Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 1960684, 11 pages
https://doi.org/10.1155/2022/1960684

Research Article

Trends in Intelligent and AI-Based Software Engineering
Processes: A Deep Learning-Based Software Process Model

Recommendation Method

Fahad H. Alshammari

College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia

Correspondence should be addressed to Fahad H. Alshammari; fahad.h@su.edu.sa

Received 24 August 2022; Revised 17 September 2022; Accepted 20 September 2022; Published 5 October 2022

Academic Editor: Ateeq Ur Rehman

Copyright © 2022 Fahad H. Alshammari. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In recent years, numerous studies have successfully implemented machine learning strategies in a wide range of application areas.
Therefore, several different deep learning models exist, each one tailored to a certain software task. Using deep learning models
provides numerous advantages for the software development industry. Testing and maintaining software is a critical concern
today. Software engineers have many responsibilities while developing a software system, including coding, testing, and delivering
the software to users via the cloud. From this list, it is easy to see that each task calls for extensive organization and preparation, as
well as access to a variety of resources. A developer may consult other code repositories, websites with related programming
content, and even colleagues for information before attempting to build and test a solution to the problem at hand. In this
investigation, we aim to identify the factors that led to developing the recommender. This system analyzes the recommender’s

performance and provides suggestions for improving the software based on users’ opinions.

1. Introduction

When developing a software system, software engineers
execute various tasks, including creating code, testing code,
deploying to the cloud, and coordinating via e-mail and
meetings [1]. Each of these tasks necessitates searching for
and working with a wide range of information and re-
sources, as well as planning and preparing for the upcoming
one [2]. A developer may investigate other code repositories
for prospective solutions, explore online sites with relevant
programming material, or contact coworkers for informa-
tion before programming a possible solution to the problem
at hand and testing the answer [3].

For example, performing these tasks can be intimidating
for novices in the field [4]. Near-perfect performance in
these activities is nearly unattainable for even the most
experienced coders. Recommender systems for software
engineering have been implemented to easily perform tasks
and improve workflow [5]. In other words, “software

applications that deliver information items deemed to be
relevant for software engineering tasks” are “recom-
menders” for the discipline [6]. Software engineers are used
to working with certain recommenders that are closely
relevant to their development operations. Such issues as
missing import declarations in Java code can be solved using
recommenders in various integrated development envi-
ronments, such as the Eclipse IDE4 [7]”.

Recommendation systems for different tasks and
workflows have been developed, including those for code
reorganization, learning the next set of commands, and
discovering needs. For instance, the Eclipse Mylyn recom-
mender, which provides specific recommendations of which
source code is connected with a task, has been demonstrated
to boost the productivity of developers. Recommenders have
much unrealized potential in the software development
process because of their vast variety of actions [8].

One of the primary problems with the current recom-
mender system is that it forecasts products that the user will

mailto:fahad.h@su.edu.sa
https://orcid.org/0000-0002-2175-9812
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1960684

find irrelevant or uninteresting. As a result, a recommender
system is required, which must supply services in accordance
with the resemblance of goods. By incorporating user and
product data into a collaborative recommendation system,
true user preferences can be learned [9-11].

The first stage in developing a recommender is to define
the problem the recommender is intended to solve and verify
the assumption that a recommender can deliver suggestions
of value to the developer facing the problem. Framing the
problem is the term we use to describe the activities oc-
curring during this phase. The introduction’s definition of a
software engineering recommender provides a foundation
for investigating the problem and solution targeted by a
recommendation engine. The task and context for which a
recommender will be used must be crystal apparent when
thinking about creating one. Another consideration is for
whom a recommender is intended: developers or end users.
The idea of a task targeted by a recommender relates to the
specific purpose of a developer at a certain moment in time,
such as the implementation of an assigned feature in source
code. Even though a developer is aware of the current task at
all times, the task may not be expressed directly in the code.
The context of a recommender refers to the information and
tool environment in which the task is conducted, such as the
source code and other artifacts available and the set of tools
that can be used to complete the work. The context also
captures the developer’s steps in completing the given task.
This helps define when and what information a recom-
mender may provide: novices often have fundamentally
different information needs compared to experts. While
frequent proposals may be helpful to the first group, the
latter often has a poor tolerance for interruptions of their
work that convey already known facts. The main contri-
butions of this study are as follows:

(a) Determining the inputs for the recommender’s
construction was how we phrased the issue

(b) This system provides recommendations for software
development based on client happiness and evaluates
the usefulness of the recommender

2. Related Work

Wen et al. [12] systematically examined machine learning
models from four perspectives: the kind of ML approach,
estimation accuracy, model comparison, and context of esti-
mation, which is the goal of this study. A systematic review of
empirical studies on the ML model published between 1991
and 2010 was conducted. The author compiled a list of 84
primary studies related to our research question and detected
eight different types of ML approaches used in SDEE models
after looking into these studies. Overall, these ML models have
better estimation accuracy than non-ML models and are near
to it. For this reason, certain ML models are more effective in
certain estimation scenarios. SDEE is a potential field for ML
models. However, the industry’s use of ML models is still
limited, necessitating additional efforts and financial incen-
tives. Following the conclusions of this review, the author
offers advice for researchers and guidance for practitioners.

Computational Intelligence and Neuroscience

Wan et al. [13] were curious about the impact of machine
learning on software development techniques, given the
growing popularity of this approach. From interviews with
14 people and surveys with 342 people from 26 nations
across four continents, we could identify substantial dif-
ferences between the development of machine and non-
machine learning systems. Software engineering (e.g.,
requirements, design, testing, and process) and work
characteristics are significantly different across the two
groups, according to our research (e.g., skill variety, prob-
lem-solving, and task identity). In light of our findings, the
author outlined potential future research areas and offered
practice-oriented suggestions.

Del Carpio and Angarita [14] used machine learning
approaches in various knowledge domains with promising
results. Many deep learning models now focus on a wide
range of software operations, which is a good sign for the
future systematic investigation of deep learning model-
supported software processes that yield useful findings for
the software industry. Software testing and maintenance
were the most often studied subprocesses in this study. It is
common to utilize deep learning models such as CNN and
RNN to process bug reports, malware categorization, and
recommendation creation in these subprocesses. Some so-
lutions are focused on estimating effort, classifying software
requirements, identifying GUI visual aspects, identifying
code authors, finding the similarity between source codes,
predicting and classifying defects, and analyzing bug reports
in testing and maintenance operations.

Meziane and Vadera [15] suggested that, due to its ability
to automate time-consuming or complex processes, artificial
intelligence has recently gained much attention. There have
been no exceptions to this rule regarding software engi-
neering projects. Artificial intelligence and software main-
tenance are covered in depth in this thesis. The recent
advances in applying artificial intelligence to software
maintenance duties were also studied through thorough
mapping research. Research kind, research contribution,
software maintenance domains, and artificial intelligence
solution type were the most important aspects of this study.

Barenkamp et al. [16] involved a systematic evaluation of
prior research and five qualitative interviews with software
developers. The study’s conclusions are categorized
throughout software development. Major Al achievements
and future potentials include (a) using algorithms to au-
tomate time-consuming, routine tasks in software devel-
opment and testing (such as bug hunting and
documentation); (b) conducting structured analyses of large
datasets to uncover patterns and new information clusters;
and (c) conducting systematic evaluations of these datasets
in neural networks. AI accelerates development, reduces
expenses, and increases efficiency. Software engineering
automation is superior to the present Al, which relies on
human-made structures and is essentially reproductive.
Developers can enhance their creativity with Al tools.

Harman claimed that the artificial intelligence (AI)
approaches to software engineering also focuses on the
software development related challenges [17]. While search-
based software engineering is a more recent development,

Computational Intelligence and Neuroscience

the field’s history of work in probabilistic reasoning and
machine learning for software engineering is well-estab-
lished. For the purpose of this paper, the author examined
some of the connections between these two areas of research,
claiming that they share many characteristics.

Tate [18] compared software quality models. Case studies
apply software quality models to the current processes. Case
study results complement empirical model assessment.
Standard selection criteria are used to recommend and select
models. Procedures are evaluated using success criteria.
Theoretical assessment methods evaluate process model
quality. Conformity to ideal process quality model re-
quirements and relevance to software stakeholders are
tested. Discussing the models’ breadth and scale: empirical
assessment methods are established to evaluate the model’s
performance in real software operations. There are ap-
proaches to determine if process quality models produce
different results and, if so, which model to choose. Case
study software processes are measured for differences.

Fadhil et al. [11] determined how AI can improve
software issue detection and prediction methods. Artificial
intelligence has helped identify software issues and predict
bugs, as data shows. Combining AI with software engi-
neering reduces overhead and produces more efficient so-
lutions, improving software quality.

Kothawar and Vajrapu [19] addressed these behaviors’
difficulties and solutions. Methods: the author chose 15 best
practices from eight startups, each with unique challenges
and solutions. Our research indicates startups’ mixed pri-
oritization. Six of the eight companies used formal methods,
while two used unstructured prioritization. Startups’ value:
prioritizing based on consumer input and ROI is key. This
study examines startup priority needs and obstacles. The
literature supports the study’s findings. Finding solutions
helps practitioners. The poll should include Swedish soft-
ware startups. Some of these solutions may also be useful for
practitioners wishing to begin a software startup and priority
requirements.

This study’s aggregation method is clear, realistic, and
interpretable [9]. This method makes quality model and
metric-based software quality assessment reliable and re-
producible. Based on all observable software artifacts, good
and bad quality are assigned probabilities. Validation was
theoretical and empirical. Bug prediction, maintainability,
and information quality were evaluated. Software visuali-
zation was used to evaluate the usefulness of aggregation
for multivariate data and the impact of different aggre-
gation methods. Finally, the author assessed MCR’s
transferability and used it to rate real-world options. The
author used machine learning, created a benchmark
employing regression issues, and evaluated how well the
aggregate result matches a ground truth and represents
input variables. Our method is accurate, sensitive, and
facilitates multicriteria decision-making. Our approach can
be used as an agnostic unsupervised predictor without
ground truth.

Recently, sentiment analysis on social networks, such as
Twitter and Facebook, has become a valuable tool for
gaining insight into the thoughts and feelings of people. In

contrast, sentiment analysis suffers from the difficulties of
natural language processing (NLP). Deep learning models
have recently been a promising solution to NLP difficulties.
To address the issues with sentiment analysis, such as
sentiment polarity, the paper [10] analyzes the most recent
experiments to make use of deep learning. Word embedding
and the TF-IDF model have been used to analyze several
different datasets. Comparative studies of the experimental
findings for various models and input features have also
been undertaken.

Software defect prediction anticipates troublesome code
sections to help find faults and priorities testing. Previous
work focused on manually encoding program information
and using machine learning to generate accurate prediction
models. Standard characteristics do not capture semantic
differences between programs for accurate prediction
models [8]. Deep learning is proposed to bridge the gap
between program semantics and fault prediction charac-
teristics. The deep belief network (DBN) learns semantic
features from Abstract Syntax Tree (AST) token vectors
automatically. Our research on 10 open-source projects
shows that our automatically learned semantic features
increase both within-project and cross-project defect pre-
diction over traditional characteristics. Precision, recall, and
F1 improve WPDP by 14.7%, 11.5%, and 14.2%, respectively.
Our semantic feature-based technique beats TCA + by 8.9%
in F1 for CPDP.

Reference [20] proposed LEMNA, a high-fidelity secu-
rity explanation approach. LEMNA generates a limited set of
features that explain how an input sample is categorized. The
goal is to create a simple interpretable model to approximate
the deep learning decision boundary. It manages feature
dependency to better interact with security applications
(such as binary code analysis) and nonlinear local bound-
aries to boost explanation fidelity. Local interpretable model
(LIM): the author tested our method with two deep learning
security apps (a malware classifier and a function start
detector for binary reverse engineering). Extensive testing
demonstrates that LEMNA’s explanation is more correct
than others. The author shows how LEMNA may help
machine learning developers verify model behavior, fix
classification issues, and automatically patch target model
defects.

Reference [7] reviewed machine learning papers for
software project management. Web Science, Science Directs,
and IEEE Explore have research on machine learning,
software project management, and methodology. Three
repositories contain 111 papers in four groupings. First
group: software project management papers. The second
category contains machine learning methods and tactics
utilized in projects. The third category comprises studies on
machine learning management phases and tests, as well as
study findings, contribution to and promotion of machine
learning project prediction, and other studies. It gives a
broader context for future project risk management efforts.
Machine learning-based project risk assessment is more
successful in reducing project losses, increasing project
success, and reducing project failure probabilities while
increasing the growth output ratio.

Recent machine learning discoveries have prompted
interest in integrating Al into IT software and services. To
fulfill this goal, organizations adapted their development
methodologies. The author shares research on Microsoft’s
Al-app development teams. It is built on designing Al apps
(search and NLP) using data science tools (R and Python)
(e.g., application diagnostics and bug reporting). Reference
[5] found that multiple Microsoft teams have integrated this
workflow into established, well-evolved software engineer-
ing processes, providing insights into numerous important
engineering problems organizations may encounter while
developing large-scale Al products for the market. These
difficulties required Microsoft’s best practices. Aside from
that, the author found three main AI differences: (1) model
customization and reuse demand different abilities than
those found in software teams. (2) AI components are more
challenging to handle as independent modules than typical
software components. Microsoft teams provided critical
knowledge.

Yang et al. [6] proposed “deep neural networks” (DNNs)
and an updated model training approach. Alpha Go showed
deep learning’s potential in 2016. Deep learning helps
software engineering (SE) experts construct cutting-edge
research tools. Model selection, internal structure, and
tuning affect DNN performance in SE. Deep learning in SE is
understudied. The author searched for relevant publications
since 2006. First, SE deep learning is shown. SE’s deep
learning methods are classified. The author looked at deep
learning model optimization methodologies and highlighted
SE research problems that will benefit from DNNs. Our
findings highlight existing problems and suggest a potential
study route.

Machine learning is rapidly used by the software engi-
neering community as a means of transforming modern
software into intelligent and self-learning systems. Software
engineers are still exploring methods in which machine
learning can aid with various stages of the software devel-
opment life cycle. Herein, the author reports the results of a
study on the application of machine learning at various
stages of the software development life cycle. Overall, [3]
investigated the relationship between software development
life cycle stages and machine learning tools, techniques, or
types, which is a broad goal. In an attempt to answer the
question of whether machine learning favors specific stages
or methodologies, we conduct a comprehensive analysis.

Business transactions, revenues, and general success are
becoming increasingly dependent on the use of recom-
mendation systems. Recommendation systems and their
implementation approaches are the focus of this survey.
The components and attributes of a recommender system
can change based on the organization’s needs. Design
criteria and key recommender system attributes are pre-
sented in this study. There are a few well-known ap-
proaches that are scrutinized. In conclusion, [4] introduced
movie recommenders from the three most relevant in-
dustries: film, music, and online shopping. The survey seeks
to provide readers with a broad understanding of the
circumstances in which certain recommender systems are
appropriate.

Computational Intelligence and Neuroscience

Machine learning models are frequently developed by
data scientists to handle a wide range of problems in both
industry and academia, but they are not without their own
set of hurdles. One of the issues with machine learning
development is that many people working in the field are
unaware of the benefits that may be reaped from following
the steps outlined in the software engineering development
lifecycle (SEDL). Of course, because machine learning
systems are distinct from typical software systems, there will
be certain peculiarities in the development process. Re-
garding software engineering, [2] aimed to examine the
issues and practices that arise during model creation by
looking at how developers might benefit from using or
changing the standard workflow to machine learning.

Software engineering has recently used deep learning
(SE). Unanswered questions remain. Li et al. [1] looked at 98
SE publications that employ deep learning to tackle these
questions. Deep learning technologies have simplified 41 SE
jobs across all phases. Deep learning models and their
variations are utilized to answer 84.7% of SE issues in
publications. Deep learning’s practicality is questioned.
More SE scholars may be interested in improving deep
learning-based solutions in the future.

3. Methodology

In this section, we have proposed a novel framework of
LSTM which can recommend the software development
features based on the dataset of clients. Figure 1 shows the
proposed framework workflow of the current study:

3.1. Dataset Description. The dataset used in this study is an
excel-generated synthetic dataset curated from a real BI
tools’ dataset. This dataset has 100 rows and 11 features with
1 output feature (i.e., rating); when the rating of software is
more than 3, this will be recommended. Otherwise, it will
not be recommended by the proposed model. Table 1 shows
the dataset description and feature explanation.

Table 2 shows the dataset samples from the acquired
dataset as given below.

Figure 2 shows the visualization of the dataset and
frequency distribution of each feature as given below.

Figure 3 shows the distribution of feature business scale
with respect to large, small, and medium deployment on
premise, hybrid, and cloud OS for Windows, Mac, and Linux
and pricing on Freemium, open source, and enterprise.

3.2. Raw Data Processing. The raw data have been collected.
Finally, data purification has been completed using various
methods, such as deleting duplicates and null values. This
technique is employed in data mining to transform un-
structured data into a form suitable for analysis. It is not
uncommon for data in the real world to be inconsistent or
even missing. Prediction models are complicated when
classifications are not dispersed uniformly throughout. The
number of occurrences in each class is often the same in
categorization machine learning algorithms. In the wake of
this study, resampling procedures have substantially evolved.

Computational Intelligence and Neuroscience

Training Set

Long-Short Term
Memory

—>

B S—

Input Data from
Clients

!

Dataset
Preprocessing

l

Preprocessing of
Dataset

Algorithm (s)

!

Evaluation

!

Performance

l

Long-Short Term based
Recommender System

Features Extraction

Data Cleaning

Normalization

Testing Set

FIGURe 1: The proposed framework workflow.

TaBLE 1: Dataset description and feature explanation.

Features Description Variables type
Category Category comprises the type of BI tool, as well as the industry in which it can be used Input variable
]jclzleness This identifies the size of the company that the BI tool is designed to serve, such as small, medium, or large Input variable
Whether they are a business user or an analyst with data science skills, this indicates the sort of user (not all .
User type : s Input variable
BI tools are easy to use and not all tools possess powerful data processing capabilities)
This offers information on how the BI tool may be implemented, such as cloud, on-premise, or hybrid OS: .
No of users . . ! . . Input variable
this specifies the type of operating system necessary for the tool installation
. Pricing: this reveals whether the program has a freemium version or an enterprise edition for data .
Pricing Lo . . Input variable
visualization on mobile devices
Ratings On a scale of 5.0, users rate this product Ou_t put
variable
TaBLE 2: Dataset samples from the acquired dataset.
Category Industry Business scale User type No. of users Deployment (O Mobile apps Pricing Rating
100001 Data management Utilities Large Business Single Cloud Linux Y 45
100002 Database/ERP Food Large Business Single Premise Mac Y 5.0
100003 Data analysis Manufacturing Large Business Single Premise Linux N 5.0
100004 Data analysis IT Medium Business Multiple Premise Mac Y 43
100005 Benchmarking Food Medium Analyst Multiple Cloud WIN N 47

Remove records from each cluster such that the majority class
records are captured and undersampling is prevented. For
more diverse synthetic samples, oversampling can be utilized
in place of producing identical reproductions of data from the

minority classes [21]. When conducting data mining research,
it is critical that our dataset is balanced and consistent. It is
possible to find outliers in a dataset. An outlier in a dataset is a
value that stands out from the rest because of its uniqueness.

count

50 4

40 A

count

20 A

10 +

30 4

Large Medium

Business_scale

Small

Single Mulitple

no_of_users

count

Linux Mac Windows

count

Freemium

Open Source Enterprise

pricing

count

50 4

40 A

30 4

count

20 A

Computational Intelligence and Neuroscience

Business Analyst

user_type

count

cloud On-Premise Hybrid

deployment

50 4

40 A

30 4

count

o
]
Z

20

10

mobile_apps

17.5

15.0 A

12.5 4

10.0

7.5 4

5.0 A

2.5 A

0.0 -

3.0

3.5 4.0 42

rating

4.5 5.0

FIGURE 2: Visualization of the dataset and frequency distribution of attributes.

Computational Intelligence and Neuroscience

Business_scale

Large

Small

Cloud

pricing

Enterprise

Freemium

deployment

b

7
oS
Mac
Linux
Windows

(©

Open Source

FiGUre 3: Distribution of features: (a) business scale, (b) deployment, (c) OS, and (d) pricing.

The outliers could result from reading errors, equipment
faults, or human error. Before undertaking any statistical
analysis or study, it must be deleted from the dataset. The
analysis and subsequent treatment can be influenced by in-
complete or erroneous findings from any information out-
liner [22, 23].

3.3. Feature Engineering. By using data from a certain do-
main, learning machines can use these functions. In order to
make machine learning representations of raw data, this must
be done manually. Correlation matrices are used in this study
to determine the correlation between the variables. Covariance
matrices are the same as correlation matrices. Using the
correlation, one may determine the strength of a linear link.
The concept of correlation summarizes the frequency and
direction of a straight-line link between two quantitative
variables. Values can be represented by r, which ranges from —1
to +1.

3.4. Proposed Model. In the proposed model (shown in
Figure 4), input sequences are feature embedded and then
extracted in the contented layer. There is a hyperband op-
timization algorithm that can be used to distribute hyper-
parameter tuning for TensorFlow models in just a few lines

of code in the Keras-Tuner module. For hyperparameter
tuning, a validation dataset containing 10% of randomly
selected samples from the training data is used. Further-
more, we employed sparse categorical accuracy as a ranking
metric for optimization trials. We experimented with var-
ious batch size variables before settling on batch size =512.
Data from previous optimization stages are used to train a
final model with a set of hyperparameters that is as good as it
can possibly be. In order to assess the accuracy of our new
recommender system, we implemented a back-testing
technique.

3.4.1. Novel LSTM Cell. Long short-term memory networks
are a subset of the broader category of recurrent neural
networks. An example of time- or sequence-dependent
behavior is language, stock prices, and power demand; re-
current neural networks seek to represent such phenomena.
In order to achieve this, the output of a layer in a neural
network at time ¢ is fed back into the input of the same layer
at time ¢+ 1. Figure 5 shows the modified recurrent units of
the new version of LSTM:

During training and prediction, recurrent neural net-
works are “unrolled” programmatically, resulting in
Figure 6.

8 Computational Intelligence and Neuroscience

Product ID Software
encoded Sequences
(Bucketized)
Features Embedding i Features Embeddings

Concatenation of Extracted Features

v

Batch Norm

v

LSTM Layers

v

Batch Norm

v

Self-Attention Unit

v

Dense Layers

v

Output Rating (recommendation)

FIGURE 4: Proposed model architecture.

A Ih b | by the weights and biases used in the input calculations (as

opposed to the input gate, forget gate, output gate etc.). The
output of the input gate, which is a chain of sigmoid-acti-
vated nodes, is multiplied by this compressed input, element
by element:

Delay

a > a > a
LY
|)

Hidden
Layer

i= a((bi + xyi + ht_lVi)>. (2)

X X X3

Input
Layer

FIGURE 5: Recurrent nodes of modified LSTM.
3.4.3. Forget Gate and State Loop. Forget gate of the cell is

expressed as
New data are sent to the network at each time step, and

the output of the previous F ($h t-18$) is also supplied, as f= a((bf + x?f + hHVf)) (3)
shown in Figure 6.
In place of the typical neural network layers, an LSTM The product of the previous state with the forget gate

network uses LSTM cell blocks to store information for yields an expression of the form ((b/ + xY + h,_,V/)) as its
future use. The input, forget, and output gates are all parts of ~ output. Following the forget gate/state loop, the product is
these cells that will be discussed in greater depth below. Our

planned LSTM cell is depicted graphically below in Figure 7. S = s x fxg. (4)

3.4.2. Input Gate. First, a tanh activation function is applied,
compressing the input to a range from -1 to 1. To put it .
another way, 0= a((b” +x 4 hHV”)). (5)

3.4.4. Output Gate. The output gate of LSTM is expressed as

9
g= tanh(bg +x) ht—lvg)’ 1 Finally, the product of all gates is

U9 . . ; yotfsti :
where x; 'and V9 represent the 1nput.and previous cell h; = tanh< a<<bo+f+s+t it + ht71VO+f+S+l>>>. (6)
output weights and b9 represents the input bias. The g
exponents do not represent an increased power but rather

Computational Intelligence and Neuroscience

=
=

— > T —>

=]

\/
— o —>

——————— >
25 X0 % 9 X,
Ficure 6: Unrolled nodes.
Input
Gate
he, ¢ ¢ ¢ [b, [hy |hs g .
Q
Delay a a - %
h ey r £ | e
= e
2] %) G §~ %
| | = - Forget Gate and State Loop
£ hy i hs PO h, Output Gate
1
T T T bl
tanh ------= > F F F - F — > h
% Xo 2 %9 Xy
Ficure 7: Modified cell of LSTM.
TABLE 3: Description of metrics. TABLE 4: Recall rates of the proposed LSTM with different
: . approaches.
Metric Description
Accuracy Accuracy = TP/(TP +TN) % 100 Approach Recall rate
Recall Recall =) recommender/), (new — known) = 100 IR 0.0834
IF 0.054
TD 0.012

Recall and accuracy were utilized to assess the effec-
tiveness of the strategies under consideration for the soft-
ware development recommender system. The computations
of the metrics utilized in this study are shown in Table 3.

4. Results and Discussion

Our approach was put to the test using data from the Steam
project. In order to test our strategy, there are no existing
datasets that can be used for this purpose. For testing
purposes, we used the most recent records as a test set and
the rest of the records as training sets.

In this experiment, we used a serial filling with a time
series length of T=12 and a dimensionality reduction with
an aimed dimension k = 50. Finally, we gave each user a list
of the top 50 (N =50) things. We used two separate control
trials to assess the effectiveness of each component of our
strategy. Neither the serial filling (noSF) nor the dimen-
sionality reduction (noDR) was applied in one experiment.

TaBLE 5: Time of the proposed LSTM with different approaches.

Approach Training time (seconds) Testing time (seconds)
IR 1400 15
IF 1150 12

In order to establish a baseline, we compared our
method to collaborative filtering for implicit feedback (IF)
and temporal decay (TD). To evaluate the correctness of our
recommendations, we looked at the recall rate, whereas for
determining system efficiency, we looked at training and
execution times. Our final step was to examine each soft-
ware’s average recommendation time to see if there was a
wide range of recommendation times for each method.

The recall rates for various techniques are shown in
Table 4. When IR and serial filling were tested, it was found

10

Computational Intelligence and Neuroscience

LSTM-IR
100
o
£
=
E
g
=
<
g
g
g
5
3
e~
0 I
Food Business Games Health Education Stock Development Languages Others
Software Types
F1GURE 8: Recommendation of LSTM with IR.
LSTM-IF
100
9
E
s
=
g
k]
<
g
g
£
8
&
0 I I I I
Food Business Games Health Education Stock Development Languages Others
Software Types

FIGURE 9: Recommendation of LSTM with IF.

to have a greater recall rate than the baseline techniques.
Time spent in IR is shown in Table 5. Matrix factorization is a
useful way to reduce the number of dimensions in a system
because the recall rate of IR was nearly the same as that of
IRnoDR.

Figure 8 displays the IR and Figure 9 depicts the IF
distribution of the top software recommendation times.
Because IR recommends more diverse items than baseline
collaborative filtering, we can conclude that our approach is
more diverse than baseline collaborative filtering.

5. Conclusions

Within the scope of this work, an LSTM-based recom-
mendation model for interaction records was suggested.
Based on the results of our evaluations, our model per-
formed admirably in all three categories: accuracy, efficiency,
and variety. In the future, we intend to evaluate the gen-
eralizability of our approach by applying it to a wide variety
of datasets. In addition, we considered the total amount of
time spent communicating with one another as a quality
factor in this study. There is a high probability that reviews

Computational Intelligence and Neuroscience

will be distorted due to the viewpoints of various individuals
and types of goods. As a direct consequence of this, we ought
to direct our attention going forward toward enhancing the
quality of our rating vectors in the future. In order to deal
with time series, we will also investigate a variety of other
approaches and models.

Data Availability

The data used to support the findings of this study are in-
cluded within this article.

Conflicts of Interest

The author declares no conflicts of interest.

Acknowledgments

This study could not have been started or achieved without
the encouragement of Shaqra University and its continued
support. The research work was supported by the College of
Computing and Information Technology, Shaqra Univer-
sity, KSA.

References

[1] X.Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning in
software engineering,” 2018, https://arxiv.org/ftp/arxiv/
papers/1805/1805.04825.pdf.

[2] G. Lorenzoni, P. Alencar, N. Nascimento, and D. Cowan,
“Machine learning model development from a software en-
gineering perspective: a systematic literature review,” 2021,
https://arxiv.org/abs/2102.07574.

[3] S. Shafig, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “A
literature review of using machine learning in software de-
velopment life cycle stages,” IEEE Access, vol. 9,
pp. 140896140920, 2021.

[4] N. Koneru, S. Rai, S. S. kumar, and S. Koppu, “Deep learning-
based automated recommendation systems: a systematic re-
view and trends,” Turkish Journal of Computer Mathematics
Education, vol. 12, no. 6, pp. 3326-3345, 2021.

[5] S. Amershi, A. Begel, C. Bird et al., “Software engineering for
machine learning: a case study,” in Proceedings of the 2019
IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP),
pp- 291-300, Montreal, QC, Canada, May 2019.

[6] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep
learning for software engineering,” ACM Computing Surveys,
vol. 54, no. 10, 2022.

[7] M. Z. M. Hazil, M. N. Mahdi, M. S. Mohd Azmi, L. K. Cheng,
A. Yusof, and A. R. Ahmad, “Software project management
using machine learning technique - a review,” in Proceedings
of the 2020 8th International Conference on Information
Technology and Multimedia (ICIMU), pp. 363-370, Selangor,
Malaysia, August 2020.

[8] S.Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” Proceedings of the 38th In-
ternational Conference on Software Engineering, vol. 14-22,
pp. 297-308, 2016.

[9] M. Ulan, Aggregation as Unsupervised Learning in Software
Engineering and Beyond, Linnaeus University Press, Cam-
bridge, MA, USA, 2021.

11

[10] N. C. Dang, M. N. Moreno-Garcia, and F. De la Prieta,
“Sentiment analysis based on deep learning: a comparative
study,” Electronics, vol. 9, pp. 483-3, 2020.

[11] J. A. Fadhil, K. T. Wei, and K. S. Na, “Artificial intelligence for
software engineering: an initial review on software bug de-
tection and prediction,” Journal of Computer Science, vol. 16,
no. 12, pp. 1709-1717, 2020.

[12] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic lit-
erature review of machine learning based software develop-
ment effort estimation models,” Information and Software
Technology, vol. 54, no. 1, pp. 41-59, 2012.

[13] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?” IEEE
Transactions on Software Engineering, vol. 47, no. 9, pp. 1-
1871, 2020.

[14] A. F. Del Carpio and L. B. Angarita, “Trends in software
engineering processes using deep learning: a systematic lit-
erature review,” in Proceedings of the 2020 46th Euromicro
Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 445-454, Kranj, Slovenia, August 2020.

[15] F. Meziane and S. Vadera, Artificial Intelligence in Software
Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA, 2010.

[16] M. Barenkamp, J. Rebstadt, and O. Thomas, “Applications of
Al in classical software engineering,” AI Perspect, vol. 2, no. 1,
pp. 1-15, 2020.

[17] M. Harman, “The role of artificial intelligence in software
engineering,” in Proceedings of the 2012 First International
Workshop on Realizing AI Synergies in Software Engineering
(RAISE), pp. 1-6, Zurich, Switzerland, June 2012.

[18] J. Tate, Software Process Quality Models: A Comparative
Evaluation, Citeseerx, Pennslyvennia, PA, USA, 2003.

[19] S. Kothawar and R. G. Vajrapu, “Software requirements
prioritization practices in software start-ups: a qualitative
research based on start-ups in India,” vol. 57, 2018.

[20] W.Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemma,”
in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 364-379, Tor-
onto, Canada, October 2018.

[21] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani,
“CorrAUC: a malicious bot-IoT traffic detection method in
IoT network using machine learning techniques,” IEEE In-
ternet of Things Journal, vol. 8, no. 5, pp. 3242-3254, 2021.

[22] M. Shafig, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT
malicious traffic identification using wrapper-based feature
selection mechanisms,” Computers ¢ Security, vol. 94, Article
ID 101863, 2020.

[23] M. Shafiq, Z. Tian, A. K. Bashir, A. Jolfaei, and X. Yu, “Data
mining and machine learning methods for sustainable smart
cities traffic classification: a survey,” Sustainable Cities and
Society, vol. 60, Article ID 102177, September 2020.

https://arxiv.org/ftp/arxiv/papers/1805/1805.04825.pdf
https://arxiv.org/ftp/arxiv/papers/1805/1805.04825.pdf
https://arxiv.org/abs/2102.07574

