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ABSTRACT
Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as
post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric
symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders
and cognitive disturbances have been observed in PACS. The review was conducted
based on PRISMA-S guidelines for literature search strategy for systematic reviews. A
cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading
to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response
in the brain by activating microglia, astrocytes, and other immune cells leading to
neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines,
chemokines, acute phase proteins and adhesion molecules have been implicated in
psychiatric disorders and play a major role in the precipitation of neuropsychiatric
symptoms. Impaired adult neurogenesis has been linked with a variety of disorders
like depression, anxiety, cognitive decline, and dementia. Persistence of
neuroinflammation was observed in COVID-19 survivors 3 months after recovery.
Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory
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cytokines supressing anti-inflammatory cytokines and chemokines favouring adult
neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in
PACS, there is more possibility for a potential impairment in adult neurogenesis in
COVID-19 survivors. This narrative review aims to discuss the various
neuroinflammatory processes during PACS and its effect on adult neurogenesis.

Subjects Anatomy and Physiology, Immunology, Neurology, Psychiatry and Psychology,
COVID-19
Keywords Post-acute COVID-19 syndrome, Neuroinflammation, COVID-19, SARS-CoV-2,
Neurogenesis, Cytokine storm, Astrocyte, Microglia

INTRODUCTION
The first case of COVID-19 caused by SARS-COV-2 virus was reported in Wuhan, China
on 31st December 2019 and since then the disease has spread to 228 countries throughout
the globe (Worldometer, 2022). The incubation period of the SARS-COV-2 virus ranges
between 5.1 and 11.5 days with most people developing symptoms after 14 days of active
monitoring or quarantine (Lauer et al., 2020). The severity of this disease has a wide range
with symptoms like fever, cold, cough, breathing difficulty, pneumonia, other body
systems failure and even death has been noted in very severe cases of COVID-19 (WHO,
2022). People with younger age mostly act as asymptomatic carriers whilst the older age
group is the most vulnerable group with high severity and mortality (Nuzzo et al., 2021).
People with older age (greater than 60 years), pregnancy, chronic pulmonary disease
conditions, diabetes and hypertension, cardiovascular diseases and health care workers are
high-risk groups for COVID-19 (Ceriello, Stoian & Rizzo, 2020; Huang et al., 2020;WHO,
2022; Wiersinga et al., 2020; Zhou et al., 2020).

Acute COVID-19 has been defined as the period that extends from the onset of
symptoms to 3 to 4 weeks. Any symptoms persisting beyond this period are categorized as
post-acute COVID-19, where the SARS-COV-2 virus is not detectable (Nalbandian et al.,
2021). Similar patterns of persistence of symptoms have been noted previously during the
SARS epidemic and MERS outbreak (Ahmed et al., 2020; Hui et al., 2005). A thorough
understanding of this phenomenon is vital for the prognosis of the patients as well as to
equip healthcare settings to aid in diagnosis and treatment. The post-acute COVID-19
syndrome (PACS) involves multiple organ systems (Nalbandian et al., 2021) and the
pathophysiology is held to be different from that of acute COVID-19 (Dixit et al., 2021).
Garg et al. (2020) state that PACS is the persistence of symptoms which is sought to be
linked with residual inflammation from the convalescent phase of viral replication, organ
damage, extended ventilation, or idiopathic (nonspecific) effects of hospitalization. PACS
is observed not only in those who had severe forms of COVID-19 but also in outpatients
(Montani et al., 2022).

Neuropsychiatric symptoms during the acute stage as well as post-acute COVID-19 are
not uncommon ranging from cognitive impairment, delirium, mood changes, and extreme
fatigue (Rubin, 2020;Woo et al., 2020). Incidences of dementia, anxiety, and insomnia were
noted even after 3 months post-infection (Czeisler et al., 2020). Various studies that
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assessed the neuropsychiatric symptoms, 14 days to 6 months following acute COVID-19,
noted a higher prevalence of symptoms of insomnia, anxiety, depression, and PTSD
(Montani et al., 2022). There is conflicting evidence concerning the association between
disorders. Several studies showed the relation between the two while several others could
not replicate this result (Montani et al., 2022). Though the etiology for such long-lasting
effects on the neuropsychiatric facet is still being studied and ever evolving, a few intricate
mechanisms have been postulated in the literature. Some of them include biological and
environmental factors (Nakamura et al., 2021), virus-induced autoimmunity (Achar &
Ghosh, 2020), coagulopathy leading to multi-organ system failure (Achar & Ghosh, 2020),
and direct viral infiltration into the nervous system through ACE2 receptor (Gupta et al.,
2021; Saikarthik, Saraswathi & Al-Atram, 2021). In an interesting study by Yapici-Eser
et al. (2021), it was proposed that SARS-COV-2 proteins mainly the non-structural protein
group (NSP) and spike protein mimic various growth factors, such as FGF (1, 2, 4 types),
VEGF2, GDNF, IGF, etc. It was hypothesized that such protein mimicking interactions
could potentially be associated with neuropsychiatric disorders and variation in risk factors
could trigger different pathways presenting with different phenotypes of the disease
(Yapici-Eser et al., 2021).

Rationale for the study
Several mechanisms have been proposed previously in the etiology of neuropsychiatric
disorders. However, the neuropsychiatric symptoms in PACS and their impact is believed
to have long-term consequences which is not much explored. Neuroinflammation has
been known to affect cognition, behaviour by means of disrupted BBB, neurotransmission
and also by means of impaired neurogenesis (Klein et al., 2021). This narrative review
reviews the available literature to address the possible mechanism of COVID-19-induced
neuroinflammation as a cause for the various neuropsychiatric symptoms and also to
explore the plausible association of impaired neurogenesis in PACS. This timely summary
of recent developments would provide a definitive path to researchers, to better understand
the pathophysiological basis which would aid in managing the neuropsychiatric symptoms
during PACS.

Survey methodology
This study used the narrative review method along with PRISMA-S, which is an extension
of PRISMA guidelines for reporting literature search strategies in systematic reviews
(Rethlefsen et al., 2021). Due to the scarcity of studies on the effect of COVID-19 on adult
neurogenesis, as well as lack of homogeneity in the already published literature, a narrative
review style was chosen (Harvey, Schofield & Williden, 2018). Electronic searches were
made in databases such as Pubmed, Cochrane, Scopus, Web of Science, Google scholar,
and ResearchGate as well as preprint databases such as medRxiv and Research Square.
General Google searches were done to report the latest number of COVID-19 cases
globally. Being a narrative review, multiple combinations of words were used as search
strategies. Some of the words that were used included “SARS-CoV-2”, “COVID-19”, “adult
neurogenesis”, “adult hippocampal neurogenesis”, “neuroinflammation”, “hippocampus”,
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“neuropsychiatric symptoms”, “neuropsychiatric disorders”, “Post-Acute COVID-19
syndrome”, “long COVID-19”, etc. A combination of these words were also used, for
example, “neuroinflammation and COVID-19”, “neurogenesis and SARS-CoV-2”.
In addition, author names and a list of references were used for search of related references.
The last search in the above-mentioned databases was made on 15.06.2022. After reading
the abstracts those articles that did not match the requirements of this narrative review
were excluded. Articles and preprints in the English language in both clinical and
pre-clinical studies were included in this narrative review. Any duplication of articles was
removed using the EndNote reference manager (Version 20).

RESULTS
Neuropsychiatric symptoms/disorders in PACS
Survivors of earlier infections caused by other coronaviruses like MERS and SARS
presented with an increased risk of neuropsychiatric disorders like anxiety, depression, and
PTSD (Hopkins et al., 1999; Rogers et al., 2020). Cognitive decline, decreased mental
processing speed, and impairment in memory, attention, and concentration were observed
in SARS survivors 1 year after the onset of the disease (Hopkins et al., 1999). A
comprehensive systematic review by Rogers et al. (2020) found that out of the 20
neurological and neuropsychiatric complications of COVID-19 that were studied,
non-specific symptoms like headache (20.7% (16.1–26.1%)) and anosmia (43.1%
(35.2–51.3%)) and core psychiatric disorders of depression (23% (11.8–40.2%)) and
anxiety (15.9% (5.6–37.7%)) were found to be highly prevalent. The non-specific
symptoms like anosmia, dysgeusia, weakness, and fatigue were the most common,
occurring in more than 30% of the patients (Rogers et al., 2020). Many of these
complications are capable of becoming a chronic condition and many of the symptoms in
PACS could be a continuation of those from the acute phase of the disease (Carfì, Bernabei
& Landi, 2020). Survivors of critical illness after discharge from the hospital were found to
have a higher prevalence of neuropsychiatric disorders like depression, anxiety, and PTSD
(Nikayin et al., 2016; Parker et al., 2015; Rabiee et al., 2016). Most of the neuropsychiatric
symptoms of COVID-19 were found to be common in patients with milder forms of the
disease (Rogers et al., 2020). Thus, the neuropsychiatric symptoms/disorders are observed
in survivors of COVID-19 irrespective of the disease severity which can become chronic.

SARS-CoV-2 entry into the brain
SARS-CoV-2 is a beta coronavirus, a positive sense single stranded RNA virus. Its surface
is enveloped with crown-like spikes like other coronaviruses. The spike protein which is
responsible for host specificity and tissue tropism is a type-1 glycoprotein. It includes two
subunits, S1 for host receptor binding and S2 for the fusion of viral and host cell membrane
(Gallagher & Buchmeier, 2001). The cell receptor through which SARS-CoV-2 binds to the
host is the ACE2 receptor. The S1 subunit binds with the ACE2 receptor followed by the
fusion of S1 to the cell membrane which is mediated by S2. Priming/cleavage of the S1 and
S2 subunits is performed by TMPRSS2, a serine protease that is a member of the Hepsin/
TMPRSS subfamily (Hoffmann et al., 2020).
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SARS-CoV-2-associated central nerve system (CNS) disease has complex and varied
pathogenesis. The propensity of the virus to enter the CNS is widely studied. There are
three possible routes of viral entry into CNS viz. transmucosal invasion, hematogenous
spread, and retrograde neuronal dissemination (Pezzini & Padovani, 2020). SARS-CoV-2
can cross the neural-mucosal interface by infecting the olfactory neurons or diffuse
through the channels that are formed by the ensheathing cells of olfactory mucosa and
enter the CNS. The virus then may travel along the olfactory tract and reach different areas
of the brain connected to it by axonal transport, trans-synaptic transport, or microfusion
(Meinhardt et al., 2021; Van Riel, Verdijk & Kuiken, 2015). SARS-CoV-2 can breach the
peripheral nerve terminals and can reach the CNS through the trans-synaptic route. It can
invade peripheral chemoreceptors and cranial nerves and reach the brain stem (Li, Bai &
Hashikawa, 2020). SARS-CoV-2 can also likely enter CNS through gut-brain axis via the
enteric nerves (Esposito et al., 2020; Shi et al., 2021). In the hematogenous spread, the virus
disseminates the circulation and may breach the blood-brain barrier or blood-CSF barrier
to enter the brain or through circumventricular organs that lack blood brain barrier (BBB)
(Pezzini & Padovani, 2020). In the Trojan horse mechanism, virus-infected leucocytes may
cross the BBB to enter CNS (Desforges et al., 2020) (Fig. 1).

Immune response in COVID-19
A cytokine storm is currently considered to be the trademark attribute of the pathogenesis
of COVID-19. It is a destructive systemic hyperinflammatory response. It involves
autocrine and paracrine activation of various immune cells such as mast cells,
macrophages, leucocytes, and endothelial cells which causes increased levels of
chemokines and pro-inflammatory cytokines like interleukin-6 (IL-6), IL-1β, IL-8, tissue
necrosis factor-alpha (TNF-a), chemokine (C-C-motif) ligand 2 (CCL2), CCL5, IL-17, IL-
18, IL-33, CXCL-10, interferon-γ (IFN-γ), and granulocyte-colony stimulating factor (G-
CSF) (Azkur et al., 2020; Kempuraj et al., 2020; Li et al., 2020; Nile et al., 2020). SARS-CoV-
2 infection activates both immediate and late immune responses in the body. SARS-CoV-2
being a novel coronavirus, there is no prior exposure for the human immune system to this
virus and hence it is the innate immune system that acts as the first line of defence
(Serrano-Castro et al., 2020). The precise mechanism of immune response to SARS-CoV-2

Figure 1 Proposed routes of entry of SARS-CoV-2 into the central nervous system.
Full-size DOI: 10.7717/peerj.14227/fig-1
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is not yet fully understood. SARS-CoV-2 which enters the body gets attacked by innate
immune cells and the severity of the disease will depend on the capacity of the innate
immune system to ward off the virus (Zhu et al., 2020). Coronaviruses are capable of
facilitating innate immune suppression and inhibiting adaptive immunity (Oh et al., 2016).
Mast cells, macrophages/monocytes, natural killer cells, neutrophils, T lymphocytes, and
resident tissue endothelial and epithelial cells are the innate immune cells that get activated
by SARS-CoV-2 and are responsible for the cytokine storm in lungs (Azkur et al., 2020;
Kempuraj et al., 2020; Kritas et al., 2020). From the initial infection and lysis of the cells
(mostly pneumocytes), DAMPs (damage-associated molecular patterns) and PAMPs
(pathogen-associated molecular patterns) are produced which activate the innate immune
system. DAMPs include cellular contents released from dying cells and proteins released
following tissue injury like heat shock protein, heparin sulphate, hyaluronan fragments
and PAMPs (pathogen-associated molecular patterns) include oxidized phospholipids and
viral RNAs (Imai et al., 2008; Kuipers et al., 2011). These activated immune cells release
various pro-inflammatory cytokines, chemokines, proteases, and histamine which help the
immune system to fight off the viral infection by recruiting and activating other innate and
adaptive immune cells and antiviral gene expression programs (Vardhana & Wolchok,
2020). However, excess activation of these immune cells causes a worsening of the
inflammatory response and an increase in the disease severity (Kempuraj et al., 2020).
Lymphopenia induced by cytokine storm impairs the adaptive immune system to produce
anti-viral antibodies which is critical in the clearance of the virus (Manjili et al., 2020).
Cytokine storm and sustained systemic inflammatory response cause acute respiratory
distress syndrome (ARDS), multiple organ failure, and death in COVID-19 patients (Li
et al., 2020).

An increase in pro-inflammatory Th17 cells and lymphopenia associated with
decreased CD4+ T cells, CD8+ T cells, and natural killer cells, and increased cytokine levels
(IL-6, IL-10, and TNF-a) were observed in COVID-19 patients (Pedersen & Ho, 2020).
The cytokine levels increased during the disease process and declined during the recovery
period. Increased levels of IL-6 correlate with mortality and the need for ventilator support
(Vardhana & Wolchok, 2020). Patients who are clinically deteriorating were found to
present with progressive depletion of lymphocytes while the clinical recovery was preceded
by a recovery in lymphocyte count (Chen et al., 2020). The increased levels of IL-6 can
further upregulate the cytokine storm in COVID-19 patients. Thus, lymphopenia and the
level of cytokine storm are considered to be the markers for COVID-19 which helps to
assess and predict disease severity and mortality in COVID-19 patients (Debuc & Smadja,
2021; Kempuraj et al., 2020).

Neurovascular unit and neuroinflammation
Inflammation is the early tissue response to an insult or injury or pathogenic invasion.
Neuroinflammation is the inflammatory process in the central nervous system (CNS),
which is primarily due to the activation of astrocytes and microglial cells. Astrocytes
develop from radial glial cells in due course of neuronal differentiation (Barry &
McDermott, 2005) whereas microglia are developed from erythroid-myeloid progenitor
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cells from fetal yolk sac (Ajami et al., 2007). Microglial cells, the blood-brain barrier (BBB),
neurons and the extracellular matrix forms the neurovascular unit (NVU) (Del Zoppo,
2010). The blood-brain barrier varies across each part of the CNS primarily depending on
factors such as requirements of the brain region and the diameter of the blood vessel (Rhea
& Banks, 2019). The NVU responds to an insult/injury which can lead to disruption of
BBB, infiltration of leucocytes, release of inflammatory factors, and activation of microglia
& astrocytes (Mracsko & Veltkamp, 2014). Recent studies have shown that microglia and
astrocytes exist in a continuum of two extremes as two different phenotypes. Thus, both
these cells have pro-inflammatory and anti-inflammatory phenotypes which depend on
the signals received by these cells (Jha, Lee & Suk, 2016).

The extracellular and intracellular signals influence the phenotype of microglia.
The pro-inflammatory phenotype of microglia (M1) has been known to increase the level
of tumor necrosis factor (TNF), IL-1β (interleukin 1 beta), IL-6, and IFN-γ. The release of
these inflammatory mediators causes neurotoxicity (by excitotoxicity), neurodegenerative
diseases (increased immune activation), and cytotoxicity (release of reactive oxygen
species) (Block, Zecca & Hong, 2007; Jha, Lee & Suk, 2016; Smith et al., 2012). On the other
hand, the anti-inflammatory phenotype (M2) causes a release of transforming growth
factor (TGF), IL-10, IL-13, and IL-4 which provides neuroprotection, a release of trophic
factors, and resolution of neuroinflammation (Jha, Lee & Suk, 2016; Orihuela, McPherson
& Harry, 2016;Wang et al., 2015). Conditions such as hypoxia or ischemia cause activation
of astrocytes called “reactive astrocytes” which has a distinct morphology (Faulkner et al.,
2004). These astrocytes release a wide variety of pro-inflammatory and anti-inflammatory
cytokines, and chemokines (John, Lee & Brosnan, 2003). Similar to microglia, astrocytes
also exist in two phenotypic forms viz. Pro-inflammatory astrocyte (A1) and
anti-inflammatory astrocyte (A2) which has diverse effects on the NVU (Fan & Huo,
2021). A1 phenotype secretes pro-inflammatory cytokines such as TNF-a, IL-1β, IL-6,
nitric acid, ROS, and glutamate. The A2 phenotype produces neurotrophic factors,
thrombospondins, and IL-10 which act as anti-inflammatory mediators (neuroprotective)
(Fan & Huo, 2021; Jha, Lee & Suk, 2016).

Neuroinflammation in COVID-19
The cytokine storm in COVID-19 causes disruption of blood-brain barrier and
intracranial cytokine storm (Coperchini et al., 2020; Serrano-Castro et al., 2020). Through
the disrupted blood-brain barrier, the infiltration of immune cells, and inflammatory
cytokines into the brain occurs. This is also one of the pathways of entry of SARS-CoV-2
into the brain. All these activate glial cells, endothelial cells, neurons, mast cells, and other
immune cells which trigger neuroinflammatory processes (Coperchini et al., 2020;
Kempuraj et al., 2020; Serrano-Castro et al., 2020). SARS-CoV-2 can also enter the cerebral
circulation from systemic circulation and attach to ACE2 which is abundant in foot
processes of astrocytes, microglia, pericytes, and endothelial cells which are the main
cellular element of the blood-brain barrier (Hernández et al., 2021). This process is aided
by the sluggish blood flow in cerebral microcirculation, resulting in the disruption of BBB.
This in turn will facilitate the entry of SARS-CoV-2 into neurons and glial cells where it
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can infect and replicate and cause neuroinflammation and neurodegeneration. Thus,
SARS-CoV-2 can not only exacerbate pre-existing neuroinflammatory and
neurodegenerative conditions but also cause neuroinflammatory and neurodegenerative
disorders (Baig et al., 2020).

Another possible mechanism by which the pathologic changes in COVID-19 can cause
neuroinflammation could be due to a potential dysregulation of renin angiotensin system
(RAS). As mentioned earlier, ACE2 plays a major role in the regulation of RAS. There are
two arms/axis in RAS, one is the pro-inflammatory and pro-fibrotic arm, and the other is
the anti-inflammatory and anti-fibrotic arm. A variety of proteins and enzymes are
involved in the RAS. Angiotensinogen is the precursor that gets converted to
Angiotensin-I (Ang-I) by renin. Angiotensin-converting enzyme (ACE) converts Ang-I to
Angiotensin-II which acts via AT1 (primary mediator) and AT2 receptors to cause
vasoconstriction, increase in vascular permeability, inflammation, angiogenesis,
thrombosis, and fibrosis. This arm (ACE/Ang-II/AT1) is the pro-inflammatory and
pro-fibrotic arm. ACE2 on the other hand inactivates Ang-II by converting it to its
antagonistic peptide, Ang (1-7) which binds with Mas receptors and causes vasodilation,
and anti-apoptotic, anti-proliferative, anti-inflammatory effects, and attenuates the signal
cascade produced by Ang-II. This arm (ACE2/Ang (1-7)/Mas receptor) is the
anti-inflammatory and anti-fibrotic arm (Rice et al., 2004). It is also believed to exhibit
anxiolytic and antidepressant effects (de Melo & Almeida-Santos, 2020). A balance in the
ACE/ACE2 ratio is critical to maintain an equilibrium between the two arms of RAS.
An imbalance in the ACE/ACE2 ratio was implicated in various pathological conditions
including Alzheimer’s disease, pulmonary hypertension, cardiovascular, and renal
pathology (Bernardi et al., 2012; Kehoe et al., 2016; Lavrentyev & Malik, 2009; Yuan et al.,
2015). SARS-CoV-2 induced downregulation of ACE2 depletes the key component of the
protective arm of RAS which could result in an unrestrained activation of the deleterious
pro-inflammatory and pro-fibrotic arm of RAS. Dysregulation of RAS in the brain is linked
with neuroinflammation (Labandeira-Garcia et al., 2017; Rodriguez-Perez et al., 2016).
Overactivation of RAS by augmentation of local AT1 receptors was found to exacerbate
neuroinflammation (Grammatopoulos et al., 2007; Rodriguez-Pallares et al., 2008; Villar-
Cheda et al., 2012).

SARS-COV-2, astrocytes, and microglial interaction
Microglia is a vital innate component of the CNS and astrocytes act as mediators
for the SARS-COV-2 infection. Microglia provides anti-viral responses in mild cases
and produces neurotoxic effects in severe cases of COVID-19. An increase of pro-
inflammatory cytokines caused by both these glial cells can amplify the neuroinflammation
and lead to impairment in neurological functions in COVID-19 patients (Vargas et al.,
2020). Further, cellular cross-talks between astrocyte, microglia, and endothelial cells are
implicated in maintaining the cytokine microenvironment in COVID-19 patients (Matias,
Morgado & Gomes, 2019; Vargas et al., 2020). Owing to the important functions of both
astrocyte and microglia in homeostasis and during viral episodes, it is highly possible for
the involvement of these cells in the post-acute phase of SARS-COV-2 infection.
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Adult neurogenesis
There are several contradictory pieces of evidence on adult neurogenesis in humans mainly
spurred by the lack of direct evidence from live human subjects (Berger, Lee & Thuret,
2020).

The formation of new neurons in the adult brain from neural stem cells and neural
progenitor stem cells is called neurogenesis. During embryonic development, it is involved
in the formation of the brain, and in the adult brain, it persists in certain areas of
specialized microenvironment called the neurogenic niche. The neurogenic niche plays a
crucial role in the maintenance and regulation of neural stem cell proliferation and
contains various trophic factors, hormones, vasculature, and glial cells that enhance
neurogenesis (Mu, Lee & Gage, 2010). New neurons are generated by the neurogenic niche
throughout adult life in response to both physiological and pathological stimuli (Fan &
Pang, 2017). Neurogenesis involves the generation of new neurons, glial cells,
oligodendrocytes, and astrocytes. It is a complex process that includes cellular
proliferation, differentiation, survival, and integration. There are numerous intrinsic and
extrinsic factors that regulate neurogenesis in an integrated manner. The events in
neurogenesis occur in two phases, the early phase of proliferation, fate commitment, and
cellular migration and the late phase of development of synaptic circuitry and survival of
the neurons (Pathania, Yan & Bordey, 2010). The subventricular zone (SVZ) of lateral
ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus are the
two sites of adult neurogenesis (Toda et al., 2019).

The stem cells in the subgranular zones get differentiated into neural progenitor cells
which become immature neurons and then mature neurons. However, only 15–30% of
immature neurons survive the maturation process. The survived mature neurons become
granule cells whose axons form the mossy fibers extending to the hilus and CA3 region and
their dendrites in the molecular layer receive connections from the entorhinal cortex. Over
a period of several weeks, they show increased synaptic plasticity and become
indistinguishable from other older granule cells (Kempermann, Song & Gage, 2015).
Newborn neurons at the subventricular zone migrate to the striatum and they differentiate
to form striatal interneurons and in rodents, they migrate along the rostral migratory
stream (RMS) and differentiate to form interneurons of the olfactory bulb (Shohayeb et al.,
2018). Neurogenesis in the hippocampus is a unique form of brain plasticity that plays a
crucial role in memory, learning, pattern separation, and cognitive flexibility.

Dysregulation of adult neurogenesis in the hippocampus is associated with psychiatric
symptoms and cognitive decline in psychiatric and neurological disorders (Toda et al.,
2019). In addition to the role of neurogenesis in physiological conditions, the newly
generated neurons also move to sites of brain injury and form the endogenous repair
system (Apple, Fonseca & Kokovay, 2017). It has been found that apart from SGZ and SVZ,
certain areas of the adult brain like the neocortex, tegmentum, substantia nigra, amygdala,
brainstem, and spinal cord also retain some neurogenic potential. However, more
explorations are needed to confirm this and elucidate the functional significance (Fan &
Pang, 2017) (Fig. 2).

Saikarthik et al. (2022), PeerJ, DOI 10.7717/peerj.14227 9/34

http://dx.doi.org/10.7717/peerj.14227
https://peerj.com/


Why adult neurogenesis is important in relation to COVID-19 and
PACS?
Research studying adult neurogenesis in COVID-19 and COVID-19 survivors is scarce.
However, extrapolation of the results of some recent studies allows for a speculation that
adult neurogenesis can have a role to play in the neuropsychiatric symptoms/disorders in
COVID-19 and PACS.

Firstly, neuropsychiatric disorders like depression, anxiety, and PTSD are found to be
prevalent in COVID-19 survivors (Rogers et al., 2020; Tu et al., 2021). Recent studies
postulate a potentially increased risk of developing and/or worsening existing
neurodegenerative disorders like Alzheimer’s disease and Parkinson’s disease in COVID-
19 patients (Brundin, Nath & Beckham, 2020; Ciaccio et al., 2021; Leta et al., 2021; Sulzer
et al., 2020). One of the common features of these neuropsychiatric conditions is that they
correlate well with cognitive deficits, mood dysregulation, and a reduction in hippocampal
volume and they display impaired adult neurogenesis (DeCarolis & Eisch, 2010).

Secondly, brain imaging studies revealed a negative correlation between hippocampal
grey matter volume and loss of memory, and severity of post-traumatic stress syndrome
(PTSS) in COVID-19 survivors (Lu et al., 2020; Tu et al., 2021). Memory acquisition
depends on newborn neurons and a decrease in adult hippocampal neurogenesis is
implicated in the impairment of acquisition of memory (Misane et al., 2013; Recinto et al.,
2012). Though the studies found an increase in gray matter volume in COVID-19
survivors 3 months and 1 year after their recovery, it could be attributed to the ongoing
nature of the traumatic event of the pandemic with elevated levels of stress and anxiety and
a compensatory response (Lu et al., 2020; Tu et al., 2021).

Figure 2 Adult neurogenesis in the dentate gyrus of hippocampus. NSC, neural stem cell; NB, neu-
roblast; IN, immature neuron; MN, mature neuron; CA1 and CA3, Cornu Ammonis 1 and 3 regions.

Full-size DOI: 10.7717/peerj.14227/fig-2
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Thirdly, anosmia is a key feature of acute COVID-19 and is also observed in PACS
(Araújo, Arata & Figueiredo, 2021; Aziz et al., 2021). Recent brain imaging studies show
dysfunction, abnormalities, and atrophy of the olfactory bulb in COVID-19 patients and
patients suffering from PACS who presented with anosmia (Chiu et al., 2021; Galougahi
et al., 2020; Kandemirli et al., 2021). Neurogenesis in the olfactory epithelium and olfactory
bulb is essential for the sense of smell and anosmia is associated with impaired adult
olfactory neurogenesis (Boesveldt et al., 2017; Lledo & Valley, 2016). In addition, anosmia is
an important pre-motor symptom of Parkinson’s disease which appears to have no direct
association with the neurodegenerative process of substantia nigra but seems to be related
to impaired adult neurogenesis (Marxreiter, Regensburger & Winkler, 2013; Winner, Kohl
& Gage, 2011). COVID-19 is theorized to cause defects in the dopamine system, loss of
dopaminergic neurons, and an exacerbation of clinical features of Parkinson’s disease
(Brundin, Nath & Beckham, 2020; Sulzer et al., 2020).

Finally, the role of ACE2 in adult neurogenesis in COVID-19 gives a much more vital
perspective on the discussion at hand. ACE2 is a surface membrane protein that acts as an
obligatory receptor for SARS-CoV-2 and facilitates its entry into the host cell (Hoffmann
et al., 2020). In addition to serving as a receptor for SARS-CoV and SARS-CoV-2 virus,
ACE2 also acts as a negative regulator of the renin-angiotensin system (RAS) and
facilitates amino acid transport in the intestine (Gheblawi et al., 2020; Hoffmann et al.,
2020). Various experiments conducted on rodent models give insight into the sites of
ACE2 expression. ACE2 is expressed mainly in the lungs, intestine, brain, liver, heart,
kidney, and testes. In the brain, it is expressed in neurons, oligodendrocytes, and astrocytes
and the sites of ACE2 expression in the brain include ventricles, hippocampus,
hypothalamus, substantia nigra, middle temporal gyrus, pontine nuclei viz. pre-Bötzinger
complex and nucleus of tractus solitarius and in the olfactory bulb (Gheblawi et al., 2020).
More importantly, ACE2 is highly expressed in the key components of the blood-brain
barrier viz. astrocytes, astrocytic foot processes, pericytes, and endothelial cells (Hernández
et al., 2021).

A recent study conducted using human induced pluripotent stem cells (iPSC) derived
neural cells found ACE2 expression in young neurons and human-induced pluripotent
stem cell-derived neural progenitor cells (Kase & Okano, 2020). The tissues and organs
that are the major target sites for SARS-CoV-2 are those which has higher expression of
ACE2 (Pagliaro & Penna, 2020). Similar to SARS-CoV, binding of SARS-CoV-2 with
ACE2 causes downregulation of ACE2 (Datta et al., 2020; Seltzer, 2020; Tang et al., 2021;
Triana et al., 2021). This downregulation of ACE2 will cause dysregulation of RAS and
other complications in addition to its direct effects. Out of the many physiological
functions of ACE2, its neuroprotective role is of prime importance to this discussion.
Pre-clinical experiments conducted in animal models show the diverse neuroprotective
function of ACE2. In an Alzheimer’s disease rodent model, Diminazene, an ACE2
activator was found to increase CREB, BDNF, and nicotinic receptors while reducing
apoptotic and inflammatory proteins which all play a major role in adult neurogenesis
(Kamel et al., 2018). In transgenic mice, neurotoxic amyloid protein Aβ43 is converted to a
neuroprotective form Aβ40 by ACE2 (Liu et al., 2014). ACE2 deficient mice exhibited
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impaired memory and learning, and abolition of exercise-induced adult hippocampal
neurogenesis (Klempin et al., 2018; Wang et al., 2016).

ACE2 is involved in the intestinal neutral amino acid transport via the neutral amino
acid transporter BoAT1. ACE2/BoAT1 complex regulates the gut microbiota composition
and function. ACE2 knock-out animals presented with impaired gut microbiota
composition (Hashimoto et al., 2012). SARS-CoV-2 entry into the enteric host cells leads to
ACE2 shedding by S priming which may lead to gut microbiota dysbiosis (He et al., 2020;
Viana, Nunes & Reis, 2020). There is an increase in interest among the researchers
regarding a potential link between gut microbiota and the development of
neuropsychiatric disorders linked to impaired adult neurogenesis like anxiety and
depression (Peirce & Alviña, 2019). Prolonged antibiotic treatment-induced depletion of
gut microbiota in adult mice caused an impairment in adult neurogenesis and cognitive
function (Möhle et al., 2016). Thus, gut microbiota dysbiosis could be another way through
which ACE2 downregulation by SARS-CoV-2 may lead to impaired adult neurogenesis.

ACE2 is involved in the intestinal absorption of tryptophan, the precursor of serotonin
which plays a major role in adult neurogenesis and is implicated in psychiatric illness like
anxiety and depression. Downregulation of ACE2 reduces serotonin levels in brain thereby
affecting adult neurogenesis (Klempin et al., 2013).

Hence, based on the above-mentioned factors, COVID-19 may have a potential impact
on adult neurogenesis which could be implicated in the neuropsychiatric symptoms/
disorders in COVID-19 survivors. The current review is speculative and relied on
thorough literature review discusses the possible implication of potentially impaired adult
neurogenesis in neuropsychiatric symptoms/disorders in PACS with emphasis on the role
of neuroinflammation.

Neuroinflammation and hippocampus in PACS
It has been elucidated recently that prolonged inflammation caused by a release of
pro-inflammatory cytokines can cause some neurological deficits and cognitive
dysfunction during the post-acute phase of COVID-19 (Maltezou, Pavli & Tsakris, 2021).
Recent studies point towards the persistence of neuroinflammation in patients 3 months
after recovery from COVID-19 which emphasize the link to the neuropsychiatric sequelae
of COVID-19 in PACS (Goldberg et al., 2021; Lu et al., 2020). A recent study by Serrano-
Castro et al. (2022) found that the chemokine and growth factor profile of COVID-19
patients, 3 months after discharge depicted a persistent neuroinflammatory state.

Researchers across the globe use different small and large animal models to study
COVID-19 and PACS regarding host response, transmission, pathogenesis, and
therapeutic strategies. The World Health Organization (WHO) has assembled
WHO-COM (WHO COVID-19 modelling), an international panel to develop and study
new animal models for COVID-19 research. Readers can refer to the review by Muñoz-
Fontela et al. (2020) for information regarding animal models used in COVID-19 research.
Various viral infections were found to affect hippocampal functioning including
neurogenesis, protein and neurotrophin expression, neuron morphology and function
(Bobermin et al., 2020; Francesca et al., 2006;Hosseini et al., 2018; Li Puma et al., 2019; von
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Rüden et al., 2012). SARS-CoV virus-infected C57/BL6 mice model showed that viral RNA
and the live virus could be isolated from the brain of infected mice which was mainly
localized in the hippocampus (Glass et al., 2004). A recent study by Klein et al. (2021)
found that SARS-CoV-2 infected hamsters and a post-mortem study of brains of patients
deceased from COVID-19 showed disruption in BBB, activation of microglia and,
increased expression of brain-derived IL-1β and IL-6 in the hippocampus and lower
medulla. The study also concluded that the persistence of neurological problems as noted
in PACS could be mediated due to neuroinflammation affecting neural vasculature,
neurotransmission and neurogenesis (Klein et al., 2021).

Neuroimaging studies in live patients (Chiveri et al., 2021; Moriguchi et al., 2020) and
post-mortem brain studies (Fabbri et al., 2021; Solomon et al., 2020; Thakur et al., 2021)
have shown neuropathogenic changes in the hippocampus caused by SARS-CoV-2
infection. Given the implication of hippocampal pathology in various neuropsychiatric
disorders, SARS-CoV-2 mediated neuropathogenic changes in the hippocampus could be
attributed to neuropsychiatric disorders like depression in PACS (Nestler et al., 2002;
Roddy & O’Keane, 2019; Roddy et al., 2019). SARS-CoV-2 induced potential impaired
adult hippocampal neurogenesis could very well be one of the underlying cellular
mechanisms behind neuropsychiatric symptoms/disorders in COVID-19 survivors. Future
studies to elucidate the role of SARS-CoV-2-induced neuroinflammation and a possible
impairment in adult neurogenesis in the development of neuropsychiatric disorders are
much needed.

Putative role of neuroinflammation in potentially impaired adult
neurogenesis in PACS
Earlier studies have shown that the hippocampus is highly susceptible to the effects of
neuroinflammation (Barrientos et al., 2015; Hueston et al., 2018). The expression of IL-1β,
a pro-inflammatory cytokine that is an important mediator of neuroinflammation, and its
receptor are at high levels in the hippocampus (Ban et al., 1991; Parnet et al., 1994). Acute
exposure to IL-1β disrupts adult hippocampal neurogenesis and contributes to cognitive
and memory impairments in stress-related psychiatric disorders (McPherson, Aoyama &
Harry, 2011; Ryan et al., 2013). Chronic exposure to IL-1β causes impairment in adult
hippocampal neurogenesis which affects hippocampal-dependent processes like pattern
separation (Hueston et al., 2018). There are different mechanisms by which
neuroinflammation affects adult neurogenesis as discussed below (Fig. 3).

Glial cells
In normal physiological conditions, the neuroglial pathways and network operate to
maintain neuronal health and circuitry. In the case of chronic inflammatory conditions,
there occurs an imbalance in the cytokines in the microenvironment which activates
neurodegenerative pathways (Yap et al., 2021; Zhang, Zhang & You, 2018). One of the
ubiquitous element of neuroinflammation is the activation of astrocytes and microglia
(Glass et al., 2010; Tjalkens, Popichak & Kirkley, 2017). They affect neurogenesis by the
secretion of inflammatory mediators.
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Figure 3 Putative mechanism depicting the effect of neuroinflammation on adult neurogenesis
during PACS. The entry of SARS-COV-2 virus into the brain triggers the release of proinflammatory
cytokines which may potentially affect the hippocampal neurogenesis. This could be possibly hypothe-
sized as the reason for the various neuropsychiatric symptoms that are present during PACS.

Full-size DOI: 10.7717/peerj.14227/fig-3
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Microglia
Microglia secretes the growth factors, brain-derived neurotrophic factors (BDNF) and
insulin-like growth factors (IGF-1) which play a key role in adult hippocampal
neurogenesis (Nakajima et al., 2001; Suh et al., 2013). Experimental evidence shows that
these factors are expressed in the regions of SGZ and hippocampus during adulthood,
though found to be decreased initially after birth (Dyer et al., 2016; García-Segura et al.,
1991; Mori, Shimizu & Hayashi, 2004). Inhibition of neural progenitor cell proliferation
and reduction in the thickness of granule cells was noted in BDNF receptor, TrkB
knockout mouse (Galvão, Garcia-Verdugo & Alvarez-Buylla, 2008). IGF-1 promotes
neural precursor cell (NPC) proliferation, differentiation as well as survival probably by
anti-apoptotic effects (Åberg et al., 2003). It was found that voluntary exercise increased
neurogenesis by increasing the proportion of microglia that expresses BDNF and IGF-1
(Kohman et al., 2012; Littlefield et al., 2015). Short-term signaling of these neurotrophic
factors viz., BDNF, and IGF, mediates cellular plasticity needed for learning and memory,
whereas long-term signalling leads to neurogenesis (Duman, 2004).

Microglia are similar to macrophages and are primarily responsible for maintaining
brain homeostasis and response to injury (Block, Zecca & Hong, 2007). Activated microglia
become ameboid-shaped and express ACE2 and transmembrane protease serine subtype 2
(TMPRSS2) (Singh, Bansal & Feschotte, 2020). A recent study has shown that microglia are
directly infected by the SARS-COV-2 virus and can cause self-apoptosis, thereby causing a
reduction in the number of microglia which leads to further infiltration of the virus (Jeong
et al., 2022). Secondly, infection with SARS-COV-2 significantly increased the level of
TNF-a and IL-6, suggesting that activated microglia lead to neuroinflammation (Jeong
et al., 2022). A Post-mortem study of brains of patients deceased from COVID-19 showed
neuropathological signs of microglial activation (Matschke et al., 2020). A study by Huang
et al. (2020) showed that plasma levels of pro-inflammatory markers including different
types of IL, FGF, IFN-γ, TNF-a, and VEGF were increased in severe COVID-19 patients
who needed admission to intensive care unit. It could be hypothesized that the release of
these inflammatory cytokines by activated microglia could lead to the breakage of BBB
precipitating various neurological signs and deficits in COVID-19 infected patients
(Vargas et al., 2020). Very recently, a “two-hit” hypothesis of activation of microglia has
been proposed, which could explain the vulnerability of certain groups (aging, co-
morbidity, poor diet) for severe COVID-19 infection and prolonged sickness behavior
(Bouayed & Bohn, 2021).

Astrocytes
In 2002, Song, Stevens & Gage (2002) discovered that in adult rats, astrocytes promote
neural precursor cell differentiation to neurons in the hippocampus but not in the spinal
cord. BDNF, fibroblast growth factor 2 (FGF-2), glial cell-derived neurotrophic factors
(GDNF) and vascular endothelial growth factors (VEGF) are the neurogenic growth
factors secreted by astrocytes (Araki, Ikegaya & Koyama, 2021). Astrocytic BDNF acts on
the post synaptic cells of the hippocampus and stimulates neurogenesis. Such activity was
found to alleviate anxiety-like symptoms in experimental mice (Quesseveur et al., 2013).
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Acute stress potentiates hippocampal neurogenesis that was mediated through astrocyte
secreted FGF-2 and neutralizing FGF-2 prevented the proliferation of NPCs in cultures
(Kirby et al., 2013). Dexmedetomidine was found to mediate neurogenesis in Dentate
gyrus (DG), by upregulating the expression of GDNF derived from astrocytes, neural cell
adhesion molecule (NCAM) and cAMP response element-binding protein (CREB) by
improving astrogenesis (Zhang et al., 2019). In a recent study, it was found that enhanced
VEGF promoted neurogenesis by transdifferentiation of astrocytes to neurons and such
effects were abolished after treatment with Flurocitrate which is an astrocyte inhibitor in
the striatum of the ischemic stroke model (Shen et al., 2016).

Owing to the importance of astrocytes in the formation of BBB, it could be postulated
that infection of astrocytes with SARS-COV-2 virus could compromise the integrity of
BBB (DeOre et al., 2021). Previously, compromise in BBB, and neuroinflammation have
been implicated in various neurodegenerative and neuropsychiatric disorders caused due
to several types of Viral infections (Palus et al., 2017; Persidsky et al., 2000; Verma et al.,
2010). Conversely, disrupted BBB could in turn activate astrocyte and microglial cells as an
innate immune response (Alquisiras-Burgos et al., 2021). Elevated levels of glial fibrillary
acidic protein (GFAP) were noted in COVID-19 patients which is a marker for astrogliosis
(Heimfarth et al., 2022). As astrocytes are principal producers of cytokines and chemokines
in natural immune response, it could be held that they can cause neuroinflammation and
neurotoxicity after infection (Tavčar et al., 2021) and also serve as a host for viral
replication (Crunfli et al., 2021). A post-mortem study conducted on the brains of COVID-
19 patients showed astrocytes to be the major site of infection and replication of SARS-
CoV-2 (Crunfli et al., 2021).

Pro-inflammatory cytokines
The pro-inflammatory cytokines in the brain are mainly produced by activated microglia
(Wang & Jin, 2015). Depending on the physiological state, the action of cytokines in the
regulation of adult neurogenesis varies. Under physiological conditions, IL-6 and TNF-a
activate neurotrophic factors and promote neuroregeneration and IL-2 participates in
BDNF signaling and hippocampal functioning. However, in a proinflammatory
environment, the action of these cytokines leans more towards neurodegeneration and is
implicated in the pathogenesis of neuropsychological disorders (Baune et al., 2012; Beck
et al., 2005; Eker et al., 2014; Murphy et al., 2000). Chronic neuroinflammation directly
impairs adult hippocampal neurogenesis though there are controversial results (Fan &
Pang, 2017). Proinflammatory cytokine IL-1β, IL-6, and IFN-a causes a reduction in
neural cell proliferation and suppresses adult hippocampal neurogenesis (Borsini et al.,
2017; Borsini et al., 2018; Koo & Duman, 2008). TNF-a has a dual effect on adult
neurogenesis in vivo. TNFR1 receptor activation causes suppression of neurogenesis while
TNFR2 activation favors neurogenesis. I. vitro effect of TNF-a was predominantly
suppressive to adult neurogenesis (Chen & Palmer, 2013). A dose-dependent inhibition of
adult neurogenesis was produced by overexpression of IL-1β (Wu et al., 2012). Nuclear
factor-Kβ signaling is found to be the mediator for the anti-neurogenic effect of IL-1β (Koo
et al., 2010). Chronic expression of IL-1β in DG both in vitro and in vivo resulted in a
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reduction in hippocampal neurogenesis (Mathieu et al., 2010). IL-6 is considered to be the
pivotal xcytokine that inhibits adult neurogenesis (Wang & Jin, 2015). IL-6 impairs
neurogenesis by promoting NPCs towards gliogenesis (Vallieres et al., 2002). Chronic
overexpression of IL-6 in astroglia causes a significant reduction in new neuron production
without affecting gliogenesis (Vallieres et al., 2002). Neural stem cells exposed to IL-6 and
TNF-a exhibited a marked reduction in neurogenesis (Monje, Toda & Palmer, 2003).
There is conflicting evidence on the in vitro effect of IFN-γ on adult neurogenesis (Wang &
Jin, 2015). However, in vivo studies show insignificant neurogenesis suppressing effect by
IFN-γ (Monje, Toda & Palmer, 2003).

Neurotrophic factors like brain-derived neurotrophic factor (BDNF), insulin-like
growth factor-1 (IGF-1), nerve growth factor (NGF), glia-derived nerve factor (GDNF),
fibroblast growth factor 2 (FGF-2), and epidermal growth factor (EGF) play a key role in
the regulation of adult neurogenesis (Saikarthik, Saraswathi & Al-Atram, 2021).

There exists an inverse relationship between BDNF and pro-inflammatory cytokines,
IL-6, IL-2, TNF-a, INF-γ, IL-1β in pro-inflammatory states (Yap et al., 2021). IL-1β was
shown to inhibit the neuronal expression of BDNF in the presence of glial cells (Rage,
Silhol & Tapia-Arancibia, 2006). Inflammatory cytokines interfere with BDNF signaling by
influencing TrkB phosphorylation (Cortese et al., 2011). Administration of IFN-a causes a
reduction in BDNF levels (Lotrich, Albusaysi & Ferrell, 2013). Chronic neuroinflammation
causes a reduction in the microglial release of neurotrophic factors like IGF-1, thereby
causing neurodegeneration (Labandeira-Garcia et al., 2017; Suh et al., 2013). TNF-a
inhibits IGF-1 signalling in neurons (Venters et al., 1999).

Serum BDNF levels were found to be decreased in COVID-19-positive patients and
were found to be restored during recovery (Azoulay et al., 2020). No significant difference
was noted in the levels of IGF between COVID-19 positive and normal patients. However
increased levels of IGF were associated with hypertension, neurogenic disease and shock
which were noted in severe cases of COVID-19 (Feizollahi et al., 2022). Thus, the role of
BDNF and IGF is found to be, and hence further studies are necessary to study the effect of
these neurotrophic factors on neurogenesis in the post-acute COVID-19 phase.

Anti-inflammatory cytokines and chemokines
A wide range of actions on adult neurogenesis is demonstrated by anti-inflammatory
cytokines and chemokines. Anti-inflammatory cytokines IL-4, IL-10 that are released
during neuroinflammation promote neurogenesis. In COVID-19, IL-10 levels are
increased which promotes neuronal migration (Butovsky et al., 2006; Lorkiewicz &
Waszkiewicz, 2021). Increased expression of TGF-β was observed in COVID-19 patients
which has pro-neurogenic effects (Samsami et al., 2022; Xiong et al., 2020). Chronic
expression of TGF-β improves adult hippocampal neurogenesis (Mathieu, Piantanida &
Pitossi, 2010). A recent study found that chemokines viz. stromal cell-derived factor–1
(SDF-1) and monocyte chemoattractant protein-1 (MCP-1) levels to be higher in COVID-
19 patients 3 months after their hospital discharge (Serrano-Castro et al., 2022). They are
released by astrocytes and their levels are upregulated during neuroinflammatory states.
The receptors of SDF-1a, an isoform of SDF-1 viz. CXCR4 and CXCR7 and the receptor
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for MCP-1, CCR2 are highly expressed in NSCs (Ni et al., 2004; Peng et al., 2004; Widera
et al., 2004). Both these chemokines play a major role in the migration of NSCs during
neurogenesis. They also were shown to play a positive role in neuronal proliferation and
differentiation (Lee et al., 2013; Wu et al., 2009). Mildly symptomatic and severe cases of
COVID-19 presented with higher levels of fractalkine (Khalil, Elemam & Maghazachi,
2021). Neuronal CX3CL-1 (fractalkine)/CX3CR1 signalling has a regulatory role in adult
neurogenesis with disruption in the signalling causing decreased survival and proliferation
of NPCs in rodent model (Bachstetter et al., 2011). CCL11 (eotaxin-1) which acts through
receptor CCR3 was found to be increased in the earlier phase of COVID-19 and its levels
remained steady post infection (Khalil, Elemam & Maghazachi, 2021). Increased levels of
peripheral CCL11 decreased adult neurogenesis and affected learning and memory in
animal model (Villeda et al., 2011). A predominantly positive impact of
neuroinflammation on adult neurogenesis is exhibited through anti-inflammatory
cytokines and chemokines.

CONCLUSION
From the above discussion, we could postulate that neuroinflammation in PACS has the
potential to cause alterations in adult neurogenesis. COVID-19 worsens pre-existing
neuroinflammatory and neurodegenerative conditions like major depressive disorder,
Alzheimer’s disease, and Parkinson’s disease in addition to causing new such conditions.
Some of the features of PACS including depression, memory loss, and cognitive disorder
has been associated with impaired adult neurogenesis. With neuroinflammation having
both beneficial and detrimental effects on neurogenesis, based on the prevalence of
neuropsychiatric symptoms in PACS, the detrimental effects seem to outweigh the
beneficial ones. Hence, impairment in adult neurogenesis can be a potential cause for the
neuropsychiatric symptoms/disorders in PACS. However, preclinical studies to specifically
analyze adult neurogenesis in SARS-CoV-2 infection are crucial. A better comprehension
of the process of adult neurogenesis in PACS may help elucidate the potential role of the
regenerative capacity of neural precursor cells and adult neurogenesis in battling the
neuropsychiatric symptoms/disorders in PACS. Targeted therapeutic strategies to manage
neuroinflammation and impaired adult neurogenesis are the need of the hour to prevent
the development of neurological complications of PACS.
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