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SARS-CoV-2 diagnostic testing rates 
determine the sensitivity of genomic 
surveillance programs

Alvin X. Han    1  , Amy Toporowski2, Jilian A. Sacks3, Mark D. Perkins3, 
Sylvie Briand3, Maria van Kerkhove3, Emma Hannay2, Sergio Carmona2, 
Bill Rodriguez2, Edyth Parker4, Brooke E. Nichols1,2,5,6 & Colin A. Russell    1,5,6 

The first step in SARS-CoV-2 genomic surveillance is testing to identify 
people who are infected. However, global testing rates are falling as we 
emerge from the acute health emergency and remain low in many low- and 
middle-income countries (mean = 27 tests per 100,000 people per day). We 
simulated COVID-19 epidemics in a prototypical low- and middle-income 
country to investigate how testing rates, sampling strategies and 
sequencing proportions jointly impact surveillance outcomes, and showed 
that low testing rates and spatiotemporal biases delay time to detection 
of new variants by weeks to months and can lead to unreliable estimates 
of variant prevalence, even when the proportion of samples sequenced 
is increased. Accordingly, investments in wider access to diagnostics to 
support testing rates of approximately 100 tests per 100,000 people per  
day could enable more timely detection of new variants and reliable 
estimates of variant prevalence. The performance of global SARS-CoV-2 
genomic surveillance programs is fundamentally limited by access to 
diagnostic testing.

Since the start of the COVID-19 pandemic in 2019, unprecedented 
expansion of genomic surveillance efforts has led to the generation 
of more than 10 million SARS-CoV-2 sequences deposited in the publicly 
accessible Global Initiative on Sharing Avian Influenza Data database 
(https://www.gisaid.org/) as of May 2022. These efforts have been 
integral to understanding the COVID-19 pandemic1, including the 
identification of the Alpha variant in the United Kingdom during the 
fall of 20202, the Delta variant in India in late 20203 and the Omicron 
variant in southern Africa in November 20214. Despite the value of 
these efforts for monitoring the evolution of SARS-CoV-2, the intensity 
of genomic surveillance is highly heterogeneous across countries. 
High-income countries (HICs), on average, produced 16 times more 

SARS-CoV-2 sequences per reported case than low- and middle-income 
countries (LMICs) as a result of long-standing socioeconomic inequali-
ties and consequent underfunding of laboratory and surveillance infra-
structures in LMICs5. To strengthen global pandemic preparedness, 
initiatives such as the Access to COVID-19 Tools Accelerator Global 
Risk Monitoring Framework, the Pan American Health Organization 
COVID-19 Genomic Surveillance Regional Network, the Africa Pathogen 
Genomics Initiative and the Global Influenza Surveillance and Response 
System, among others, have supported LMICs in developing pathogen 
genomic surveillance programs.

Because resources are finite, it is critical that sequencing sam-
ple sizes, and the diagnostic testing needed to obtain samples for 
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(PCR) tests are poorly accessible for detection of individuals with 
COVID-19 symptoms outside of tertiary medical facilities (for example, 
inpatient hospitals with personnel and facilities for advanced medical 
investigation and treatment) in many LMICs11.

We then simulated different genomic surveillance sampling strate-
gies to elucidate how testing, sequencing volumes and the degree of 
sampling bias arising from sources of specimens jointly impact the 
timeliness of variant detection and the accuracy of variant monitor-
ing (Methods). These strategies include: (1) sending all samples from 
community clinics and tertiary hospitals to a centralized facility for 
possible sequencing (that is, population-wide strategy); (2) sampling 
and sequencing a portion of positive specimens collected at one ter-
tiary sentinel facility for the population of 1,000,000 simulated people 
(including individuals with mild symptoms seeking symptomatic 
testing and individuals with severe symptoms who sought tertiary 
care at the facility); or sampling and sequencing a portion of positive 
specimens collected at (3) 10%, (4) 25%, (5) 50% and (6) 100% of all 
tertiary sentinel facilities.

Results
Performance of current guidance
We first assessed various suggested sample sizes of positive specimens 
to sequence for detection of SARS-CoV-2 variants at low prevalence 
for simulated wild-type/Alpha and Delta/Omicron epidemics in Zam-
bia with a mean testing rate of 27 tests per 100,000 people per day 
(based on the observed mean rate of testing in LMICs) (Fig. 2). We used 
recommended sample sizes from three prominent guidances: (1) The 
World Health Organization and European Centre for Disease Preven-
tion and Control computed sample size using the binomial method7,8;  
(2) by subsampling genomic surveillance data generated in Denmark in 

sequencing, are carefully set for genomic surveillance programs to 
detect and monitor variants as efficiently as possible. Current recom-
mended sample sizes are based on sampling theory5–8 and assume 
that the volume of diagnostic testing is large enough such that the 
diversity of sampled viruses is representative of the diversity of viruses 
circulating in the population. However, LMICs test at a mean rate of 27 
tests per 100,000 persons per day, as opposed to more than 800 tests 
per 100,000 people per day across HICs, based on observational data 
collected between January 2020 and March 20229, with even higher 
testing rates in some HICs (Fig. 1). Low testing rates lead to spotty 
information and smaller virus specimen pools available for sequenc-
ing, resulting in sampling biases. These factors can render efforts to 
monitor the emergence of new SARS-CoV-2 variants or prevalence of 
existing variants highly unreliable.

Here, we studied how different testing rates can impact genomic 
surveillance outcomes. Specifically, we developed and used the Propel-
ling Action for Testing And Treating (PATAT) model, an individual-based 
modeling framework, to simulate concurrently circulating wild-type 
SARS-CoV-2 (pre-Alpha viruses)/Alpha-like epidemics and Delta-/ 
Omicron (BA.1)-like epidemics in Zambia as a representative LMIC 
archetype where recent demographic census data required by the 
model was available (Methods). We assumed that Alpha and Omicron 
(BA.1) were more transmissible than the respective extant virus to 
achieve growth rates of approximately 0.15 and 0.35 per day, respec-
tively2,10, and simulated SARS-CoV-2 infection waves in a population 
of 1,000,000 individuals over a 90-day period that begins with an 
initial 1% prevalence of the extant SARS-CoV-2 variant and the mutant 
variant being introduced at 0.01%. We assumed that clinic-based, 
professional-use antigen rapid diagnostic tests (Ag-RDTs) form the 
basis of testing, given persistent reports that polymerase chain reaction 
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Fig. 1 | Global disparities in SARS-CoV-2 testing rates. a,b, The color of each 
country represents the average total number of SARS-CoV-2 tests performed  
per 100,000 persons per day between 1 December 2021 and 31 March 2022 when 

the Omicron VOC spread around the world (a), and between 1 April 2022 and  
6 May 2022 when most countries were past peak Omicron wave of infections (b)9. 
Raster map from naturalearthdata.com.
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2020–2021 when the country was testing at more than 2,000 tests per 
100,000 people per day on average, Brito et al.5 suggested that sequenc-
ing 0.5% of all detected cases, with a turnaround time of 21 days, would 
result in 20% variant detection before reaching 100 cases; and (3) Wohl 
et al.6 formulated a mathematical framework computing sequencing 
sample size by modeling the biological and logistical processes that 
impact sampled variant proportions. Critically, all three methods did 
not consider how low testing rates and spatial nonuniformity in sam-
pling coverage impact sampled variant proportions and, in turn, speed 
of variant detection. The assumptions, mathematical background and 
lack of accounting for spatiotemporal bias in sample size estimation 
of each guidance are detailed in Table 1 and Supplementary Notes (see 
‘Background on current guidance’ in Supplementary Notes).

As such, even when assuming negligible turnaround time (that 
is, time from specimen collection to acquisition of sequencing data),  
the recommended approaches were insufficient to detect the  
variant at their respective detection targets (for example, at 1% vari-
ant proportion or before 100 detected variant cases) when testing 
rates were low due to poor representativeness, regardless of the 
genomic surveillance sampling strategy. The first strategy of sam-
pling specimens collected from the whole population that were sent to  
one sequencing facility (that is, population-wide strategy) led to  
the best performance (closest to detection target) for all recommen-
dations because it involves random uniform sampling of all available 
samples, a fundamental assumption made by all current guidance. 
However, if the specimen pools available for sequencing are restricted 
to those collected from a subset of sentinel tertiary facilities only, 
the nonuniformity in sampling coverage results in spatiotemporal 
bias within the sequenced samples and leads to delayed detection 
of variants of concern (VOCs), which gets progressively worse as the 
proportion of tertiary facilities performing sequencing decreases to 
one facility.

Variant detection
To elucidate how SARS-CoV-2 testing rates and the proportion of posi-
tive specimens sequenced impact the speed of variant detection, we 
simulated wild-type SARS-CoV-2/Alpha and Delta/Omicron epidemics 
at different Ag-RDT availability, ranging from 27 to 1,000 tests per 
100,000 persons per day (Fig. 3). We assumed that specimens to be 
sequenced are sampled on their collection day, and varied the propor-
tion of positive specimens to sample for sequencing each day between 
1 and 100%. We analyzed the impact of testing rates and sequencing 
proportions on the expected day when the first specimen sampled 
for sequencing containing the variant was collected as a measure of 
variant detection speed. In Fig. 3, we did not consider the time between 
sample collection and sequencing nor the turnaround time to obtaining 
sequencing results as they would only delay the actual day of variant 
detection by the assumed turnaround time.

For all testing rates, the relationship between the expected day 
when the first sample containing the variant was collected and the 
proportion of positive specimens sequenced per day can be described 
by a convex operating curve, reflecting rapidly diminishing returns 
in the speed of variant detection as more specimens are sampled for 
sequencing. Across all genomic surveillance sampling strategies, rela-
tively larger marginal improvements to the speed of variant detection 
are generally made when the sequencing proportion is increased up 
to approximately 10% of all samples collected. Further sequencing 
only minimally shortens the expected time to variant detection, as 
the operating curve asymptotically approaches the earliest possible 
day of detection. Importantly, increasing SARS-CoV-2 testing allows 
smaller sequencing proportions to attain similar detection day targets, 
and higher testing rates lower the earliest possible detection day. For 
both the Alpha and Omicron variants, increasing testing rates from 27 
to 100 tests per 100,000 persons per day brings forward the expected 
day of sampling the first variant sequence by at least 1 week (Fig. 3).

WHO/ECDC7,8 Brito et al.5 Wohl et al.6 WHO/ECDC7,8 Brito et al.5 Wohl et al.6
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Fig. 2 | Performance of current guidance on number of positive specimens 
to sequence for variant detection with testing rate at 27 tests per 100,000 
persons per day. First day of detection since variant introduction at 95% 
confidence and the corresponding circulating variant proportion using guidance 
from the World Health Organization (WHO)/European Centre for Disease 
Prevention and Control (ECDC)7,8, Brito et al.5 and Wohl et al.6 (Table 1) under 
different genomic surveillance strategies with varying sampling coverage (that is, 
all collected specimens from all healthcare facilities are sent to one facility to be 
sampled for sequencing (population-wide strategy); or only one tertiary facility 

or 10, 25, 50 or 100% of tertiary sentinel facilities would sample the specimens 
they collected for sequencing). Turnaround time (that is, time from specimen 
collection to acquisition of sequencing data) was assumed to be negligible. 
We performed 1,000 random independent simulations for each guidance/
surveillance strategy. a,b, We simulated epidemics for wild-type SARS-CoV-2/
Alpha (a) and Delta/Omicron (b). Gray regions denote that we could not reliably 
detect the variant virus with 95% confidence using the guidance in question 
under the assumed genomic surveillance strategy.
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For the same level of testing and sequencing proportion, the 
population-wide strategy led to the earliest initial detection of a vari-
ant sequence. If sequencing were restricted to samples collected at 
a subset of tertiary sentinel facilities only, increasing the number of 
facilities sending samples for sequencing reduced the spatiotemporal 
bias in the specimen pool, thereby shaping the operating curves closer 
to the ones observed for the population-wide strategy. Interestingly, 
results similar to the population-wide strategy could be attained if all 
tertiary facilities acted as sentinel sites and sent the samples they col-
lected for sequencing to increase the representativeness of sampling.

Observed variant proportion
Test availability and sampling coverage also affect the accuracy of the 
observed variant proportion (Fig. 4 and Extended Data Fig. 1). At a test-
ing rate of 27 tests per 100,000 persons per day, the observed variant 
proportion maximally differs from the true circulating proportion by 
more than 30% of the true value for both the Alpha and Omicron vari-
ants and, for more than 15% of the time, the proportional difference 
between the observed and true variation was greater than 20%. Both 
the maximum absolute difference and percentage of time points where 
the difference is greater than 20% can be lowered to less than 20% and 
less than 5%, respectively, if the testing rate is increased to 100 or more 
tests per 100,000 people per day.

Critically, when the representativeness of the specimen pool is 
spatiotemporally biased by sequencing samples collected at tertiary 
sentinel facilities only, increasing the proportion of specimens to be 
sequenced only marginally lowers the maximum absolute difference 
or lessens the number of times where observed variant proportion 
deviates less than 20% from true circulating proportions (Fig. 4, near 
vertical isoclines at low daily rates of testing). Increasing testing rates 
at sentinel surveillance sites provides more accurate detection in 
changes to circulating prevalence than sequencing more samples in 
the context of low testing rates.

Sensitivity analyses
We repeated our analyses using virus properties (that is, incubation 
period, maximum viral load, protection against infection by the 
mutant virus after extant virus infection) of the Omicron variant, but 
varied different relative transmissibility to the Delta variant (1.0 to 4.0)  
and the initial proportion of individuals who had been infected  
by the Delta variant (10 and 40%). The variant growth rates 

simulated for these hypothetical Delta/Omicron epidemics ranged from  
0.17 to 0.42 per day.

Under these varied conditions, the expected day when the 
specimen of the first variant sequence is collected still follows a 
convex-shaped operating curve against the daily proportion of 
positive specimens to sequence. For all curves, the larger marginal 
improvements in shortening variant detection are still in sequencing 
proportions of up to approximately 10% (Extended Data Fig. 2). In terms 
of the accuracy of observed variant to true circulating proportions, the 
maximum absolute difference and percentage of time points where 
the difference is greater than 20% are both substantially lowered if the 
testing rate is increased to at least 100 tests per 100,000 people per 
day (Extended Data Figs. 3 and 4).

We also varied the prevalence of extant Delta infections when 
the Omicron variant was introduced (Extended Data Fig. 5). We found 
that lower test availability causes a delay in sampling the first variant 
specimen if the variant is introduced when pre-existing extant variant 
circulation is high. At 27 tests per 100,000 persons per day, regardless 
of specimen proportions sequenced, detection could be delayed by 
approximately 1 week if Omicron was introduced when Delta was cir-
culating at 10% prevalence as opposed to 1%. This is because a greater 
share of tests would be used to diagnose the more prevalent extant 
virus infections which, in turn, decreases the likelihood of detecting 
the newly introduced variant at low proportions.

Discussion
Our findings show that the emphasis on the proportion of samples 
referred for genomic surveillance is misplaced if testing capacity is 
insufficient and sample sources are highly spatiotemporally biased. As 
such, at the current mean rate of testing in LMICs (27 tests per 100,000 
persons per day), current guidance5–8 on sequencing sample size esti-
mation could likely lead to later-than-predicted detection of novel 
variants at best or, at worst, leave new variants undetected until they 
have infected a majority of a population.

Based on our work, we identified three major areas of improve-
ment that could be prioritized to enhance the robustness of genomic 
surveillance programs (Fig. 5). First, the most substantial improve-
ments are likely to come from increasing the mean testing rate in LMICs 
from 27 tests per 100,000 persons per day (Fig. 5a) to at least 100 tests 
per 100,000 persons per day (Fig. 5b). Even if sentinel surveillance 
was conducted at only one tertiary facility, this increase in testing rate  

Table 1 | Current guidance by various stakeholder and academic groups on the number of specimens to sequence for 
detection of novel variants at low prevalence

Recommendation on number/proportion of 
positive specimens to sequence

Critical considerations

World Health 
Organization/European 
Centre for Disease 
Prevention and 
Control7,8

Minimum number of sequences to detect at 1% 
variant proportion with 95% confidence for given 
number of reported cases:
• 141 (<1,000 cases)
• 196 (1,001–2,500 cases)
• 243 (2,500–5,000 cases)
• 270 (5,001–10,000 cases)
• 285 (>10,000 cases)

• Agnostic to variant properties
• �Assumes specimen pool to be sampled for sequencing is representative of 

circulating diversity but acknowledges that, unless testing coverage is evenly 
distributed, this will be a biased sample

• �Notes that, in countries with limited sequencing capacity, monitoring relative 
prevalence of variants should be prioritized

Brito et al.5 At least 0.5% of all cases, with a turnaround 
time of 21 days to detect novel lineage before it 
reaches 100 cases at 20% probability

Based on sequencing data from Denmark, which is testing at an average of >2,000 
tests per 100,000 persons per day9

Wohl et al.6 1–29 sequences per day to detect an Alpha-like 
variant based on 0.03% initial introduction for 
a population of 10,000 (assuming growth rate 
of 0.1 per day) at 1% variant proportion with 95% 
confidencea

• �Assumes that the observed variant proportion in the positive specimens collected 
is representative of the circulating variant proportions among the infected 
population. This requires a large number of specimens that are randomly collected 
for assumption to hold true at low circulating variant proportions

• �A correction factor is included to correct for biases in the observed variant 
proportion, but only pertaining to those arising from the relative differences 
in diagnostic sensitivity, sample qualities and conditional asymptomatic and 
symptomatic testing probabilities between the two circulating variants

aWe used the spreadsheet (https://github.com/HopkinsIDD/VOCsamplesize) provided and input appropriate parameters to obtain the recommendation relevant to the simulated epidemics.
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for the catchment area of the facility would likely speed up variant 
detection by 1–2 weeks.

Second, the representativeness of a specimen pool for sequenc-
ing can be further improved by expanding sampling coverage. In our 
model, variant detection was further sped up by 1–3 weeks by increas-
ing the percentage of tertiary sentinel facilities sending the samples 
they had collected for sequencing to 25% of facilities (Fig. 5c). Addi-
tionally, in terms of prevalence monitoring, if 25% of tertiary facilities 
sequenced 5% of all positive specimens they had collected to detect 
and monitor an Alpha-like variant, the maximum absolute difference 
to the true circulating proportion is expected to decrease from more 
than 50% (assuming a single sentinel facility) to no more than 20%.

Third, reducing turnaround time from samples referred to 
sequencing output results in a 1:1 decrease in time to new variant detec-
tion, regardless of the proportion of sequenced samples, test avail-
ability or sampling coverage (Fig. 5). These gains require scaling up in 
sample transport networks, access to sequencing machinery, trained 
personnel and/or increases in numbers of sequenced samples to make 
the most efficient use of each sequencing run11. Furthermore, LMICs 
also often face high costs and extended delivery delays of laboratory 
reagents and consumables that were sometimes further exacerbated 
by recurring travel bans during the acute phase of the pandemic5,12,13.

After reducing spatiotemporal bias in the specimen pool through 
increased testing and sampling coverage, sequencing up to 5–10% 
of the positive specimens collected could return the greatest infor-
mation gains while minimizing resource wastage. For an Alpha-like 
variant, 100 tests per 100,000 persons per day with sampling from 
25% of tertiary sentinel facilities for sequencing amounts to an esti-
mated 5–10 sequences per week averaged over a 90-day period per 
1,000,000 people. If turnaround time is kept within 1 week, the variant 
would likely be detected within 1 month at a circulating proportion of 
approximately 4% (Fig. 5d). Similarly, at the same testing rate, sampling 

coverage and turnaround time (that is, average 5–11 sequences per week 
per 1,000,000 people), an Omicron-like variant would be detected 
before the first month since its introduction, but at approximately 
23% circulating proportion owing to its faster transmission (Extended 
Data Fig. 6).

Our findings serve to inform expectations of genomic surveil-
lance initiatives and should be interpreted according to the public 
health objectives of each program. If the objective is to serve as an early 
warning system for the de novo emergence of new variants before they 
are likely to have spread widely, then all factors above can be consid-
ered essential and could require substantially more than 100 tests per 
100,000 persons per day. Critically, determining that a new variant is 
a threat requires not only detection of the variant itself but also the 
capacity to reliably monitor changes in its prevalence and potential 
clinical impact on short timescales. The results presented here also 
inform the design of programs for the sensitive and reliable detection 
of changes in variant prevalence. Otherwise, if the objective is to detect 
for the introduction of novel variants from overseas, some of the factors 
above may be relaxed depending on the public health objectives. For 
instance, if the aim is to attempt containment, all factors should still be 
considered to promptly detect and monitor the spread of the variant. 
However, if the aim is to ensure sufficient time for control strategies to 
be enacted, less samples could be sequenced or turnaround time could 
be longer, for example, so long as the mitigation strategies remain 
useful when implemented.

Despite performing our simulations using demographic para
meters from Zambia, the emergence and detection of each VOC to 
date represents interesting case studies for the work described here 
(see ‘Emergence of SARS-CoV-2 variants of concern’ in Supplementary 
Notes). For example, at the time of the first detection of the Omicron 
variant, in South Africa in November 2021, the daily SARS-CoV-2 testing 
rate was 51 tests per 100,000 people per day9, which was among the 
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Fig. 3 | Impact of SARS-CoV-2 testing rates and proportion of positive 
specimens to sequence on variant detection. For each mean daily test 
availability (differently colored), the expected day (points and line) and the s.d. 
(shaded region) when the first variant specimen to be sequenced is sampled 
since its introduction is plotted against the proportion of positive specimens to 
be sampled for sequencing daily. Different genomic surveillance strategies with 
varying sampling coverage (that is, all specimens collected from all healthcare 

facilities sent to one facility to be sampled for sequencing (population-wide 
strategy); or only one tertiary facility, or 10, 25, 50 or 100% of tertiary sentinel 
facilities would sample the specimens they collected for sequencing) were 
simulated. a, Wild-type SARS-CoV-2/Alpha. b, Delta/Omicron. The plotted 
results were computed from 1,000 random independent simulations for each 
surveillance strategy.
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highest testing rates in Africa. However, the Omicron variant was only 
detected 6–8 weeks after its likely emergence4. At that point, Omicron 
had already infected a substantial portion of the population in Gauteng, 
South Africa (that is, the estimated circulating variant proportion was 
greater than 80% by mid-November)4. Not only had the variant already 
spread across the rest of South Africa and to neighboring Botswana4, 
Omicron samples were also collected in multiple other countries, 
including Hong Kong14, Denmark15 and the Netherlands16, before the ini-
tial reports on the identification of the Omicron variant. This situation 
is consistent with our modeling findings, where novel variant detection 
is possible with less than 100 tests per 100,000 persons per day, but 
only after the new variant has spread widely across the population.

In another example, Germany randomly sequenced approxi-
mately 60–70 sequences per week (that is, less than 1% of cases 
sequenced per day) in December 202017. During this time, testing 
rates in Germany averaged at approximately 300 tests per 100,000 
persons per day9. Germany was able to detect the Alpha variant 1 week 
before the World Health Organization declared the lineage a VOC in 
mid-December 202017. The Alpha variant likely emerged in the UK in 
mid-September 202018 and rapidly proliferated across the country 
before it was reported in December 202019. Our analyses showed that 
the expected time before the first Alpha variant specimen was sampled 
for sequencing since its introduction is more than 4 weeks (that is, 
around November 2020) at Germany’s testing and sequencing rate. 
This falls in line with the likely period of Alpha’s introduction into 
Germany, similar to the period estimated for its European neighbors, 
such as the Netherlands20.

There are some limitations to our work. First, although we com-
puted the amount of testing and sampling coverage required to  
achieve prompt and precise variant surveillance outcomes, com-
prehensive cost-effectiveness analyses are needed to determine  
the cost-optimal approach toward expanding testing programs that 
support surveillance alongside other epidemic control objectives. 

Second, PATAT iteratively simulates the course of an epidemic wave 
in time steps of 1 day. As a simplification, PATAT assumes a logical 
flow where testing and isolation after positive diagnoses occur before 
transmissions are simulated each day. However, in reality, transmission 
could occur before testing and isolation and thus potentially lead to 
an underestimation in infections. Nonetheless, a substantial portion 
of SARS-CoV-2 transmissions are attributable to individuals who are 
asymptomatic and presymptomatic21, who would not seek testing 
until they present symptoms. This was reflected in our simulations 
(Extended Data Fig. 7). As such, it is unlikely our simulations substan-
tially underestimate disease spread. Furthermore, other agent-based 
SARS-CoV-2 transmission models that made similar assumptions were 
validated against real-world epidemiological data22,23. Importantly, 
our simulation results also fit well against confirmed case and death 
counts in Zambia when accounting for the prevailing testing rates 
in the country (see ‘Model validation’ in Supplementary Notes and 
Extended Data Fig. 8).

Although we find that routine representative sampling is vital for 
monitoring SARS-CoV-2 evolution, additional surveillance systems, 
including targeted surveillance of particular populations and settings 
(such as individuals who are immunocompromised or unusual events) 
and wastewater sampling, could enable increased variant detection 
sensitivity24. In particular, recent advances in wastewater sequencing 
and deconvolution methods to resolve multiple viral lineages in mixed 
wastewater samples enabled detection of emerging variants before 
they were captured by clinical genomic surveillance25–27. However, 
sequence quality is often poor in wastewater samples and, in turn, these 
methods depend on a priori knowledge of the lineage-defining muta-
tions of VOCs and variants of interest, which are currently still identi-
fied based on noteable upsurges in individuals with clinical diagnoses. 
Furthermore, centralized wastewater management systems, which 
these methods rely on for accurate determination of relative lineage 
prevalence, are currently nonexistent in many LMICs. Substantial 
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Fig. 4 | Impact of SARS-CoV-2 testing rates on the capacity to monitor 
changes in variant prevalence based on diagnostic test availability 
and proportion of test-positive samples sequenced. Different genomic 
surveillance strategies (that is, all specimens collected from all healthcare 
facilities sent to one facility to be sampled for sequencing (population-wide 
strategy); or only one tertiary facility or 10, 25, 50 or 100% of tertiary sentinel 

facilities would sample the specimens they collected for sequencing) were 
simulated. a, Maximum absolute difference between observed and circulating 
variant proportions. b, Proportion of time points when sequencing was 
performed that the absolute difference between observed and circulating variant 
proportions is greater than 20%. All results were computed from 1,000 random 
independent simulations for each surveillance strategy.
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investments, coordination and time are needed to enable local sanita-
tion infrastructures suitable for wastewater surveillance28. Detection 
of genetic markers, such as S-gene target failure in PCR assays, may 
also provide faster notification of viral lineages with these specific 
mutations. However, whole-genome sequencing is still needed for 
unambiguous genotyping of SARS-CoV-2 samples. Ultimately, clini-
cal diagnostic testing and surveillance will remain the core mode of 
SARS-CoV-2 surveillance in most countries.

During the initial phase of the pandemic in 2020, due to limited 
testing and sequencing capacities, many LMICs were initially focused 
on genomic surveillance efforts at points of entry at country borders 
to deter introductions29–31. Over time, especially after the emergence of 
VOCs, SARS-CoV-2 genomic surveillance gradually expanded to include 
community surveillance as many LMICs enhanced their sequencing 
capacities4,31–33. This was done either by establishing regional sequenc-
ing networks to maximize available resources, investing in local 
sequencing capacities or partnering with global collaborators33–35. 
Sequencing turnaround time has also improved from an average of 
approximately 170 days in 2020 to approximately 30 days in 2021 
across the African continent, albeit with substantial variation among 
countries33. Although sequencing capabilities have expanded in LMICs, 
obtaining spatiotemporally representative samples remains a key 
challenge33. Our work shows that the sensitivity of genomic surveil-
lance programs is highly dependent on diagnostic testing rate and 
that a mean testing rate of 100 tests per 100,000 persons per day at 
sentinel sites that are geographically spread out across the commu-
nity is a good basis for monitoring virus variants. Whereas a reflexive 
PCR test after a positive Ag-RDT diagnosis is currently performed to 
obtain samples suitable for sequencing (and is possible in many ter-
tiary facilities in LMICs), this presents additional cost and logistical 

barriers. Recent studies showed that SARS-CoV-2 sequencing can be 
performed using materials obtained from Ag-RDTs performed at point 
of care36–38. Importantly, whole genomes can be recovered up to 8 days 
after testing, providing opportunities for sequencing to be performed 
on samples performed through self-testing as well36.

Expanding genomic sequencing capabilities, especially in LMICs, 
is a global priority39 and current investments in sequencing must con-
tinue33,34. Simultaneously, sustained investments in public health sys-
tems are required to expand access to, and availability of, diagnostic 
testing to underpin SARS-CoV-2 surveillance programs. Here, we pri-
marily focused on LMICs, but our findings on the impact of testing 
rates and representativeness on genomic surveillance programs are 
equally important for HICs as parts of their testing and surveillance 
infrastructures are dismantled following the acute health emergency 
of the COVID-19 pandemic. Ultimately, detecting the next SARS-CoV-2 
variant or pathogen that causes the next pandemic requires funda-
mental clinical diagnostic capacity to monitor existing and emerging 
pathogens.
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Methods
Simulating SARS-CoV-2 epidemics with the PATAT model
We used PATAT, a stochastic, individual-based model to simulate 
SARS-CoV-2 epidemics in a community with demographic profiles, 
contact mixing patterns and level of public health resources mirror-
ing those typically observed in LMICs. Here, the model was based on 
Zambia. PATAT creates an age-structured population, linking indi-
viduals within contact networks of multigenerational households, 
schools, workplaces and churches (that is, regular mass gatherings) 
(Supplementary Table 1). The simulated number of healthcare facilities 
(that is, community clinics and tertiary hospitals) where individuals 
with mild symptoms seek symptomatic testing and have their virus 
specimens collected was based on an empirical clinic to population 
ratio (that is, one healthcare facility for every 7,000 individuals, on 
average)40,41. Although PATAT does not explicitly simulate the spatial 
location of individuals, contact networks and healthcare facilities are 
ordered to approximate localized community structures (that is, the 
closer the number order of a facility, the closer they are in the same 
neighborhood) that is most illustrative of urban centers. Households 
are proximally ordered and distributed around these facilities based 
on an empirical distance-structured distribution that correlates with 
probabilities of individuals with symptoms seeking testing at clinics 
(Supplementary Table 1).

We then simulated SARS-CoV-2 infection waves in a population 
of 1,000,000 individuals over a 90-day period that begins with an 
initial 1% prevalence of an extant SARS-CoV-2 variant and the intro-
duction of a mutant variant at 0.01%. We assumed that clinic-based, 
professional-use Ag-RDTs are the predominant SARS-CoV-2 diagnostic 
used for SARS-CoV-2 testing39. Because Ag-RDT sensitivity depends 
on within-host viral loads42, PATAT generates viral load trajectories, 
measured in cycle threshold values, for individuals with COVID-19 by 
randomly sampling from known viral load distributions of different 
SARS-CoV-2 variants43,44. We performed simulations for two variant 
replacement scenarios, Alpha variant introduction while the wild-type 
virus was circulating (wild-type/Alpha) and Omicron (BA.1) variant intro-
duction while Delta was circulating (Delta/Omicron), applying known 
distributions of their peak viral load, incubation and virus clearance 
periods43,45 (Supplementary Table 1). Before simulating the two-variant 
epidemic, we first calibrated the transmission probability parameter for 
the extant variant such that it would spread in a completely susceptible 
population at R0 = 2.5–3.0. We then assumed Alpha and Omicron (BA.1) 
were more transmissible than the respective extant virus to achieve 
growth rates of approximately 0.15 and 0.35 per day, respectively2,10.

For both sets of simulations, we assumed that 10% of the popula-
tion had infection-acquired immunity against the extant strain initially, 
with some level of protection against infection by the mutant virus 
(wild-type SARS-CoV-2, 80% protection against Alpha46; Delta, 20% 
protection against Omicron10). We also investigated the scenario where 
40% of the population had infection-acquired immunity as part of sen-
sitivity analyses (see below). We did not investigate scenarios involving 
vaccine-acquired immunity due to low vaccine uptake in most LMICs47.

PATAT uses the SEIRD (susceptible-exposed-infected-recovered/
death) epidemic model for disease progression and stratifies indi-
viduals who are infected on the basis of their symptom presentation 
(asymptomatic, mild or severe). After an assumed random delay after 
symptom onset (mean = 1 day; s.d. = 0.5 day), individuals with symp-
toms who seek testing would do so at their nearest healthcare facility, 
where test-positive samples may be reflexively collected for sequenc-
ing. We assumed that individuals with symptoms sought testing based 
on a probability distribution of health service-seeking behavior that 
inversely correlates with the distance between the individual’s house-
hold and the nearest healthcare facility (Supplementary Table 1)48.

We varied levels of Ag-RDT stocks per day (that is, 27, 100 and 
200–1,000 (in increments of 200) tests per 100,000 persons per day), 
running ten independent epidemic simulations for each testing rate. 

Given the start of a week on a Monday, we assumed that a week’s worth 
of tests are delivered to healthcare facilities every Monday and unused 
Ag-RDTs in the previous week are carried forward into the next week. 
If test stocks for a particular week were exhausted before the end of 
the week, testing for the rest of that week ceased. Due to overlapping 
symptoms between COVID-19 and other respiratory diseases, a pro-
portion of available Ag-RDTs would be used by individuals who are 
not infected with SARS-CoV-2. Based on test positivity rates reported 
by various countries in the second half of 202149, we assumed a 10% test 
positivity rate at the start and end of the simulated epidemic, and 20% 
test positivity at its peak, linearly interpolating the rates between these 
time points. We also assumed that false-positive specimens could be 
sampled based on a reported Ag-RDT specificity of 98.9%42.

We assumed that any specimens collected for genomic surveil-
lance after positive detection through Ag-RDT would be reflexively 
confirmed with PCR. We also assumed that all individuals who were 
symptomatic with severe symptoms require hospitalization, and are 
tested separately from persons with mild symptoms who sought test-
ing. Given that likely only approximately 10–20% of people who died 
from COVID-19 in Zambia were tested for the disease in life50,51, we 
assumed that only 20% of individuals with severe disease would be 
tested by Ag-RDT or PCR upon presenting severe symptoms and have 
specimens collected for sequencing.

Full technical details of PATAT are described in the Supplementary 
Information. The full model source code is available at https://github.
com/AMC-LAEB/PATAT-sim.

Genomic surveillance strategies
Twenty percent of healthcare facilities were assumed to be tertiary facil-
ities based on empirical data collected from Zambia40,41. We assumed 
that tertiary facilities provide testing for individuals with mild symp-
toms and hospitalized patients with severe symptoms. Given that 
healthcare facilities were proximally ordered, we randomly selected 
tertiary facilities in each independent surveillance simulation (see 
below), but ensured that the selected facilities were not consecutively 
ordered. In sum, all tertiary facilities accounted for a median of 18.4% 
(interquartile range = 17.7–19.1%) of total testing volume across all 
simulations. We assumed that a proportion of tertiary facilities serve as 
sentinel surveillance sites that reflexively collect SARS-CoV-2-positive 
samples for sequencing. We then simulated six strategies with varying 
degrees of sampling coverage, where positive specimens collected 
from testing sites would be consolidated and sampled for sequencing: 
(1) all samples from community clinics and tertiary hospitals are sent 
to a centralized facility and further sampled for sequencing (that is, 
population-wide strategy); (2) only one tertiary sentinel facility for the 
population of 1,000,000 simulated people would sequence a portion 
of positive specimens it has collected, both from individuals with mild 
symptoms seeking symptomatic testing and individuals with severe 
symptoms who sought tertiary care at the facility; or only (3) 10%, (4) 
25%, (5) 50% and (6) 100% of all tertiary sentinel facilities would sample 
and sequence a proportion of the specimens they have collected.

For all strategies, we assumed that a proportion (1–100%; in 2% 
increments between 1 and 5%, in 5% increments between 5 and 100%) of 
positive specimens are collected daily for sequencing. We also assumed 
that positive specimens sampled within each week for sequencing 
are consolidated into a batch before they are referred for sequencing. 
Turnaround time refers to the time between collection of each weekly 
consolidated batch of positive specimens to the acquisition of its 
corresponding sequencing data. Because the within-host viral loads 
of individuals infected with SARS-CoV-2 were simulated, we assumed 
that only high-quality samples, where cycle threshold values less than 
30, could be sequenced and that the sequencing success rate is 80%, 
as assumed in other studies6.

For each strategy and sequencing proportion, we performed 100 
independent surveillance simulations for each epidemic simulation 
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with a given test stock availability, thus totaling to 1,000 random 
simulations for each set of variables (that is, testing rate, sequencing 
proportion and strategy).

Statistics and reproducibility
No statistical method was used to predetermine the population size in 
our agent-based modeling study. We chose to simulate a population 
size of 1,000,000 individuals because it is sufficiently large enough 
to generate the desired epidemic characteristics and inferences on 
surveillance outcomes. We validated our simulation results based on 
this population size against real-life reported case count data in Zambia 
(see ‘Model validation’ in Supplementary Notes). All simulation data 
generated were included in our analyses.

Ethics statement
Ethics approval was not required for this study.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data on global testing rates were downloaded from https://www.finddx.
org/covid-19/test-tracker. All data used to parameterize the PATAT 
simulation model can be found in the article and Supplementary Infor-
mation. All simulation data generated for this study can be found in 
the GitHub repository (https://github.com/AMC-LAEB/PATAT-sim).

Code availability
The PATAT model source code and custom codes used to analyze 
our simulation data are available at https://github.com/AMC-LAEB/
PATAT-sim and https://github.com/AMC-LAEB/PATAT-sim/blob/main/
projects/surveillance/han-et-al_genome_surveillance_lmics.ipynb, 
respectively. This version of the model and analysis codes is also avail-
able at https://doi.org/10.5281/zenodo.7308781.
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Extended Data Fig. 1 | Impact of SARS-CoV-2 Ag-RDT testing rates and daily 
proportion of positive specimens to sample for sequencing on observed 
Omicron variant proportions. Different genomic surveillance strategies 
(that is all specimens collected from all healthcare facilities sent to one facility 
to be sampled for sequencing (population-wide strategy); only one, 10%, 25%, 
50% or 100% of all tertiary facilities acting as sentinel sites that would sample 

the specimens they collected for sequencing) were simulated. (A) Maximum 
absolute difference between observed and circulating variant proportions.  
(B) Proportion of timepoints when sequencing was performed that the absolute 
difference between observed and circulating variant proportions is greater than 
20%. All results were computed from 1,000 random independent simulations for 
each surveillance strategy.
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Extended Data Fig. 2 | Sensitivity analyses on variant detection operating 
curve for different relative transmissibility factor. For each Ag-RDT 
availability (differently colored), the expected day (points and line) and the 
standard deviation (shaded region) when the first Omicron variant specimen 
(in the background of extant Delta variant) is sampled for sequencing since 
its introduction is plotted against the proportion of positive specimens to be 
sampled for sequencing daily. All specimens collected from the population from 

all healthcare facilities were sent to one facility to be sampled for sequencing 
(population-wide genomic surveillance strategy). Different transmissibility 
factor of Omicron relative to Delta (fmutant) were assumed. (A) 10% and (B) 40% of 
the population had immunity against Omicron initially. The plotted results were 
computed from 1,000 random independent simulations for each surveillance 
strategy.
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Extended Data Fig. 3 | Sensitivity analyses on accuracy of observed variant 
proportions for different relative transmissibility factor. Omicron-like virus 
properties assumed for variant and initial proportion of population with some 
degree of protection against the variant virus assumed at 10%. All specimens 
collected from the population from all healthcare facilities were sent to one 
facility to be sampled for sequencing (population-wide genomic surveillance 

strategy). Different transmissibility factor of Omicron relative to Delta (fmutant) 
were assumed. (A) Maximum absolute difference between observed and 
circulating variant proportions. (B) Proportion of timepoints when sequencing 
was performed that the absolute difference between observed and circulating 
variant proportions is greater than 20%. All results were computed from 1,000 
random independent simulations for each surveillance strategy.
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Extended Data Fig. 4 | Sensitivity analyses on accuracy of observed variant 
proportions for different relative transmissibility factor. Omicron-like virus 
properties assumed for variant and initial proportion of population with some 
degree of protection against the variant virus assumed at 40%. All specimens 
collected from the population from all healthcare facilities were sent to one 
facility to be sampled for sequencing (population-wide genomic surveillance 

strategy). Different transmissibility factor of Omicron relative to Delta (fmutant) 
were assumed. (A) Maximum absolute difference between observed and 
circulating variant proportions. (B) Proportion of timepoints when sequencing 
was performed that the absolute difference between observed and circulating 
variant proportions is greater than 20%. All results were computed from 1,000 
random independent simulations for each surveillance strategy.
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Extended Data Fig. 5 | Impact of prevalence of extant variant of concern 
(I0,WT) at the time of new variant introduction. For each Ag-RDT availability 
(differently colored), the expected day (points and line) and the standard 
deviation (shaded region) when the first Omicron variant specimen (in the 
background of Delta) is sampled for sequencing since its introduction is plotted 

against the proportion of positive specimens to be sampled for sequencing 
daily. Each panel shows a different prevalence of the Delta variant (I0,WT) at the 
point of Omicron introduction. Sampling for sequencing was drawn from the 
population-wide scenario. The plotted results were computed from 1,000 
random independent simulations for each surveillance strategy.
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Extended Data Fig. 6 | Recommended approach to enhance genomic 
surveillance robustness. In each plot, the operating curves of the expected 
day when the first Omicron BA.1 variant sequence is generated are plotted 
for different proportion of specimens to sample for sequencing per day and 
turnaround times. We assumed that the Omicron BA.1 variant was circulating at 
1% initially with Delta variant in the background. We also assumed that positive 
specimens sampled within each week for sequencing are consolidated into a 
batch before they are referred for sequencing. Turnaround time refers to the time 
between collection of each weekly consolidated batch of positive specimens to 
the acquisition of its corresponding sequencing data. The vertical axes denote 
the number of days passed since the introduction of the Omicron variant (left) 
and its corresponding circulating proportion (right). The horizontal axes denote 
the proportion of positive specimens to sample for sequencing per day (bottom) 

and the corresponding mean number of sequences to be generated per week 
per 1,000,000 people over a 90-day epidemic period. (A) Specimen pools for 
sequencing from one tertiary facility with testing rate at 27 tests per 100,000 
persons per day (tests/100 k/day). (B) Specimen pools for sequencing from one 
tertiary sentinel facility with testing rate at 100 tests/100 k/day. (C) Specimen 
pools for sequencing from 25% of all tertiary facilities acting as sentinel sites 
with testing rate at 100 tests/100 k/day. (D) Zoomed-in plot of (C) for sequencing 
proportions varying between 1–25%. Sequencing 5–10% of positive specimens 
(blue shaded region) would ensure that we would expectedly detect Omicron 
within 30 days if turnaround time is kept within one week. All results were 
computed from 1,000 random independent simulations for each surveillance 
strategy. The shaded region depicts the standard deviation across simulations.
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Extended Data Fig. 7 | Transmissions attributed to infectors of different disease status. Proportion of transmissions events (data points) attributed to different 
disease status of infectors across all independent epidemic simulations (n = 280). Bar plots show the mean proportion with error bars denoting ± standard deviation.
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Extended Data Fig. 8 | Model validation. We compared the mean number 
of reported cases (blue line, top panel) and deaths (red line, bottom panel) 
estimated by our simulations (10 simulations in total; see Supplementary 
Text) against the actual case and death counts (black lines) in Lusaka, Zambia 
during the second wave of infections between 25 December 2020 and 24 March 

2021. Actual case and death counts were retrieved from the Zambia COVID-19 
Dashboard (https://www.arcgis.com/apps/dashboards/3b3a01c1d8444932b
a075fb44b119b63). The blue and red shaded regions in each plot denotes the 
standard deviation of reported cases (top panel) and deaths (bottom panel) 
respectively.
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