, and 98.63%, correspondingly. 
Thus, the SLR-AROSNN technique can be employed for 
accurate recognition purposes.

CONCLUSION

This manuscript aimed to develop an automated sign lan-
guage detection model, named the SLR-AROSNN technique 
for persons with disabilities. The proposed SLR-AROSNN 
technique mainly focused on the recognition of multiple 
kinds of sign languages posed by disabled persons. The 
goal of the SLR-AROSNN technique lies in the effectual 
exploitation of CV, DL, and parameter tuning strategies. It 
employs the MobileNet model to derive feature vectors. For 

the identification and classification of sign languages, the 
SNN classifier is used. At the final stage, the SLR-AROSNN 
technique makes use of the ARO algorithm to get improved 
sign recognition results. To illustrate the improvement of 
the SLR-AROSNN technique, a series of experimental val-
idations are involved. The attained outcomes exhibited the 
supremacy of the SLR-AROSNN technique in the sign rec-
ognition process.
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