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Abstract: At present, timely and accurate diagnosis and effective treatment of Eps-
tein-Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV en-
codes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory res-
ponse, regulate cellular apoptosis, promote tumor genesis and metastasis, and regula-
te tumor cell metabolism. Herein, we have collected the specific expression data of 
EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBV-
associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infec-
tion (CAEBV), and EBV-related tumors, and proposed the potential value of EBV-
miRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBV-
related fever, as well as therapeutic targets for drug development. 
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1. INTRODUCTION
As a successful member of the most familiar human

DNA viruses, Epstein-Barr Virus (EBV) plays a part in 
the induction of various diseases, which include infec-
tious mononucleosis (IM), Epstein-Barr Virus-asso-
ciated hemophagocytic lymphohistiocytosis (EBV-
HLH), and chronic active Epstein-Barr Virus infection 
(CAEBV), with over 90% of the global adult population 
infected [1]. Primary infection of the virus, which is 
mainly transmitted by salivary aerosol exposure [2], 
generally occurs in the oral cavity, chiefly infecting B 
lymphocytes and relatively few epithelial cells [3]. Fo-
llowing acute infection, the lifelong persistence of EBV 
in hosts is achieved via the strategy of latency [4]. In 
immunocompetent individuals, EBV reactivation is inhi-
bited by effective cytotoxic cellular immunity [5], while 
in immunocompromised patients, the expression of 
BZLF1 and BRLF1, two critical immediate-early (IE) 
genes of EBV-producing transactivator proteins that 
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activate the cis-acting element oriLyt initiating viral lytic 
replication, triggers the switch from the latent to the 
lytic phase [6-8]. 
 EBV was the first virus identified to encode viral mi-
croRNAs [9, 10]. MicroRNAs (miRNAs), a group of 
small non-coding RNAs, exert suppressive effects on 
target mRNAs and play a vital role in gene expression 
through posttranscriptional regulation [11-14]. Discove-
ring effective diagnostic and therapeutic targets is criti-
cal to precise treatment and better outcome. MicroR-
NAs may act as measurable epigenomic biomarkers 
[15], which indicate biological or pathogenic processes 
or the body’s responses to an exposure or intervention 
(e.g., therapeutic treatments) [16, 17]. In this review, 
the respective implications of the differential expression 
of EBV-encoded miRNAs in EBV-associated fever will 
be considered in general, along with their potential sig-
nificance, not only as sensitive indicators for the biolo-
gical detection but also as therapeutic targets. 

2. GENETIC CHARACTERISTICS OF EBV-
MIRNAs
 Based on the miRNA database (http://www.mirbase. 
org/), Pfeffer et al. reported that EBV could encode 25 
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precursor miRNAs (pre-miRNAs), which generate 44 
mature miRNAs after cleavage [9]. While the smaller 
Bam HI fragment H rightward open reading frame 1 
(BHRF1)-cluster encodes 3 pre-miRNAs, which are 
processed into 4 mature miRNAs, the larger Bam HI 
fragment A rightward transcript (BART)-cluster enco-
des 22 pre-miRNAs, which are processed into 40 matu-
re miRNAs (Fig. 1) [18, 19]. EBV switches between 
latent and lytic infection cycles (Fig. 2). The latent in-
fection can be divided into at least four distinct stages 
(latency 0, latency I, latency II, and latency III). BHRF1 
miRNAs show high abundance in type III latency and 
lytically-infected cells but are particularly undetectable 
in type I and II latency [20-22]. On the contrary, BARTs 
are found in all EBV-positive cell lines [23]. EBV-
miRNAs employ three means of migrating into the host 
circulatory system: the passive release of broken cells, 
the transcellular transport of exosomes, and the com-
bination with RNA binding protein. After invading adja-
cent endothelial cells, viral miRNAs guide gene silen-
cing by blocking mRNA translation and/or activating 
mRNA degradation [18, 19], and thus are closely rela-
ted to tumorigenesis, immune escape, inflammation, 
latent infection, and viral lytic replication [24-26]. The 
stable and sustained EBV-miRNAs expression in the 
peripheral blood and infected cells, as well as the di-
verse functions EBV-miRNAs exert, indicate its latent 
capacity for disease diagnosis [27, 28]. Clinical data 
have shown that common EBV detection methods and 
treatments have their limitations in treating EBV-related 
fever [29-33].    

3. THE INFLUENCE OF EBV-MIRNAS ON IM-
MUNE HOMEOSTASIS 
3.1. EBV-miRNAs Regulate Inflammation 
 EBV-miRNAs are crucial immunomodulatory factors 
that target multiple inflammation-related pathways, re-
sulting in the hyper-activation and inhibition of inflam-
matory reactions [25, 34]. On the one hand, EBV-
miRNAs can initiate the inflammatory cascade and 
evoke an uncontrollable inflammatory process called 
"cytokine storm". The resultant elevated production of 
various pro-inflammatory cytokines (i.e., TNF-α, IFN-γ, 
IL-1, and IL-6) triggers the massive action and mono-
clonal proliferation of EBV-infected cytotoxic T 
lymphocytes (CTL) and macrophages [35, 36]. For 
example, high amounts of BART3-3p in EBV-HLH [37] 
were deduced to upregulate the IL-6 level via targeting 
importin 7 (IPO7) [38],  an important receptor for the 
AP-1 member c-Jun [39, 40].  
 On the other hand, present documents have sug-
gested the essential role of EBV-miRNAs in restricting 
inflammation responses. The exosome-mediated 
transcellular transmission (from EBV-positive B cells to 
EBV non-infected B cells) of BART15-3p resulted in the 
reduction of IL-18 and IL-1β in inflammasomes via tar-
geting the miR-223 binding site in the 3'-untranslated 
region (UTR) of NLRP3 [41]. The significant down-
regulation of IL-6 receptor genes (IL-6 signal transdu-
cer and IL-6 receptor α) is demonstrated to be related 
to BART-6-3p in Burkitt lymphoma [42]. BART16 blo-
cked the TNFα-mediated activation of the NFκB 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of the genomic position of EBV-miRNAs. EBV can encode 25 precursor miRNAs (pre-miRNAs) 
located within 2 clusters of the genome: BART cluster and BHRF1 cluster. The location of 44 mature miRNAs processed by 25 
pre-miRNAs is shown in the figure. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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signaling pathway by silencing TRIM8 (Tripartite Motif 
Containing 8) [38]. Skinner et al. found that IL-1 recep-
tor-1, which conjugates with IL-1β and induces pro-
inflammatory actions, was downregulated by cellar 
BHRF1-2-5p during EBV infection [43]. Data mining on 
the basis of AGO PAR-CLIP experiments speculated 
that various virus-encoded miRNAs might affect interfe-
ron signaling. The prediction results suggested BART1, 
3, 5, 10, 13, 14 and 19 as interference in the production 
of IFN-α mediated by type I IFN–driven pathway, whe-
reas BART1, 2, 3, 7, 16, 17 and 22 negatively regula-
ted the downstream effect of type I IFN signaling. Two 
vital factors of the type-I IFN pathway, FBOX21 and 
TRIM65, were considered as predicted targets of 
BART21-5p and 7-3p, respectively [38]. BART16 dam-
pens CREB-mediated IFN signaling via direct downre-

gulation of CREB-binding protein in EBV-transformed B 
cells and gastric cancer cells [44]. The amplification of 
two LMP1-mediated inhibitory immune checkpoint li-
gands, PD-L1 and PD-L2, was fine-tuned by miRNA-
BHRF1-2-5p to achieve context-dependent immuno-
modulatory effects [45]. The over-expression of 
BART6-3p dampened the innate immune responses 
through RIG-I signaling, and thus, specifically downre-
gulated IFN-β production [46].  

3.2. EBV-miRNAs Block Antigen Presentation 
 Besides modulating innate immunity by controlling 
inflammation, EBV-encoded miRNAs play a promotive 
part in immune evasion by interfering with antigen pro-
cessing and presentation. Interference with major his-
tocompatibility complex (MHC) antigen presentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Models of Epstein–Barr virus infection and related diseases. The transient proliferation of EBV-positive B cells and 
over-reaction of cytotoxic T cells (CD4 + and CD8 + T lymphocytes) cause infectious mononucleosis [102]. According to the 
germinal center model [103], EBV infection causes growth transformation (latency III) of naive B cells in local lymphoid tissues, 
during which all EBV nuclear antigens (EBNAs), EBV encoded small RNAs (EBERs) and latent membrane proteins (LMPs) are 
expressed, thus inducing the T-cell-mediated immune reaction. At this moment, a portion of the latency III cells is transformed 
into germinal centre B cells that express LMP-1, LMP-2 and EBNA-1 (latency II) [2, 104]. They eventually become memory B 
cells that carry EBV viral genes, which express no viral proteins [2, 104] (latency 0) that enables their escape from host immune 
recognition [103]. EBV-latently infected memory B cells enter the peripheral blood circulation to form a lifelong persistent and 
asymptomatic infection [105]. During their stable proliferation in vivo, memory B cells undergo cell division (latency I) [2] and 
express the EBNA-1 gene to facilitate viral DNA replication. Different stages of latent infection can be associated with various 
lymphoproliferative diseases (LPD) and lymphoma [106]. When memory B cells at the pharyngeal lymphatic ring differentiate 
into plasma cells, they will reactivate EBV lytic infection through the expression of BZLF1, the key immediate-early (IE) gene of 
EBV [7, 8], producing new infectious virus particles. Nasopharyngeal carcinoma is associated with infected epithelial cells. IM, 
infectious mononucleosis; PTLD, post-transplant lymphoproliferative disorder; AIDS, acquired immunodeficiency syndrome; 
DLBCL, diffuse large B-cell lymphoma; EBV-HLH, Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis; CAEBV, 
chronic active Epstein-Barr virus infection; NPC, nasopharyngeal carcinoma; HL, Hodgkin's lymphoma; T/NK LPD, T/NK-cell 
lymphoproliferative disease; BL, Burkitt's lymphoma; GC, gastric carcinoma; EBER, EBV encoded small RNA; BHRF1, Bam HI 
fragment H rightward open reading frame 1; BART, Bam HI fragment A rightward transcript; EBNA, EBV nuclear antigen; 
EBNA-LP, EBNA leader peptide; LMP, latent membrane protein. 
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Fig. (3). EBV-miRNAs modulating inflammatory signaling pathways. This figure illustrates the strategies EBV-encoded miRNAs 
apply to regulate the inflammatory signaling pathways in B cells during EBV infection.  
1) NF-κB pathway: BART15-3p blocks the maturation of IL-1β, IL-16, and IL-18 by inhibiting NLRP3 recognition in NLRP3- NF-
κB pathway. BHRF1-2-5p and BART17 serve as inhibitors of protein kinases in the NF-κB pathway. 
2) Type I interferons signaling pathway: BART6-3p, 13 and 19 block RIG-I recognition of viral double-stranded (ds) RNA, which 
subsequently perturbs the activation of type I interferons signaling pathway. BART1, 2, 3, 7, 8, and 20-5p negatively regulate the 
downstream effect of type I IFN signaling. 
3) MAPK pathway: BART3 and 22 hamper MKK3/6 phosphorylation in p38. 
4) JAK-STAT pathway: BART8 and 20-5p suppress STAT1 activity.  
5) Hippo pathway: BART3-3p triggers the activation of AP-1 trimer, thereby upregulating IL-6 expression. BART16 directly tar-
gets CREB binding protein (CBP) to block CREB-dependent transcription. BART1, 3, 5, 10, 13, 14, and 19 indirectly exert IFN-α 
repression, while BART7-3p and 21-3p indirectly exert IFN-β repression. BART16 downregulates TNF-α expression. 
Besides, the cascade effects of inflammatory cytokines can be disturbed by EBV-miRNAs, and BHRF1-2-5p and BART6-3p con-
tribute to the immune evasion of cytokine-induced inflammatory response via targeting IL-1-receptor 1 and IL-6-receptor, respec-
tively. Symbols: ↓ activation; � inhibition; ---–>indirect effect. 
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enables viral miRNAs to evade the adaptive immune 
response [47]. In nasal NK-cell lymphoma, BART8 and 
20-5p suppressed the IFN-γ/STAT1 signaling pathway, 
resulting in blockage of MHC class-I antigen presenta-
tion to CD8+ T cells [48]. MHC Class I Polypeptide-
Related Sequence B (MICB) in EBV-immortalized 
lymphoblastoid cell lines (LCL) was speculated to be 
the potential target of BART1-3p and 3 [49]. BHRF1-2, 
BART1 and 2 regulated the secretion of lysosomal en-
zymes, including cathepsin B (CTSB), legumain 
(LGMN) and IFN-γ-inducible lysosomal thiol reductase 
(IFI30), to interfere with MHC class-II antigen presenta-
tion [50]. BART1, 2, 22 and BHRF1-2 were specific in 
the suppression of IL-12 secretion and the differentia-
tion of CD4+ into Th1-type cells, thus interfering with 
MHC class-II antigen processing and presentation [51]. 

3.3. EBV-miRNAs Contribute to Interference with 
Immune Surveillance of T Cells  
 EBV-miRNAs function as inhibitors of T cell-
mediated immunity, thus prompting immune escape 
[52]. The expression of LMP-1, with strong immunoge-
nicity, can be down-regulated by BART clusters (i.e., 
BART 1-5p, 3, 16, 17-5p, 5-5p, 19-5p, 20) [53], which 
disturb the immune recognition function of cytotoxic T 
cells (CTLs). Likewise, the down-regulation of cytoki-
nes, such as IL-12, induced by EBV-encoded miRNAs 
blocks the recognition of EBV-specific CD8+ effector T 
cells [54] (Fig. 3). In EBV-positive CD4+ T cells, 
BART17 and BHRF1-3 enable EBV to evade the im-
mune surveillance of CD8+ T cells by repressing the 
peptide transporter subunit TAP2 [54]. In EBV-related 
non-Hodgkin's lymphomas, the upregulation of IFN-
inducible T cell-attracting chemokine C-X-C motif che-
mokine ligand 11(CXCL-11) by BHRF1-3 suppressed 
the recruitment of cytotoxic T lymphocytes to infection 
sites during the adaptive immune response [55].  

4. OTHER STRATEGIES EBV-MIRNAS APPLY 
TO MAINTAIN INFECTION AND REPLICATION  

4.1. EBV-miRNAs Suppress the Viral Lysis of EBV 
 The present findings confirm the vital role of EBV-
miRNAs in inhibiting viral lytic replication and maintai-
ning latent virus infection. Jung et al. proved that 
BART20-5p from BART cluster 2 could directly down-
regulate the expression of BZLF1 and BRLF1 [56]. 
BART18-5p was demonstrated to suppress the level of 
MAP3K2, thereby directly targeting BZLF1 and 
suppressing viral cleavage and replication in the early 
stage of infection [57].  

4.2. EBV-miRNAs Modulate Cell Apoptosis 
 During the early and middle infection periods, EBV 
encodes specific miRNAs with anti-apoptotic effects. 
Many recent studies have reported that EBV-encoded 
miRNAs could interfere with pro-apoptotic genes ex-
pression and apoptosis-related gene receptors, such 

as PUMA, BIM, Caspase3, BAD, TOMM22, and others 
[24]. 
Nevertheless, a few EBV-miRNAs (BART5-5p, 15-3p, 
16-5p, 17-3p, and 20-3p) inducing apoptosis in EBV-
associated gastric carcinoma cells were encoded du-
ring the late stages of infection, leading to cell lysis and 
the release of progeny virus [58, 59].  

4.3. EBV-miRNAs Promote Tumorigenesis and Me-
tastasis 
 A growing number of studies have demonstrated 
the contribution of EBV-miRNAs to pro-tumorigenic 
inflammation, a vital constituent of the tumor microenvi-
ronment (TME) [60]. Secreted by EBV-infected B cells, 
BART-miRNAs can be released into the peripheral cir-
culation through exosomes and can remotely induce 
the inflammatory reaction of monocyte and macropha-
ge, leading to increased expression of TNF-α, IL-10, 
and ARG-1 [61]. BART11 promotes chronic inflamma-
tion and carcinogenesis of nasopharyngeal and gastric 
cancer by inhibiting the anti-tumor effect of forkhead 
box p1 (FOXP1) [62].  
 Research has shown a complex relationship bet-
ween EBV-miRNAs and the production, invasion, and 
metastasis of EBV-related malignant tumors, which 
remains to be elucidated. Ma et al. showed that 
suppressed expression of PRDM1, one vital tumor 
suppressor gene targeted by BHRF1-2, inhibited apop-
tosis and enhanced the proliferative, invasive, and me-
tastatic capacity in LCL [63]. By contrast, BART6-3p-
induced downregulation of  LOC553103, a  long non-
coding RNA, inhibits or even reverses the epithelial-to-
mesenchymal transition process, hence repressing the 
development and metastasis of EBV-positive tumors 
[59, 64].  

5. THE SIGNIFICANCE OF EBV-MIRNAS AS A 
POTENTIAL BIOMARKER IN EBV-RELATED 
FEBRILE DISEASES 

5.1. Infectious Mononucleosis (IM) 
 As an acute and self-limited disease, the dynamic 
expressional profiles of circulating EBV-miRNAs may 
serve as a breakthrough for disease prediction, diag-
nosis, and prognosis. Gao et al. quantified the EBV-
miRNAs in B cells and plasma obtained from children 
with IM at days 0, 7, and 14. In the very early stages 
(day 0 and day 7) of primary EBV infection, abundant 
expression of almost all EBV-miRNAs (especially 
BART13-1, BHRF1-1, and 1-2-3p), apart from BART2-
3P, 20-3p, and 21-5p, indicated active virus replication. 
Besides, a higher level of BHRF1-derived miRNA ex-
pression was found. With the progress of IM, the ex-
pressions of almost all EBV-miRNAs, especially 
BHRF1, were remarkably repressed [65]. These re-
search results are in agreement with others [66-70]. 
Possible explanations could be the pro-apoptosis role 
of the early EBV lytic protein BHRF1 in latency III [69, 
71].  
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 Hitherto, the distinction between EBV-induced pri-
mary IM and EBV-HLH remains a clinical dilemma sin-
ce they display similar clinical presentations and non-
specific indicators [72]. A small-scale experiment 
analyzing EBV-miRNAs in peripheral blood showed 
that only  BART5-3p and 16 were apparently upregula-
ted during acute infection (after 1-2 months) [70]. The 
different expression patterns of EBV-miRNAs are con-
sidered as biomarkers for differential diagnosis bet-
ween IM and HLH.  
 Moreover, the dynamic expression of serum 
BART16 in EBV-IM displays its potential as a novel 
biomarker for monitoring IM progression.  Additional 
experiments further suggested that upregulated ex-
pression of BART16 directly decreased the level of Cu-
llin Associated And Neddylation Dissociated 1 
(CAND1), a known inhibitor of virus replication, and 
thus dampened innate immunity. The proven mecha-
nism of BART16 indicates that BART16 inhibitors can 
be therapeutic agents for IM. 

5.2. Epstein-Barr Virus-associated Hemophagocytic 
Lymphohistiocytosis (EBV-HLH) 
 Increasing data support that high expression of in-
flammatory factors is evidently associated with critical 
clinical conditions and poor prognosis. It is worth noting 
that BART3-3p can upregulate IL-6 levels by targeting 
IPO7, while BART3-3p is highly expressed in EBV-HLH 
[39]. Thus, BART-derived miRNAs are inferred to indu-
ce an over-active inflammatory cytokine response, 
which consequently leads to a cytokine storm with a 
persistent high fever. Pro-inflammatory EBV-miRNAs, 
especially miRNA-BART3-3p, may be potential thera-
peutic targets for clinical remission and prognosis im-
provement [73]. 
 As mentioned above, the similarity of clinical mani-
festation and the absence of specific biomarkers create 
a clinical conundrum in differential diagnoses between 
IM and EBV-HLH. One particular study found that the 
plasma and CD8+T cell levels of most BART-encoded 
miRNAs (BART1-3p, 1-5p, 3-3p, 3-5p, 5-3p, 6-3p, 6-5p, 
8-3p, 8-5p, 9-5p, 10-1, 11-3p, 11-5p, 12-1, 13-1, 13*-1, 
14-1, 15-1, 16-1, 17-3p, 17-5p, 18-3p, 19-3p, 19-5p, 
20-5p, 21-3p and 22) in EBV-triggered HLH were much 
higher than those in healthy controls and EBV+ IM, 
suggesting the latent potential of EBV-encoded miR-
NAs quantification to distinguish EBV-induced HLH 
from IM [66].  
 During and after chemotherapy of EBV-HLH, the 
continuous downward tendency of the plasma 
BART16-1 levels indicated good prospects of BART16-
1 in the evaluation of the EBV-HLH process [66].  

5.3. Chronic Active EBV Infection (CAEBV) 
 By comparing the expression of EBV-miRNAs and 
EBV-DNAs in plasma, Kawano et al. suggested 
BART2-5p, 13, and 15 as possible molecular biomar-
kers of the prognosis and severity assessment of 
CAEBV [70]. In contrast to the failure of plasma EBV-
DNA loads in differentiating between active and inacti-

ve thresholds, the detection of plasma BART13 levels 
can clearly determine whether CAEBV is in the active 
phase. BART2-5p and 15 can identify whether CAEBV 
achieves complete remission. The experiment also 
showed particularly higher levels of serum BART1-5p, 
2-5p, 5, and 22 in CAEBV-T/NK in contrast to those in 
IM and the healthy control group. Therefore, serum 
BART1-5p, 2-5p, 5, and 22 were supposed to be useful 
adjuncts to discriminate between two diseases with 
similar clinical presentations. Moreover, plasma levels 
of BART2-5p, 4, 7, 13, 15, and 22 in CAEBV-T/NK pa-
tients suffering the active, progressing state were signi-
ficantly higher than those in an inactive state [70]. 
 A comprehensive viral miRNA detection in children 
with CAEBV, EBV-HLH and EBV+ NPC suggested the 
abundant vial miRNA expression of BART1-5p, 3-3p, 4-
5p, 6-3p, 7-3p, 13-3p, 15, 16, and 19-3p. Furthermore, 
BART4-5p and 19-3p were suggested to be potential 
targets for EBV-associated diseases treatment due to 
their contribution to tumorigenesis. In children with 
CAEBV and HLH, the abundant BART19-3p directly 
downregulated the mRNA level of adenomatous 
polyposis coli (APC), a Wnt/β-catenin signaling regula-
tory gene. BART4-5p was speculated to promote tumo-
rigenesis by inhibiting BH3-interacting domain death 
agonist (BID) [74]. 

5.4. EBV-associated Tumors 
 Both Hodgkins and non-Hodgkins lymphoma indu-
ced by EBV, including diffuse large B-cell lymphoma 
(DLBCL), extranodal T/NK cell lymphoma, nasal type 
(ENKTL), peripheral T-cell lymphoma, unspecified 
(PTCL-U), and post-transplant lymphoproliferative di-
sorder (PTLD), can induce typical B symptoms (prolon-
ged fever, unintentional weight loss, and drenching 
night sweats). A growing amount of literature supports 
the potential of specific-expressed EBV-miRNAs to 
distinguish these malignant diseases from benign 
lymphoproliferative disorders.   
 A strong positive correlation was proven between 
BART-miRNAs and EBV-positive B lymphoma in L591 
cells obtained from biopsy tissues with EBV-positive 
DLBCL. The specific overexpression of miRNA-
BART13 indicated its diagnostic and therapeutic poten-
tial [61]. Over-expressions of BART7, 22, 10, 11-5p 
and 16 were detected in tissue samples of EBV-
positive DLBCL, suggesting its potential for discrimina-
tion [75]. In EBV-positive DLBCL, BHRF1-2-5p was 
observed to down-regulate slightly the expression of 
PD-L1/L2 surface proteins, thus weakening the induc-
tion of PD-L1/L2 by LMP-1. Consequently, BHRF1-2-
5p is considered a potential diagnostic and therapeutic 
target in DLBCL [45]. CXCL11 is an IFN-induced che-
mokine receptor on T cells, permitting resistance to the 
cytotoxic effect of T/NK cells. BART2 and BHRF1-3 
could inhibit CXCL11 to dampen host immunity in 
AIDS-associated DLBCL. The singular over-expression 
of BHRF1-1 may be helpful in the clinical diagnosis of 
DLBCL complicated with pyothorax [55].  
 According to 2016 WHO classification, malignant 
T/NK cell diseases caused by EBV include ENKTL, 
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primary EBV positive lymph node T/NK cell lymphoma 
(tentative), including PTCL-U, and others. Komabayas-
hi et al. confirmed the remarkably increased level of 
BART1-5p, 2-5p, 7-3p and 13-3p in EBV-associated 
cell lines derived from ENKTL, SNK6, and SNT16. 
BART1-5p, 2-5p, 7-3p and 13-3p were closely related 
to the development and poor prognosis of ENKTL and 
could accurately distinguish ENKTL patients from 
healthy controls [76]. Interestingly, Alles et al. observed 
the highest expression levels of miRNA-BART8, 10, 19 
and 22 [52], while Ramakrishnan R et al. observed the 
highest expression levels of miRNA-BART1, 7, 16 and 
17 [77]. Such differences might be due to the applica-
tion of diverse sequencing methods (sequencing vs. 
microarray). T-bet is a T-box transcription factor Th1 
cells utilize to trigger immune cell differentiation, thus 
mediating the secretion of cytokines, such as TNF-α, 
IFN-γ, IL-2, and IL-10 [78]. BART20-5p was considered 
a potential biomarker for ENKTL treatment due to its 
immune inhibition via decreasing T-bet expression [79]. 
 Previous clinical analyses revealed ENKTL as one 
of the secondary complications to HLH and CAEBV. 
Abundant expression of type-I IFN signaling inhibitors, 
BART1-5p, 2-5p, 7, 13-3p, 16 and 22, was found in the 
peripheral blood sample with CAEBV and ENKTL, indi-
cating their potential to be warning signs for poor prog-
nosis [70, 76].  
 Further, EBV + PTCL has been shown to be in la-
tent phase II. In EBV+ PTCL samples, the expression 
of all detected BARTs (i.e., BART1-5p, 2, 7-5p, and 10-
5p) was observed [80]. 
 In addition, a strong association between EBV infec-
tion and PTLD has been demonstrated [81]. In almost 
all EBV-related PTLD, BARTs constituted the majority 
of the high-expression group [82]. It was proposed that 
expression levels of plasma BART2-5p and BHRF1-2-
5p could be utilized as potential biomarkers in the de-
tection of PTLD risk in pediatric renal transplant reci-
pients [68]. 

CONCLUSION 
 Even though there are many advanced molecular 
biological methods available for diagnosis, it is still an 
issue for physicians to distinguish different types of 
EBV infection in a timely and accurate manner, which 
is related to the prognosis of critical diseases [83]. 
Conventional methods for EBV detection mainly inclu-
de in situ hybridization (ISH), immunohistochemistry 
(IHC), and serological testing, like anti-EBV nuclear 
antigen-1(EBNA1) immunoglobulin G detection [84-86]. 
Nevertheless, many of the current diagnostic methods 
for EBV detection have limitations [31]. For example, in 
terms of serological methods, the sensitivity of hete-
rophilic antibody test is relatively low, while viral capsid 
antigens (VCA) and EBNA antibody tests are more ex-
pensive and require much more time [33].  
 Thus far, there have been no satisfactory therapies 
for EBV-related diseases with fever. Antiviral drugs 
(including acyclovir, valaciclovir, or ganciclovir) and 
glucocorticoid for treating IM have raised concerns due 

to limited efficacy and potential adverse effects [29, 
30]. Allogeneic hematopoietic stem cell transplantation 
(allo-HSCT), the radical cure for HLH and CAEBV, 
meets obstruction due to its high expense and risk of 
post-transplant complications [87-89].  
 The specific viral miRNA expression profiles in 
EBV-related fevers suggest the potential value of EBV-
miRNAs as molecular biomarkers to assist in the identi-
fication, diagnosis and prognosis of EBV-related fever, 
as well as therapeutic targets for drug development 
(Table 1) [90]. With regard to IM, scholars currently 
focus on the detection of early infections. The combina-
tion of EBV-miRNA detection and clinical signs might 
be more helpful in judging the infectious process of 
patients, especially in the early phases. Also, in the 
context of CAEBV, a notable finding was that some 
EBV-encoded miRNAs play a part in guiding disease 
prognoses. Compared to only detecting EBV loads, 
evaluation of both viral miRNA and DNA can be more 
helpful in the context of managing clinical medication 
and treatment. The detection of some specific EBV-
miRNAs may assist in preliminarily diagnosis and 
treatment direction.  
 A growing body of literature on exosomes has pro-
ved the essential role of plasma EBV-miRNAs in inter-
cellular signal transduction [91]. Plasma exosomes 
from EBV-infected lymphoma cells, which mainly con-
tain BART-miRNAs, function similarly to pro-
inflammatory cytokine to trigger the secretion of ARG1, 
TNF-α, and IL-10 in monocytes and macrophages. In 
this way, inflammatory responses of tumor-associated 
macrophages could be activated, supporting the 
growth, proliferation, migration, and immune response 
of lymphoma [28, 92, 93]. Targeted or off-targeted deli-
very of miRNAs as well as miRNA inhibitors may be a 
major trend in future therapeutic development [61, 86]. 
Further research should be carried out to detect new 
inflammatory targets of EBV-miRNAs and to reveal the 
regulatory network between EBV-encoded miRNAs 
and target genes. The screening and identification of 
viral miRNAs with potential therapeutic effects for EBV-
related fever may conduce to the development of novel 
therapeutic approaches for such diseases.  
 New vaccines are under development to reduce the 
incidence of infectious mononucleosis [94]. As mi-
croRNAs have been studied as potential biomarkers for 
candidate vaccines for different types of viral infections, 
such as respiratory syncytial virus [95], the latent po-
tential of EBV microRNAs to improve vaccines for EBV-
related diseases remains to be explored. 
 Prior to clinical application, biomarkers require con-
siderable research to validate their specificity, stability, 
detectability, and accessibility [16]. As short RNA mo-
lecules of �22nt in length, circulating miRNAs are ex-
pressed stably both in vivo and in vitro [96]. Previous 
experiments have also shown that numerous viral 
miRNAs can be obtained from peripheral blood circula-
tion by such non-invasive means [13]. EBV-miRNAs 
are still at their early stages as ideal diagnostic, prog-
nostic, or monitoring biomarkers in detecting febrile 
patients. (1) Given the low complementary ratio and 
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manifold targets of miRNAs [97], the complex regula-
tory network mechanism formed between EBV-miRNAs 
and the host is still unclear. Further participation of pro-
teomics, genomics, and transcriptomics may explain 
the thermogenic mechanism of EBV-miRNA. (2) Most 
literature on EBV-miRNA in diseases only concentrates 
on the special expression of certain miRNAs. Future 
improvement in the diagnostic specificity of miRNAs 
calls for large-scale field trials with better reproducibili-
ty, minimal sampling factors (e.g., age, sex, past medi-
cal history), as well as diversity in both technical means 
(e.g., sample preservation, pre-processing before se-
quencing, detection methods) and statistic methods. 
Whether EBV-miRNAs exhibit greater diagnostic signi-
ficance before the development of diseases or at the 
onset of diseases has to be explored. Additionally, ex-
ploration of whether EBV-miRNAs can be used as sen-
sitive indicators of EBV-infection-induced complications 
also warrants further study. (3) The sequence similarity 
analysis revealed that EBV-miRNAs shared high simi-
larities with human miRNAs,  which may interfere with 
the sequencing results [98]. Advances in QT-PCR te-
chnology and other new detection methods (i.e., rolling 
circle amplification, surface-enhanced Raman scat-
tering, Agilent 2100 Bioanalyzer) may provide more 
accurate results [99, 100]. (4) Different expression pro-
file of the same disease in various population samples 
and laboratories shows the necessity of unifying EBV 
detection methods. (5) Till now, the development of 5 
miRNA drugs has been discontinued or suspended due 
to treatment-related side effects [101-106]. The safety 
and efficacy of EBV-miRNAs as therapeutic targets 
also need verification in the future.  
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Table 1. Summary of the EBV-miRNAs as potential biomarkers in EBV-related diseases and the indication of their abe-
rrant expression*. 

EBV-miRNA Abnormal Expression Related Diseases Indication 

BART5-3p,16 Over-expression IM Early period of infection 

BART2-5p,13,15 Increased or decreased level of 
expression 

CAEBV Indicating prognosis 

BART3-3p Over-expression EBV-HLH Indicating EBV-HLH, distinguishing from IM 

BART19-3p Over-expression EBV-HLH, CAEBV, NPC A potential therapeutic target 

BART7,22,10, 11-5p High detection rate DLBCL Indicating DLBCL 

BHRF1-1 Over-expression PAL Indicating PAL 

BART1-5p, 2-5p. 7-3p, 13-3 Increased level of expression ENKTL Indicating development and poor prognosis 

BART1-5p, 2, 5, 7-5p, 10-5p Appearance PTCL-U  

BART7-3p Over-expression Malignant tumor Indicating malignant tumor 

BART1-3p,3-3p,4-5p,5-5p,9-3p Over-expression Epithelial cell tumor Indicating epithelial cell tumor 

BART6-3p,8-3p Over-expression NPC Indicating NPC 

BART2-5p, BHRF1-2-5p High detection rate PTLD Potential biomarkers to detect the risk of 
PTDL in pediatric renal transplant recipients 

Note: *[21, 39, 68, 70, 75, 76, 80, 90]. Abbreviations: IM, infectious mononucleosis; CAEBV, chronic active EBV infection; EBV-HLH, Epstein-
Barr virus-associated hemophagocytic lymphohistiocytosis; PAL, pyothorax-associated lymphoma; ENKTL, extranodal T/NK cell lymphoma, 
nasal type; PTCL-U, peripheral T-cell lymphoma, unspecified; DLBCL, diffuse large B-cell lymphoma; NPC, nasopharyngeal carcinoma; PTLD, 
post-transplant lymphoproliferative disorder. 
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