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                   abstract  The present paper introduces a method of basis transformation of a vector space that is specifically   

                   applicable to polynomials space and differential equations with certain polynomials solutions such as Hermite,  

                   Laguerre and Legendre polynomials. The method based on separated transformations of vector space basis by a set  

 of operators that are equivalent to the formal basis transformation and connected to it by linear combination with 

projection operators. Applying the Forbenius covariants yields a general method  that incorporates the Rodrigues 

formula as a special case in polynomial space. Using the Lie algebra modules, specifically 𝔰𝔩(2, 𝑅), on polynomial 

space results in isomorphic algebras whose Cartan sub-algebras are Hermite, Laguerre and Legendre differential 

operators. Commutation relations of these algebras and Baker-Campbell-Hausdorff formula gives new formulas for 

special polynomials.      
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1.  Introduction 

 
In mathematical physics and specifically quantum mechanics, the solution of many problems 

requires solving the differential equations and their eigenvalues problem . Hermite, Laguerre and 

Legendre polynomials and related differential equations are among the most applicable 

eigenvalues problem in physics and mathematics [1,2]. Schrodinger equation for hydrogen atom 

reduces to Legendre differential equation and quantum harmonic oscillator requires Hermite 

polynomials and related differential equation. The well-known Rodrigues formula yields the 

solutions (eigenfunctions) of many of these differential equations [3]. In this paper we interpret 

the Rodrigues formula as the transformation of some specific basis in polynomial space to 

another polynomials (eigenfunctions) of associated differential equations. This approach is 

feasible, provided that the transformation operator to be considered as a set of operators acting 

on each basis separately. It is shown that the overall action of these operators is equivalent to a 

single linear operator. As an example, the change of basis vectors in two dimension can be made 

by a matrix of rank 2. The action of this matrix could be equivalent with the actions of two 

different matrices that acts on each basis separately. The relation between these operators 

achieved by applying projection operators as is proved in the section 2. The connection between 

separated basis transformation and umbral composition has been revealed by a theorem in section 

2. It is proved that by knowing the first two polynomials of Hermite , Laguerre and Legendre 

polynomials the related differential  equations could be retrieved by using the method based on 

the separated transformation of original basis and Forbenius covariants as projection operators. 
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The examples in section 2 clarifies the details of this method. By using the Rodrigues formula as 

the separated operators acting on the original basis, we acquire the form of related differential 

equations. In section 3, we introduce the Lie algebra modules on vector space of polynomials. 

The 𝔰𝔩(2, 𝑅) and 𝔰𝔩(2, 𝑐) has been known as the Lie algebras connected to symmetries in 

polynomial and monomial space [4,5]. We prove that the conjugation (similarity transformation) 

of generators of these Lie algebras, yields isomorphic algebras that their Cartan subalgebras are 

Hermite, Laguerre and Legendre differential operators. The raising and lowering operators has 

been introduced in section sections 3.1 and 3.2. In section 3.8, applying Baker-Campbell-

Hausdorff formula [6] on the basis of these isomorphic algebras, gives new relations of Hermite 

and Laguerre polynomials and their generating functions. Section 3.6 proves and represents a 

general form of differential-operator representations of 𝔰𝔩(2, 𝑅). In section 3.7, we propose a 

technique for solutions of differential equations based on raising operators acquired from 

associated Lie algebras.         

 

2. Separated operators of basis transformation  

             
Let 𝕍  be a n-dimensional vector space with basis vectors 𝑒1 , 𝑒2 , … 𝑒𝑛 . The linear operator that  

transforms these basis to another basis 𝑒′1 , 𝑒′2 , … 𝑒′𝑛 , normally is defined as a unique linear 

operator 𝑂 in the matrix form. In present theory we define a set of linear operators 𝑂1 , 𝑂2 , . . . 𝑂𝑛 

; each one acts separately on the corresponding basis as follows: 

                                                                    𝑂𝑖𝑒𝑖 = 𝑒′𝑖                                                                 (1) 

The result of the action of operator 𝑂 and the set of 𝑂𝑖 on the initial basis are the same, but 𝑂𝑖 as 

separated basis transformations allow to choose a wide range of 𝑂𝑖 operators whose overall 

transformations are equivalent to the operation of 𝑂. On the other hand, in many problems such 

as Rodrigues type formulas the separated basis transformation 𝑂𝑖 are more accessible than overall 

operator 𝑂. In the context of differential operators, 𝑂𝑖 could be regarded as the operators that 

transform the initial basis (monomials) in polynomial space to another basis as for example we 

observe in Rodrigues formula for Laguerre polynomials as the solutions (eigenfunctions) for 

Laguerre differential equation:   

                                                                𝕃𝑛 =
1

𝑛!
(𝐷 − 1)𝑛 𝑥𝑛 

This equation can be interpreted as the transformation of initial basis (1, 𝑥, 𝑥2, 𝑥3, . . . ) to new 

basis 𝕃𝑛 (Laguerre polynomials) by the action of the operator 

                                                                𝑂𝑛 =
1

𝑛!
(𝐷 − 1)𝑛 

Respect to Rodrigues formula, for all related differential equations such as Legendre, Chebyshev 

and Bessel Equations, there are separate and independent operators for each basis. Therefor we 

can apply a set of operators 𝑂𝑖 instead of a unique operator 𝑂 to transform the initial basis in 

polynomials space. This method obviates the need to find the unique linear operator 𝑂 with the 

same action on all initial bases. We will show the relation between 𝑂𝑖 and 𝑂 in proposition 2.1 

after defining the projection operators as follows.  

Let introduce the projection operators 𝑃1 , 𝑃2 , . . . , 𝑃𝑛 by the definition: 

   

                                                              𝑃𝑖𝑉 = 𝑉𝑖𝑒𝑖   ;  𝑃𝑖𝑒𝑗 = 𝛿𝑖𝑗 𝑒𝑖                                           (2) 

 

Where 𝑉 ∈ 𝕍 is a vector expanded as: 

                                                                 𝑉 = ∑ 𝑉𝑖𝑖 𝑒𝑖                                                                (3) 



From (2) we have:                              ∑ 𝑃𝑖𝑖 = 𝐼 ;  𝑃𝑖𝑃𝑗 = 𝑃𝑖𝛿𝑖𝑗  

as the main condition for projection operators (𝐼 is identity operator). 

 

Remark 1  

projection operators defined in (2), are linear operators. 

We show that by basis transformations according to (1), the projection operators 𝑃𝑖 are 

transformed as: 

                                                      𝑃𝑖
′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                                           (4)                                            

Theorem 2.1: the generalized form of projection operator under separated basis 

transformations 𝑂𝑖𝑒𝑖 = 𝑒′𝑖  is: 

                                                      𝑃𝑖
′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                                                                                           

Proof: respect to basis transformation 𝑂𝑖𝑒𝑖 = 𝑒′𝑖 and (2) we have: 

                                       𝑒′𝑖 = 𝑃𝑖
′𝑒′𝑖 = 𝑃𝑖

′𝑂𝑖𝑒𝑖 = 𝑃𝑖
′(∑ 𝑂𝑗𝑃𝑗𝑗 )𝑒𝑖                                                 (5)                                                            

Again, with substitution  𝑒′𝑖 = 𝑂𝑖𝑒𝑖 (5) reads as:                                                                             

                                                          𝑂𝑖𝑒𝑖 = 𝑃′𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )𝑒𝑖                                                       (6) 

It is valid for all 𝑒𝑖. with identity 𝑂𝑖𝑒𝑖 = 𝑂𝑖𝑃𝑖𝑒𝑖 , equation (6) becomes: 

                                                          𝑂𝑖𝑃𝑖 = 𝑃′𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )                                                          (7) 

Or:                                                    𝑃𝑖
′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 

As we expected.    

 

Proposition 2.1 The transformation of projection operator defined in (4) is equivalent to a 

similarity transformation 

                              𝑃𝑖
′ = ( ∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                      (8) 

Proof :   expansion of the first two terms on left side considering 𝑃𝑖𝑃𝑗 = 𝑃𝑖𝛿𝑖𝑗 yields: 

                                                  (∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖 = 𝑂𝑖𝑃𝑖 

Therefor we have the right side of (8). 

Equation (8) implies the similarity transformation of 𝑃𝑖 under the basis transformation made by 

operator 𝑂 = ∑ 𝑂𝑖𝑃𝑖𝑖  . Therefor the operator 𝑂 is the linear operator for transforming all basis 𝑒𝑖. 

Operator 𝑂 also yields transformations of all linear operators 𝒪 in vector space 𝕍 under basis 

transformation 𝑒′
𝑖 = 𝑂𝑒𝑖 by the similarity transformation  

                                       𝒪′ = 𝑂𝒪𝑂−1 = ( ∑ 𝑂𝑘𝑃𝑘𝑘 )𝒪(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                                   

                    

       Remark 2 

       Equation (4) meets the projection operator conditions: 

 

a) ∑ 𝑃𝑖
′

𝑖 = ∑ 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 =𝑖 (∑ 𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = 𝐼                                                          (9) 

 

                              𝑃𝑖
′ = 𝑂𝑃𝑖𝑂−1 = ∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 

The action of 𝑂 and 𝑂𝑗 on a basis 𝑒𝑗 is the same.      

                                        𝑂𝑒𝑗 = (∑ 𝑂𝑖𝑃𝑖𝑖 )𝑒𝑗 = 𝑂𝑗𝑃𝑗𝑒𝑗 = 𝑂𝑗𝑒𝑗 = 𝑒′𝑖     

This implies that the action of 𝑂 and 𝑂𝑗 on 𝑒𝑗 is equivalent. 

b) Respect to (4) and (9) we conclude: 

𝑃𝑖
′𝑃𝑗

′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑘𝑃𝑘𝑘 )−1𝑂𝑗𝑃𝑗(∑ 𝑂𝑙𝑃𝑙𝑙 )−1 =

[(∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1][(∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑗(∑ 𝑂𝑗𝑃𝑗𝑗 )−1]                                                              (10) 



Middle terms in right side of (7) reduce to identity operator and thus: 

𝑃𝑖
′𝑃𝑗

′ = (∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖𝑃𝑗(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                                                                           (11)  

Recalling 𝑃𝑖𝑃𝑗 = 𝑃𝑖𝛿𝑖𝑗  and (4) we obtain:  

                                                     𝑃𝑖
′𝑃𝑗

′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1𝛿𝑖𝑗 = 𝑃𝑖
′𝛿𝑖𝑗               

This proves the idempotency of 𝑃𝑖
′ i.e.,      𝑃𝑖

′𝑃𝑖
′ = 𝑃𝑖

′    

Where 𝑃𝑖
′ denoted as posterior probability analogy.  

Equation (4) is the unique formula for 𝑃𝑖
′ and other forms in spite of their validity for satisfaction 

of projection operator conditions i.e., equation (3), are not the right candidates. As an example, 

we may propose this formula for 𝑃𝑖
′:  

                                                         𝑃𝑖
′ = (∑ 𝑃𝑗𝑗 𝑂𝑗)−1𝑃𝑖𝑂𝑖                                                     (12) 

It is straightforward to investigate that this definition is compatible with conditions (3) but if we 

multiply both sides by 𝑒′𝑖 we obtain: 

                                                       (∑ 𝑃𝑗𝑗 𝑂𝑗)𝑃𝑖
′𝑒′𝑖 = 𝑃𝑖𝑂𝑖𝑒′𝑖  

Respect to (1) and (2) we get: 

                                                          (∑ 𝑃𝑗𝑗 𝑂𝑗)𝑒′𝑖 = 𝑃𝑖𝑂𝑖𝑒′𝑖      

One of the solutions results in a false outcome: 

                                                          (∑ 𝑃𝑗𝑗 𝑂𝑗) = 𝑃𝑖𝑂𝑖    

Proposition 2.2 The product of projection operators is associative. 

 

Proof : Let projection operators 𝑃𝑖
′ and  𝑃𝑖

′′ correspond to 𝑂𝑖 and 𝑂𝑖
′ as transformation groups of 

coordinates i.e. 

                                                          𝑃𝑖
′ = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1   

And                                                   𝑃𝑖
′′ = 𝑂𝑖

′𝑃𝑖
′(∑ 𝑂𝑗

′ 𝑃𝑖
′

𝑗 )−1    

Substitution of first relation into above equation results in: 

                                      𝑃𝑖
′′ = 𝑂𝑖

′𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1  [(∑ 𝑂𝑗
′ 𝑂𝑗𝑃𝑗)(∑ 𝑂𝑗𝑃𝑗𝑗 )−1

𝑗 )]−1     

                                        𝑃𝑖
′′ = 𝑂𝑖

′𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1[(∑ 𝑂𝑗𝑃𝑗𝑗 )(∑ 𝑂𝑗
′ 𝑂𝑗𝑃𝑗)−1

𝑗 ]  

  After vanishing of two central terms:    

                                                            𝑃𝑖
′′ = 𝑂𝑖

′𝑂𝑖𝑃𝑖(∑ 𝑂𝑗
′ 𝑂𝑗𝑃𝑗)−1

𝑗   

This is compatible with (4) by replacing 𝑂𝑖 with 𝑂𝑖
′′ = 𝑂𝑖

′𝑂𝑖. Therefore, the corresponding     

projection operator for two consecutive transformation 𝑂𝑖 and 𝑂𝑖
′  is equivalent the projection  

operator of 𝑂𝑖
′′ = 𝑂𝑖

′𝑂𝑖 transformation. 

                                                              𝑃𝑖
′′ = 𝑂𝑖

′′𝑃𝑖(∑ 𝑂𝑖
′′𝑃𝑗)−1

𝑗  

Remark 3 

 

As is proved, the operators ∑ 𝑂𝑗𝑃𝑗𝑗  and 𝑂 are equivalent operators. Respect to equation (9), the 

projection operator 𝑃𝑖 transforms as a similarity transformation under the action of operator 
∑ 𝑂𝑗𝑃𝑗𝑗 , therefor the initial basis should be transformed by this operator and consequently ∑ 𝑂𝑗𝑃𝑗𝑗    

and 𝑂 are equivalent.  

We show the identity (4) is also valid in function space, where the linear projection operators are 

defined. 

Proposition 2.3 Let 𝕍  be a n-dimensional function space over the real field 𝐹 with a set of 

orthogonal basis functions 𝜑𝑖 and inner product defined on a closed interval [𝑎, 𝑏].The same 

definition in (2) can be applied on these basis 



                                                    𝑃𝑖𝐹 = 𝑐𝑖𝜑𝑖 = 𝜑𝑖 ∫ 𝜑𝑖𝐹
𝑏

𝑎
ⅆ𝑥                                             (13) 

  Where                                                𝑐𝑖 = 〈𝜑𝑖 , 𝐹〉 = ∫ 𝜑𝑖𝐹
𝑏

𝑎
ⅆ𝑥                                                 (14) 

Are the coefficients in expansion of square integrable function 𝐹 in the basis 𝜑𝑖 calculated by 

inner product of 𝜑𝑖 and 𝐹 over the interval [𝑎, 𝑏]. 
 

Proof: with the identity (4) we conclude: 

                                                          𝑃𝑖
′(∑ 𝑂𝑗𝑃𝑗𝑗 ) = 𝑂𝑖𝑃𝑖         

Then we have:                                𝑃𝑖
′(∑ 𝑂𝑗𝑃𝑗𝑗 )𝐹 = 𝑂𝑖𝑃𝑖𝐹       

Respect to (13) and (14) we have: 

                                                    𝑃𝑖
′(∑ 𝑂𝑗𝑗 𝜑𝑗∫ 𝜑𝑗𝐹 ⅆ𝑥) = 𝑂𝑖𝜑𝑖 ∫ 𝜑𝑖𝐹

𝑏

𝑎
ⅆ𝑥                            (15) 

Regarding (1) we can choose 𝜑′𝑖 = 𝑂𝑖𝜑𝑖 as transformed basis that results in:                                                                                                                                     

                                                      𝑃𝑖
′(∑ 𝜑′𝑗𝑗 ∫ 𝜑𝑗𝐹

𝑏

𝑎
ⅆ𝑥) = 𝜑′𝑖 ∫ 𝜑𝑖𝐹

𝑏

𝑎
ⅆ𝑥                              (16)   

With the definition (2) of projection operator we have:   

                                                               𝑃𝑖
′𝜑′𝑗 = 𝛿𝑖𝑗 𝜑′𝑗  

Therefor the equation (16) respect to (14) reads as: 

                                                          𝜑′𝑖 ∫ 𝜑𝑖𝐹
𝑏

𝑎
ⅆ𝑥 = 𝑐𝑖𝜑′𝑖 

     𝑐𝑖𝜑′𝑖 = 𝑐𝑖𝜑′𝑖           
So, the identity (9) is valid for operators in function spaces. 

 

Proposition 2.4 Differential operators with certain eigenvalues and eigenfunctions can be 

linearly expanded by their projection operators.                     

 

Proof: Let the differential operator 𝔇 is characterized by eigenfunctions relation: 

                                                             𝔇𝜑𝑖 = 𝜆𝑖𝜑𝑖                                                                 (17) 

The eigenfunctions 𝜑𝑖 are linearly independent and are the basis vectors, i.e.: 𝑃𝑖𝜑𝑗 = 𝛿𝑖𝑗 𝜑𝑗 .   

Where  𝑃𝑖 is the projection on i-th subspace, then by the identity: 

                                                             𝔇𝜑𝑖 = 𝜆𝑖𝜑𝑖 = (∑ 𝜆𝑗𝑃𝑗𝑗 ) 𝜑𝑖                                         (18) 

The validity of this equation for all 𝜑𝑖 yields: 

                                                             𝔇 = ∑ 𝜆𝑗𝑃𝑗𝑗                                                                  (19)                                             

That proves the proposition. 

 

Theorem 2.2 Let the initial basis 𝑒𝑖 correspond to some set of linearly independent non-

homogenous polynomials such as the regular bases (1, 𝑥, 𝑥2, 𝑥3, . . . ). After transforming the 

bases by equation 𝑂𝑖𝑒𝑖 = 𝑒′𝑖 to new bases 𝑒′𝑖 which correspond the new linearly independent 

polynomials Ρ𝑛(𝑥), if  𝔇 denoted as the differential operator with 𝑒𝑖 or equivalently 𝑥𝑛 (n-th 

exponent of x) as its eigenfunctions (or eigenvector), then the corresponding differential operator 

𝔇′ with eigenfunctions Ρ𝑛(𝑥) can be obtained by the relation: 

                                                         𝔇′ = (∑ 𝜆′𝑘𝑂𝑘𝑃𝑘𝑘 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                               (20) 

Where 𝜆′𝑘 are eigenvalues of 𝔇′. 

  

Proof  Respect to equation (19) the expansion of  𝔇′ in terms of 𝑃𝑖′ reads as: 

                                                         𝔇′ = ∑ 𝜆′𝑖𝑃𝑖′ 𝑖                                                                      (21)                                                            



Where 𝑃𝑗′ are projection operators onto the i-th subspace ( i.e., 𝑒′𝑖). Substitution of 𝑃𝑖′ in equation 

(21) by equation (4) results in:       

                                             𝔇′ = ∑ 𝜆′
𝑖𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = (∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 𝑖             (22) 

This proves the theorem. 

                                                               

Projection operators in terms of resolvents:        

 

Associated to any differential operator in Hilbert space there are projection operators in terms of 

their resolvent i.e.                   𝑃𝑖 = ∫
𝑑𝜆

(𝜆𝐼−𝔇)−1𝑐𝜈𝑖

  and      𝑃𝑖
′ = ∫

𝑑𝜆

(𝜆𝐼−𝔇′)−1𝑐𝜈′𝑖

                                    (23)                                                       

Using (21), (22) we obtain: 

                                       ∫
𝑑𝜇

𝜇𝐼−𝔇′
= (

𝑐𝜈′𝑖

𝑂𝑖 ∫
𝑑𝜆

𝜆𝐼−𝔇𝑐𝜈𝑖

)(∑ 𝑂𝑗 ∫
𝑑𝜆

𝜆𝐼−𝔇𝑐𝜈𝑗
𝑗 )−1                                   (24)  

For a unique transformation 𝑂 = 𝑂𝑖 for all 𝜑𝑖we get: 

                                                    ∫
𝑑𝜇

𝜇𝐼−𝔇′
= 𝑂(∫

𝑑𝜆

𝜆𝐼−𝔇𝑐𝜈𝑖
𝑐𝜈′𝑖

)𝑂−1 

with expansion of resolvents 
𝑑𝜆

𝜆𝐼−𝔇
 as a Neumann infinite series (polynomial), it is proved that the 

corresponding differential operator after action of operator 𝑂 on the base functions 𝜑𝑖 as defined 

in proposition 2.1, can be presented by a similarity transformation: 

                                                                   𝔇′ = 𝑂𝔇𝑂−1                                                         (25) 

Example 2.1:  Eigenfunctions of the differential operator 𝔇 =
𝑑

𝑑𝑥
 could be found as 𝜑𝑛 = 𝑒𝑛𝑥. 

Transforming by 𝜑′𝑛 = 𝑂𝜑𝑛 = 𝑥𝜑𝑛 = 𝑥𝑒𝑛𝑥 , The resulting corresponding differential operator 

respect to proposition 2.1 after substituting 𝑂 = 𝑥 reads as:                                         

                                              𝔇′ = 𝑥𝔇𝑥−1 = 𝑥 (
−1

𝑥2 + 𝑥−1𝔇) = 
−1

𝑥
+ 𝔇                                    (26) 

Action of this operator on 𝑥𝑒𝑛𝑥 gives:                        

                                        (
−1

𝑥
+ 𝔇) 𝑥𝑒𝑛𝑥 = −𝑒𝑛𝑥 + 𝑒𝑛𝑥 + 𝑛𝑥𝑒𝑛𝑥 = 𝑛𝑥𝑒𝑛𝑥                              (27) 

Thus, the eigenfunctions of this operator are 𝑥𝑒𝑛𝑥 as expected. Because of the similarity relations 

of operators 𝔇 and 𝔇′, their eigenvalues are identical.   

 

Theorem 2.3 Let the linearly independent monomials 𝑝𝑚(𝑥) and 𝑞𝑚(𝑥)  of polynomials Ρ𝑛(𝑥) 

and Q𝑛(𝑥) of degree 𝑛 are connected by the  operators 𝑂𝑖 as defined in equation (1) i.e., 

                                                               𝑞𝑚(𝑥) = 𝑂𝑚𝑝𝑚(𝑥)                                                      (28) 

Denote 𝑃𝑚 as projection operators that project functions of variable 𝑥 on basis 𝑝𝑚(𝑥) with the 

definition of equation (2)                      𝑃𝑚𝑝𝑛(𝑥) = 𝛿𝑚𝑛 𝑝𝑛(𝑥)                                                    

Then the operator 𝑂 = ∑ 𝑂𝑚𝑃𝑚𝑚  acts as umbral composition on polynomial Ρ𝑛(𝑥). 

 

Proof: Let expand Ρ𝑛(𝑥)  in terms of monomial basis 𝑝𝑚(𝑥)   
                                                               Ρ𝑛(𝑥) = ∑ 𝑎𝑛𝑚𝑝𝑚(𝑥)  𝑛                                                  (29) 

Then action of 𝑂 on Ρ𝑛(𝑥) gives 

                             𝑂Ρ𝑛(𝑥) = ∑ 𝑂𝑖𝑃𝑖(𝑖 ∑ 𝑎𝑛𝑚𝑝𝑚(𝑥))𝑚 = ∑ 𝑂𝑖𝑖 𝑎𝑛𝑖𝑝𝑖(𝑥) = ∑ 𝑎𝑛𝑖𝑞𝑖(𝑥)𝑖           (30) 

 

This implies that the action of 𝑂 on Ρ𝑛(𝑥) replaces the monomials 𝑝𝑚(𝑥) with 𝑞𝑖(𝑥) while the 

coefficients 𝑎𝑛𝑚 in the expansion remains unchanged. This means that the operation of 𝑂 is 

equivalent with umbral composition by the definition  



                                                               Ρ𝑛 o Q = ∑ 𝑎𝑛𝑚𝑞𝑚(𝑥)𝑚                                              (31) 

This definition coincides the action of 𝑂 on Ρ𝑛(𝑥). Application of this theorem for finding the 

generating function of Hermite polynomials has been shown in section 3.1. 

 

Forbenius covariant of operators  

 

For other representation of projection operator in terms of differential operator we apply the  

Forbenius covariants [7] as projection operators (matrices) which are the coefficient of 

Sylvester's formula. For a differential operator 𝔇 in polynomial space, the projection operator 

on the one-dimensional eigenfunction subspaces are given by   

                                                         𝑃𝑙 = ∏
𝔇−𝜆𝑘

𝜆𝑙−𝜆𝑘

𝑛
𝑘=1         𝑘 ≠ 𝑙                                              (32) 

These operators act on the functions in function space and yields their projections on basis 𝜑𝑖 

which are the eigenfunctions of 𝔇 with corresponding eigenvalues 𝜆𝑖.  
 

 

Similarity transformation: 

 

Respect to equation (9) and related proposition, if we substitute 𝑂𝑖𝑃𝑖 with (∑ 𝑂𝑘𝑃𝑘𝑘 ) respect to 

the identity, 𝑃𝑖𝑃𝑗 = 𝛿𝑖𝑗 𝑃𝑖  we have: 

                                         𝑃𝑖
′ = (∑ 𝑂𝑘𝑃𝑘𝑘 )𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = 𝑂𝑖𝑃𝑖(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                               (33)              

This equation is a similarity transformation of 𝑃𝑖 under the operator ∑ 𝑂𝑘𝑃𝑘𝑘 . This similarity 

transformation corresponds to the basis transformation 𝑂𝑖𝑒𝑖 = 𝑒′𝑖. Actually, ∑ 𝑂𝑘𝑃𝑘𝑘  as an 

operator �̂� transforms all basis 𝑒𝑖 to 𝑒′𝑖 and corresponds the coordinate transformation matrix.    

From this equation we can deduce similarity transformation for other operators provided that the 

operators in similarity transformation have common eigenvalues. Therefor the differential 

operators with identical eigenvalues could be related by similarity transformation. As an 

example, differential operator 𝔇 = 𝑥
𝑑

𝑑𝑥
= 𝑥𝐷 with basis (eigenfunction) 𝜑𝑛 = 𝑥𝑛 transforms to 

another differential operator 𝔇′ with eigenfunction 𝜑′𝑖 after the basis transformation 𝜑′𝑖 = 𝑂𝑖𝜑𝑖. 

Therefor we have the similarity transformation: 

                                                          𝔇′ = (∑ 𝑂𝑘𝑃𝑘𝑘 )𝔇(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                           (34) 

If all 𝑂𝑗 are the same namely 𝑂, (34) will be reduced to: 

                                                          𝔇′ = (𝑂 ∑ 𝑃𝑘𝑘 )𝔇(𝑂 ∑ 𝑃𝑗𝑗 )−1  

                                                          𝔇′ = 𝑂𝔇𝑂−1 

 In these cases that the single operator transforms all bases, the exact closed form of related 

differential operator could be derived by this method. However, for cases with separate 𝑂𝑖, the 

validity of the retrieved differential operator relies on the action on the first two polynomials as  

we show in next sections. The following example clarifies the method. 

 

Example 2.2: 

 

Let the vector space 𝕍 spanned by the linearly independent basis (1, 𝑒𝑥, 𝑒2𝑥, … ) which are the 

eigenfunctions of operator 𝔇 =
𝑑

𝑑𝑥
 .If these basis transforms to the new set of basis by multiplying 

with 𝑒
𝑥2

2  i.e., (𝑒
𝑥2

2 , 𝑒
𝑥2

2
+𝑥 , 𝑒

𝑥2

2
+2𝑥, … ) then the corresponding operator with these new basis as its 



eigenfunctions could be obtained by (34). In this case 𝑂𝑘 = 𝑂 = 𝑒
𝑥2

2 . Thus, the equation (34) 

reduces to: 

                                                               𝔇′ = 𝑂𝔇𝑂−1 

                                                               𝔇′ = 𝑒
𝑥2

2  𝔇 𝑒
−𝑥2

2               

The term 𝔇 𝑒
−𝑥2

2  is not just the derivative of  𝑒
−𝑥2

2  , but an operator that is equal to: 

                                                         𝔇 𝑒
−𝑥2

2 =
𝑑

𝑑𝑥
( 𝑒

−𝑥2

2 ) +  𝑒
−𝑥2

2 𝔇  

  Then we have:                   𝔇′ = 𝑒
𝑥2

2  𝔇 𝑒
−𝑥2

2 = 𝑒
𝑥2

2 [
𝑑

𝑑𝑥
( 𝑒

−𝑥2

2 ) +  𝑒
−𝑥2

2 𝔇]      

                                                                𝔇′ = 𝑒
𝑥2

2 (−𝑥𝑒
−𝑥2

2 + 𝑒
−𝑥2

2 𝔇)    

                                                                𝔇′ = (−𝑥 + 𝔇)   

The eigenfunctions of this operator are 𝑒
𝑥2

2
+𝑛𝑥

 with eigenvalues n as expected. It is noteworthy 

to note that the expression for probabilist’s Hermite polynomial 𝐻𝑒1 with the definition: 

                                                                𝐻𝑒1 = 𝑒
𝑥2

2  
𝑑

𝑑𝑥
 𝑒

−𝑥2

2       

 Differs from 𝔇′, because in this definition the term 
𝑑

𝑑𝑥
 𝑒

−𝑥2

2  is not an operator but merely the      

derivative of  𝑒
−𝑥2

2 .                    

It is easy to prove that any function of 𝔇′ can be expanded in terms of 𝔇 as follows: 

 

                                                                𝑓(𝔇′) = 𝑂𝑓(𝔇)𝑂−1 

 

  Separated basis transformation method based on Forbenius covariants  

   

 Another approach to find 𝔇′ in terms of 𝔇 and 𝑂𝑗 is to apply the Forbenius covariant operators  

as projection operators as mentioned in (32). 

                                                            𝑃𝑘 = ∏
𝔇−𝜆𝑙

𝜆𝑘−𝜆𝑙

𝑁
𝑙=1         𝑙 ≠ 𝑘                                               (35)                                                          

These operators are projection operators onto the k-th one-dimensional sub-space (basis) [8]. 

substituting these projectors in equation (34) results in   

 

                                     𝔇′ = (∑ 𝑂𝑘 ∏
𝔇−𝜆𝑙

𝜆𝑘−𝜆𝑙

𝑁
𝑙=1𝑘 ) 𝔇(∑ 𝑂𝑗 ∏

𝔇−𝜆𝑙

𝜆𝑗−𝜆𝑙

𝑁
𝑙=1𝑗 )−1             𝑙 ≠ 𝑗              (36) 

𝑁 denoted as the dimension of function or polynomial space.  

This method in comparison with previous methods are more applicable because the calculation 

of inverse of a product of differential operators is easier than other methods.  

 

In the following sections we introduce an applicable method to find 𝔇′ in terms of 𝔇. Taking 

into account the equation (22) we have:            

                                                         𝔇′ = (∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                          (37) 

If all 𝑂𝑖 are the same i.e., 𝑂𝑖 = 𝑂, then (37) reduces to 

                                                         𝔇′ = 𝑂(∑ 𝜆′𝑖𝑃𝑖𝑖 )𝑂−1                                                         (38) 

The condition of identical eigenvalues for  𝔇′ and 𝔇 is not necessary in equation (37) and the 

case of identical eigenvalues are special case of this equation. we apply this equation restricted 



to the first two polynomials i.e., two-dimensional polynomial space. Substitution of 𝑃𝑖 in (37) by 

Forbenius covariants (35) yields an applicable method as we will show in examples. It is 

noteworthy to recall that the term ∑ 𝑂𝑗𝑃𝑗𝑗  stands for a linear operator (equivalent to a matrix) that 

transforms the basis(1, 𝑥, 𝑥2, … ) of polynomials space to another basis. For example, it 

transforms basis (1, 𝑥, 𝑥2, … ) to Hermite polynomial 𝐻𝑒𝑛 as new linearly independent basis by 

the techniques that is presented in next section.  

 

Applications of separated basis transformation method  

 

In the Sturm Liouville problem and related differential equations and their specific solutions such 

as Hermite, Laguerre, Legendre and Jacobi polynomials, the transformation of basis in function 

space seems to be an interesting subject. For example, transformation of basis (1, 𝑥, 𝑥2, 𝑥3, . . . ) 

under the multiple differentiation which is compatible with Rodrigues’ formula to derive Hermite 

polynomials, presented as follows: 

                                                             𝐻𝑒𝑛 = 𝑒
−𝐷2

2 𝑥𝑛                                                               (39) 

Where 𝐷 =
𝑑

𝑑𝑥
 . 

In the case of Laguerre polynomials, we have the transformation: 

                                                             𝐿𝑛 =
1

𝑛!
(𝐷 − 1)𝑛𝑥𝑛                                                       (40) 

Respect  to our theory, these transformations are compatible with the operator action of 𝑂𝑛 

separately on basis (1, 𝑥, 𝑥2, 𝑥3, . . . ), for Hermite polynomial we have:  

                                                               𝑂𝑛 = 𝑂 = 𝑒
−𝐷2

2                                                              (41) 

And for Laguerre polynomials:                                   

                                                             𝑂𝑛 =
1

𝑛!
(𝐷 − 1)𝑛                                                         (42) 

We introduce the operator 𝑥𝐷 as the unique operator with basis  (1, 𝑥, 𝑥2, 𝑥3, . . . ) as its 

associated eigenfunctions with eigenvalues  (0,1,2, . . . ): 

                                                                     𝑥𝐷 (𝑥𝑛) = 𝑛𝑥𝑛       
Therefor we can use the equation (38) to find the differential operator that its polynomials are 

determined by applying related 𝑂𝑛 on basis (1, 𝑥, 𝑥2, 𝑥3, . . . ) as in (39) and (40). By substitution 

of  𝑃𝑘 and 𝑂𝑛 in equations (36) and (37) and  the Forbenius covariants (35) and 𝔇 = 𝑥𝐷 in 

equation (36) we recover the corresponding differential equations of eigenfunctions such as 𝐻𝑒𝑛 

and 𝐿𝑛 as presented in net examples. The presented technique uses the first two polynomials i.e., 

the two-dimensional space of polynomials with monomials of order 1 and 0. This facilitates the 

calculation of desired differential equations and shows that if an infinite set of polynomials 

present the eigenfunctions of a unique differential operator, then applying this technique for the 

first two polynomials gives the exact form of related differential equation. We clarify this method 

by the following proposition 

 

Proposition 2.5  Let the set of linearly independent polynomials ℙ𝑛 are the eigenfunctions of a 

differential operator 𝔇′ and the set of original basis [1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)] are the 

eigenfunctions of differential operator 𝔇. Then applying the Forbenius covariant operator 

defined in (35) and equations (36) and (37) for the first two  polynomials (eigenfunctions) ℙ0 

and ℙ1, yields the corresponding differential operator 𝔇′ from 𝔇. 

 



First, we prove this proposition for Rodrigues formula as the action of operators 𝑂𝑛 on the initial 

basis 𝐵𝑛(𝑥) in polynomial space to transform them to new basis ℙ𝑛 that correspond to the desired 

differential operator 𝔇′(i.e., differential equation) as its eigenfunctions.    

 

 

 

Rodrigues’ formula as a special case of separated basis transformation  

 

In this section we prove the compatibility of Rodrigues’ formula with our presented techniques 

and show that substitution of 𝑂𝑛 in equation (43) by Rodrigues’ formula transformation, yields 

the corresponding differential operators and equations. 

Proof  

Due to the presented theory, we showed that if the bases 𝑒𝑛 of a vector space 𝕍 which are the 

eigenfunctions of differential operator 𝔇, are transformed separately by operators 𝑂𝑛, the 

transformed differential operator obeys the equation (43) i.e., 

 

                                                            𝔇′ = (∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                        (43) 

We check the basis transformation by Rodrigues formula [3]: 

                                                                 ℙ𝑛 =
1

𝜔
𝐷𝑛[𝜔𝐵𝑛(𝑥)]                                                    

Where 𝜔 defined by the relation 
𝜔

𝜔′ =
𝐴−𝐵′

𝐵
 with 𝐴 as a polynomial of first degree. 

If we choose monomial 𝐵𝑛(𝑥)  as the original basis of vector space: 

                                                           [1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)]   
The Rodrigues formula could be chosen as the action of operator: 

                                                                 𝑂𝑛 =
1

𝜔
𝐷𝑛[𝜔 . ]                                                             (44) 

On these basis. Therefor it is a special case of separated basis transformation.  

The suitable operator with eigenfunctions 𝐵𝑛(𝑥) can be presented as     

                                                            
𝐵(𝑥)

𝐵′(𝑥)
𝐷 𝐵𝑛(𝑥) =  𝑛𝐵𝑛(𝑥)                                                   (45) 

Where 𝐵′(𝑥) denoted as the derivative of 𝐵(𝑥) The 
𝐵(𝑥)

𝐵′(𝑥)
𝐷 should replace 𝔇 in (35): 

                                                                𝑃𝑘 = ∏

𝐵(𝑥)

𝐵′(𝑥)
𝐷−𝜆𝑙

𝜆𝑘−𝜆𝑙

𝑁
𝑙=1                                                        (46) 

                                                           

Respect to (43) by replacing 𝑂𝑛 by Rodrigues formula and 𝑃𝑛 by equation (46) we get: 

                                              𝔇′ = (∑ 𝜆′𝑖
1

𝜔
𝐷𝑛[𝜔 ∏

𝐵(𝑥)

𝐵′(𝑥)
𝐷−𝜆𝑙

𝜆𝑘−𝜆𝑙

𝑁
𝑙=1  ]𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 

Let 𝑂−1 = (∑ 𝑂𝑗𝑃𝑗𝑗 )−1 then we obtain: 

                                               𝔇′ = (∑ 𝜆′𝑖
1

𝜔
𝐷𝑛[𝜔 ∏

𝐵(𝑥)

𝐵′(𝑥)
𝐷−𝜆𝑙

𝜆𝑘−𝜆𝑙

𝑁
𝑙=1  ]𝑖 )𝑂−1                                   (47) 

Taking into account the 2-dimensional space, and using (44) and (47) we have: 

                        𝜆′0 = 0    ,     𝑂1 =
1

𝜔
𝐷[𝜔 . ]    ,    𝑃1 =

𝐵(𝑥)

𝐵′(𝑥)
𝐷

 𝜆′1
=

1

 𝜆′1

𝐵(𝑥)

𝐵′(𝑥)
𝐷 

Thus the (47) reads as: 

                                               𝔇′ =  𝜆′1
1

𝜔
𝐷 [𝜔

1

 𝜆′
1

𝐵(𝑥)

𝐵′(𝑥)
𝐷] 𝑂−1 =

1

𝜔
𝐷 [𝜔

𝐵(𝑥)

𝐵′(𝑥)
𝐷] 𝑂−1            (48) 



                                               𝔇′ = ( 
𝜔

𝜔′

𝐵

𝐵′ 𝐷 +
𝐵′2

−𝐵′′𝐵

𝐵′2 𝐷 +
𝐵

𝐵′ 𝐷2)𝑂−1  

If we assume 
𝜔

𝜔′
=

𝐴−𝐵′

𝐵
 ( as a crucial assumption in Rodrigues formula) this equation reduces to: 

                                               𝔇′ = {(
𝐴

𝐵′ − 1) 𝐷 + 𝐷 −
𝐵′′𝐵

𝐵′2 𝐷 +
𝐵

𝐵′ 𝐷2} 𝑂−1 

                                               𝔇′ = (
𝐴

𝐵′
𝐷 −

𝐵′′𝐵

𝐵′2 𝐷 +
𝐵

𝐵′
𝐷2)𝑂−1                                                   (49) 

Acting both side on ℙ1 as the second eigenfunction of 𝔇′, we have: 

                                               𝔇′ℙ1 = (
𝐴

𝐵′ 𝐷 −
𝐵′′𝐵

𝐵′2 𝐷 +
𝐵

𝐵′ 𝐷2)𝑂−1ℙ1                                         (50) 

The term 𝑂−1ℙ1 equals 𝐵(𝑥), thus: 

                                               𝔇′ℙ1 = (
𝐴

𝐵′ 𝐷 −
𝐵′′𝐵

𝐵′2 𝐷 +
𝐵

𝐵′ 𝐷2)𝐵(𝑥)                                             (51) 

                                   𝔇′ℙ1 = (
𝐴

𝐵′ −
𝐵′′𝐵

𝐵′2 +
𝐵

𝐵′ 𝐷) 𝐵′ = 𝐴 −
𝐵′′𝐵

𝐵′ +
𝐵

𝐵′ (𝐵′′ + 𝐵′𝐷)  

                                                            𝔇′ℙ1 = 𝐵𝐷 + 𝐴 

                                                            𝔇′𝐷−1𝐷ℙ1 = 𝐵𝐷 + 𝐴                                                       (52) 

The term 𝐷ℙ1will be a constant 𝛼, thus: 

                                                         𝛼𝔇′𝐷−1 = 𝐵𝐷 + 𝐴  

Or:                                                                            𝛼𝔇′ =  𝐵𝐷2 + 𝐴𝐷                                                                    (53) 

This implies that Rodrigues formula gives the solutions (or eigenfunctions) of the differential 

operator 𝐵𝐷2 + 𝐴𝐷 and related differential equation up to a constant coefficient 𝛼. i.e., 

                                                               (𝐵𝐷2 + 𝐴𝐷)𝑦 = 𝛽𝑦       

The following examples clarify this technique for some polynomials.                        

 
Example 2.3: Laguerre differential equation 

 

Let we intend to find the differential equation which corresponds to a set of linearly independent 

polynomials in variable 𝑥. For example, we are given a few first Laguerre polynomials i.e., 

(1, 1 − 𝑥, … ) and we know the operator that maps the standard basis (1, 𝑥, 𝑥2, … ) to Laguerre 

basis i.e., operator presented in (42). 

We can recover the corresponding Laguerre differential equation (operator) via the formula: 

                                                         𝔇′ = (∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1                                               (54)  

Proof in 2 dimension (first 2 polynomials) 

                                                  

We restrict calculation in 2-dimensional polynomial space with basis (1, 𝑥).These polynomials       

are transformed by 𝑂𝑖 to Laguerre polynomials in the same dimension i.e., (1, −𝑥 + 1). Thus, 

the corresponding operator 𝑥𝐷 will be transformed to Laguerre differential operator by the 

equation (43). 

Substitution of 𝑂𝑖 by equation (42) and taking 𝜆′𝑖 as the eigenvalues of Laguerre differential 

equation in 2-dimensional space of polynomials and replacing projection operators 𝑃𝑖 for basis 

(1, 𝑥) by equation (35) into equation (37) results in: 

                                                   

                                                         𝔇′ = (∑ 𝜆′
𝑖𝑂𝑖𝑃𝑖

1
𝑖=0 )(∑ 𝑂𝑗𝑃𝑗

1
𝑗=0 )−1                                            (55) 

 We have 𝜆′
𝑖 = 𝜆𝑖 and 𝜆0 = 0 , 𝜆1 = 1. Then equation (44) reduces to: 

                                                         

                                                         𝔇′ = 𝑂1𝑃1(𝑂0𝑃0 + 𝑂1𝑃1)−1                                                   (56) 



 By equations (35) and (42) we obtain: 

                 𝑂0 = 1   ,   𝑂1 = 𝐷 − 1  ,  𝑃0 = ∏
𝔇−𝜆1

𝜆0−𝜆1
=

𝑥𝐷−1

−1

1
𝑙=0    ,   𝑃1 = ∏

𝔇−𝜆0

𝜆1−𝜆0
=

𝑥𝐷

1

1
𝑙=0   

Therefor we have: 

                                                  𝑂1𝑃1 = (𝐷 − 1)𝑥𝐷 = 𝐷 + 𝑥𝐷2 − 𝑥𝐷   

 

And:           𝔇′ = 𝑂1𝑃1(𝑂0𝑃0 + 𝑂1𝑃1)−1 = (𝐷 + 𝑥𝐷2 − 𝑥𝐷  )( 𝐷 + 𝑥𝐷2 − 2𝑥𝐷 + 1)−1           (57)     

 

If we denote the (𝐷 + 𝑥𝐷2 − 𝑥𝐷)  as 𝔻, we can reduce the equation (46) as follows: 

                              

                                 𝔇′ = 𝑂1𝑃1(𝑂0𝑃0 + 𝑂1𝑃1)−1 = 𝔻 ( 𝔻 − 𝔇 + 1)−1                                             (58) 

 

The term 

                                                     𝑂0𝑃0 + 𝑂1𝑃1 = 𝔻 − 𝔇 + 1 = �̂�                                                   (59) 

Is the linear operator which transforms the basis (1, 𝑥) to Laguerre basis  (1, −𝑥 + 1) and vice 

versa If we restrict the action of operators to 2-dimensional polynomial space. Therefor we have: 

                                                                      �̂�−1(−𝑥 + 1) = 𝑥                                                             (60) 

If we act both sides of (47) on another basis (−𝑥 + 1) we get as well: 

                                             𝔇′(−𝑥 + 1) = 𝔻�̂�−1(−𝑥 + 1) = 𝔻𝑥 = −𝔻(−𝑥 + 1) 

Or briefly:                                           𝔇′(−𝑥 + 1) = −𝔻(−𝑥 + 1)                                                       (61) 

(Note that −𝔻. 1 = 0) 

The equation (61) implies that the action of both operators 𝔇′ and −𝔻 on basis (1, −𝑥 + 1)   are 

identical and therefor the simplest form of operator 𝔇′ which its eigenfunctions are Laguerre 

polynomials and its related transformation operators are 𝑂𝑖, reads as:    

                                                         𝔇′ = −𝔻 = −(𝑥𝐷2 − 𝑥𝐷 + 𝐷)                                                   (62) 

This is the exactly the Laguerre differential equation with positive eigenvalues, i.e.:  

                                                               −(𝑥𝐷2 − 𝑥𝐷 + 𝐷)𝑦 = 𝑛𝑦                                                      (63) 

Action of this operator on the first basis i.e., “1” gives 0 as the first eigenvalue and therefor the 

required conditions for validity of this differential operator are met.  

 

Proof in 3 dimension (first 3 polynomials)  

  

In 3-dimension with basis (1, −𝑥 + 1,
1

2
(𝑥2 − 4𝑥 + 2) of Laguerre polynomial and (1, 𝑥, 𝑥2) of 

original basis, considering eigenvalues 𝜆0 = 0 , 𝜆1 = 1 , 𝜆2 = 2,  the 𝔇′ reads as: 

                  𝔇′ = (∑ 𝜆′
𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = (𝑂1𝑃1 + 2𝑂2𝑃2)(𝑂0𝑃0 + 𝑂1𝑃1+𝑂2𝑃2)−1            (64) 

                                                          𝔇′ = (𝑂1𝑃1 + 2𝑂2𝑃2) �̂�−1       

Here �̂�−1 denotes the last term in (64). Acting both side on basis (−𝑥 + 1) results in:  

                                               𝔇′(−𝑥 + 1)  = (𝑂1𝑃1 + 2𝑂2𝑃2) �̂�−1(−𝑥 + 1)  

Respect to (60) and the identity 𝑃2𝑥 = 0 we have: 

                                                                   𝔇′(−𝑥 + 1) = 𝑂1𝑃1 𝑥                                                          (65) 

In this dimension 𝑃1can be find as:  

                                    𝑃1 = ∏
𝔇−𝜆𝑙

𝜆1−𝜆𝑙

2
𝑙=0 = (

𝑥𝐷−𝜆0

1−𝜆0
) (

𝑥𝐷−𝜆2

1−𝜆2
) = 𝑥𝐷 (

𝑥𝐷−2

1−2
) = −𝑥𝐷(𝑥𝐷 − 2) 

Then (65) reads as: 

                                                     𝔇′(−𝑥 + 1) = −(𝐷 − 1)𝑥𝐷(𝑥𝐷 − 2) 𝑥           

                                                     𝔇′(−𝑥 + 1) = −(𝐷 − 1)𝑥𝐷(−𝑥)             



                                                     𝔇′(−𝑥 + 1) = −[(𝐷 − 1)𝑥𝐷](−𝑥 + 1) 

                                                     𝔇′(−𝑥 + 1) = −(𝑥𝐷2 − 𝑥𝐷 + 𝐷)(−𝑥 + 1)   

This proves:                                                   

                                                           𝔇′= −(𝑥𝐷2 − 𝑥𝐷 + 𝐷) 

As the Laguerre differential operator.  

 

Example 2.4: Hermite differential equation  

 

The same technique could be applied to derive Hermite differential equation by the formula (37). 

Because all 𝑂𝑛 that transforms basis (1, 𝑥, 𝑥2, 𝑥3, . . . ) to Hermite polynomials are equal to 𝑂 as 

is shown in (41),  after getting 𝑃𝑘 by (35) and substitute them in (37) we have: 

                                                    

                                                           𝔇′ = (∑ 𝜆′𝑖𝑂𝑃𝑖𝑖 )(∑ 𝑂𝑃𝑗𝑗 )−1 

                                                                = 𝑂(∑ 𝜆′𝑖𝑃𝑖𝑖 )(𝑂 ∑ 𝑃𝑗𝑗 )−1 

                                                                = 𝑂(∑ 𝜆′𝑖𝑃𝑖𝑖 )(∑ 𝑃𝑗)−1
𝑗 𝑂−1 

 Respect to ∑ 𝑃𝑗𝑗 = 1 we get:   

                                                           𝔇′ = 𝑂(∑ 𝜆′𝑖𝑃𝑖𝑖 )𝑂−1        

 Expanding the sum for eigenvalues 𝜆′𝑖 = 𝜆𝑖 = 0,1  and substitution of 𝑂 by (41)we have: 

                                                           𝔇′ = 𝑒
−𝐷2

2 (𝑃1)𝑒
𝐷2

2    

 From (35) we calculate 𝑃1 as: 

                                                            𝑃1 = ∏
𝔇−𝜆0

𝜆1−𝜆0

1
𝑙=0 =

𝔇−0

1−0
= 𝔇 

We know (1, 𝑥, 𝑥2, 𝑥3, . . . ) are the eigenfunctions of 𝑥𝐷, thus by 𝔇 = 𝑥𝐷 we have: 

                                                            𝔇′ = 𝑒
−𝐷2

2 (𝑥𝐷)𝑒
𝐷2

2                                                                 (66) 

This equation can be interpreted as a similarity transformation that maps 𝑥𝐷 into 𝔇′ after basis 

changes. This will be hold just for the cases that eigenvalues are common between 𝑥𝐷                                                                           

and 𝔇′ as we see in Hermite and Laguerre differential equations.   

Expansion of 𝑒
−𝐷2

2  and 𝑒
𝐷2

2  results in: 

                                          𝔇′ = (1 −
𝐷2

2
+

𝐷4

8
+ ⋯ )(𝑥𝐷)(1 +

𝐷2

2
+

𝐷4

8
+ ⋯ )                                 (67)                                                                                                                                                          

                                                𝔇′ = (1 −
𝐷2

2
+

𝐷4

8
+ ⋯ )(𝑥𝐷 + 𝑥

𝐷3

2
+ 𝑥

𝐷5

8
+ ⋯ ) 

                  𝔇′ = (𝑥𝐷 −
𝐷2

2
𝑥𝐷 +

𝐷4

8
𝑥𝐷 + ⋯ ) + (1 −

𝐷2

2
+

𝐷4

8
+ ⋯ )(𝑥

𝐷3

2
+ 𝑥

𝐷5

8
+ ⋯ )   

In the 2-dimensional space of polynomials the orders higher than 2 for 𝐷𝑛 will be omitted, as it 

could be verified by action of both side on basis 𝑥 . By omitting the higher orders, we obtain:        

                                                            𝔇′ = (1 −
𝐷2

2
)𝑥𝐷                                        

                                                            𝔇′ = 𝑥𝐷 −
𝐷2

2
𝑥𝐷 = 𝑥𝐷 −

1

2
𝐷(𝐷 + 𝑥𝐷2)         

                                                            𝔇′ = 𝑥𝐷 −
1

2
(𝐷2 + 𝐷2 + 𝑥𝐷3)        

Omitting 𝑥𝐷3 results in: 

                                                              𝔇′ = 𝑥𝐷 − 𝐷2 = −(𝐷2 − 𝑥𝐷)                                           (68) 

This is the well-known Hermit probabilist's Hermite differential operator with Hermite 

polynomial as its eigenfunctions and positive eigenvalues 0 , 1 , 2 , …. as its eigenvalues.  

  



 

Example 2.5: Legendre differential equation     

  

For Legendre polynomials we have: 

                                                               ℙ𝑛 =
1

2𝑛𝑛!
𝐷𝑛(𝑥2 − 1)𝑛                                                         (69) 

That transforms the basis set 𝑆 = {1, (𝑥2 − 1) , (𝑥2 − 1)2, … } to Legendre polynomials.  We can 

choose the appropriate operator 𝔇 whose eigenfunctions are these basis. Simply we write: 

                                                                     𝔇 =
𝑥2−1

2𝑥
𝐷                                                                   (70) 

Eigenfunctions of this operator are members of the set 𝑆. 

The transforming operator is 

                                                                       𝑂𝑛 =
1

2𝑛𝑛!
𝐷𝑛                                                                   (71) 

In this case the eigenvalues of 𝔇 and 𝔇′ (Legendre differential operator) are not identical and 

therefor the similarity transformation is not valid. However, we can apply the equation (37) after 

determining the 𝑃𝑖 from (35).  

For calculating 𝑃𝑖 in 2-dimension, we have:                     

                                  

                                                  𝑃0 = ∏
𝔇−𝜆1

𝜆0−𝜆1

1
𝑙=0 =

𝑥2−1

2𝑥
𝐷−1

−1
= 1 −

𝑥2−1

2𝑥
𝐷                                            (72) 

                                                  𝑃1 = ∏
𝔇−𝜆0

𝜆1−𝜆0

1
𝑙=0 =

𝑥2−1

2𝑥
𝐷−0

1−0
=

𝑥2−1

2𝑥
𝐷                                                 (73) 

Noe we get: 

                                             ∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 = 2𝑂1
𝑥2−1

2𝑥
𝐷 = 2 (

1

2
𝐷

𝑥2−1

2𝑥
𝐷) = 𝐷

𝑥2−1

2𝑥
𝐷                       (74)     

From equation (37) and (63) we get: 

                                                       𝔇′ = (∑ 𝜆′𝑖𝑂𝑖𝑃𝑖𝑖 )(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 

                                                𝔇′ = 𝐷
𝑥2−1

2𝑥
𝐷(∑ 𝑂𝑗𝑃𝑗𝑗 )−1 = 𝐷

𝑥2−1

2𝑥
𝐷𝑂−1                                           (75) 

Where 𝑂−1 = (∑ 𝑂𝑗𝑃𝑗𝑗 )
−1

. 

By action of both sides of (75) on basis 𝑥 as the second basis of Legendre polynomials in two 

dimension, we have: 

                                                                   𝔇′𝑥 = 𝐷
𝑥2−1

2𝑥
𝐷𝑂−1𝑥                                                          (76) 

Respect to 𝑂−1𝑥 = 𝑥2 − 1, (65) reads as: 

                                                                   𝔇′𝑥 = 𝐷
𝑥2−1

2𝑥
𝐷(𝑥2 − 1)    

                                                                   𝔇′(𝐷−1𝐷)𝑥 = 𝐷
𝑥2−1

2𝑥
(2𝑥)           

                                                                   𝔇′𝐷−1(𝐷𝑥) = 𝐷(𝑥2 − 1) 

                                                                   𝔇′𝐷−1 = 𝐷(𝑥2 − 1)       

                                                                   𝔇′ = 𝐷(𝑥2 − 1)𝐷 = −𝐷(1 − 𝑥2)𝐷                            (77) 

Expansion of (77) reads as: 

                                                                   𝔇′ = −[(1 − 𝑥2)𝐷2 − 2𝑥𝐷]      
Which is the Legendre differential operator with positive eigenvalues 𝑛(𝑛 + 1). 

 

 

 



3. Hermit, Laguerre, and Legendre differential operator as Cartan subalgebra of 

𝔰𝔩(2, 𝑅) and 𝔰𝔲(2) 
 

Let 𝔤𝔩 (𝕍) denote the linear transformation that maps  vector space 𝕍 onto itself. In this section we 

present isomorphic Lie algebras to 𝔰𝔩(2, 𝑅) defined by 𝔰𝔩(2, 𝑅) module on vector space 𝕍 which is 

a linear map 𝜙 defined by 𝜙 ∶  𝔰𝔩(2, 𝑅) →  𝔤𝔩 (𝕍) that preserves the commutator relations of 

𝔰𝔩(2, 𝑅) algebra [4,8]. 

                                               𝜙[𝑎, 𝑏] = [𝜙(𝑎), 𝜙(𝑏)]            𝑎, 𝑏 ∈ 𝔰𝔩(2, 𝑅) 

This representation is 𝔰𝔩(2, 𝑅) module on vector space 𝕍. 

First, we review the structure of irreducible vector field representation of 𝔰𝔩(2, 𝑅).The generators 

of this algebra in matrix representation are as follows:                              

                                 𝐻 =
1

2
(

1 0
0 −1

) ,            𝑋 = (
0 0
1 0

) ,         and    𝑌 = (
0 1
0 0

) 

 

The commutation relations for this representation of 𝔰𝔩(2, 𝑅)are: 

 

                                           [𝑋, 𝑌 ] = 2𝐻  ,   [𝐻, 𝑋 ] = −𝑋  ,  [𝐻, 𝑌 ] = 𝑌                                     (78) 

Let define a representation of 𝔰𝔩(2, 𝑅) as its module on 𝕍 that preserves commutation relations by 

differential operators as its generators: 

                              𝒉 = 𝑥𝐷 −
𝑛

2
   ,            𝒆 = 𝐷 = 𝜕𝑥  ,         𝒇 = 𝑥2𝐷 − 𝑛𝑥                             (79) 

With the similar commutation relations 

                                           [𝒆, 𝒇] = 2𝒉    ,    [𝒉, 𝒆] = −𝒆    , [𝒉, 𝒇] = 𝒇     

The Cartan sub-algebra 𝐻 = 𝒉 produces a decomposition of representation space:     

                                                                   𝕍 = ⨁ 𝕍𝑗  

𝕍𝑗 are the eigenspace (eigenfunction) of generator 𝒉 as Cartan sub-algebra of 𝔰𝔩(2, 𝑅) and provide 

the solutions to the related differential equation. 

                                                                   𝒉𝕍𝑗 = 𝑗𝕍𝑗   

 In present paper the eigenspaces 𝕍𝑗 are one dimensional and coincide the basis of polynomial 

space. These basis are called weight vectors. For a finite dimensional representation there is a 

highest weight 𝑗 = 𝑛 that determines the dimension of representation space by dim𝕍 = 𝑛 + 1. As 

an example, the Cartan subalgebra of 𝔰𝔩(2, 𝑅) can be represented by 𝒉 = 𝑥𝐷 with 𝑥𝑛 as its weight 

vectors (eigenfunctions) and integer 𝑛 as eigenvalues. Due to the properties of 𝔰𝔩(2, 𝑅), the 

operator 𝒆 acts as lowering operator 𝐴− and 𝒇 as raising operator 𝐴+. The action of these operator 

on representation basis (eigenfunction) of 𝒉 lowers or raise the power of 𝑥𝑛.                     

                                          𝒆𝕍𝑗 = 𝛼𝕍𝑗−1             ,           𝒇𝕍𝑗 = 𝛽𝕍𝑗+1 

In the following sections we will construct a set of isomorphic Lie algebras to 𝔰𝔩(2, 𝑅) based on 

differential operators of Hermite, Laguerre and Legendre equations whose Cartan sub-algebras are 

Hermit and Laguerre differential operators. These algebras could be derived by similarity 

transformations (conjugation) of generators of 𝔰𝔩(2, 𝑅) defined in equation (79). The similarity 

transformation is achieved by the transforming operator by which the original polynomial space 

basis transforms to the deemed polynomial i.e., Hermite, Laguerre and Legendre polynomials as 

transformed basis. These operators could be derived from Rodrigues’ formula as has been shown 

in previous examples. For each algebra there exist a set of lowering and raising operators that 

derives the recursion equations for related polynomials.  

 



3.1 Associated Lie Algebra of Hermite Differential Operator  

 

We search for a Lie algebra 𝕷𝐻 isomorphic to 𝔰𝔩(2, 𝑅) algebra with generators to be defined based 

on Hermite differential operators. Here we apply the transformation operator 𝑒
−𝐷2

2  as described in 

(41) for Hermite polynomials to derive similarity transformations (conjugation) of  𝔰𝔩(2, 𝑅) bases 

as  follows: 

                                  𝑋1 = 𝑒
−𝐷2

2 𝒉 𝑒
𝐷2

2  ,  𝑋2 = 𝑒
−𝐷2

2 𝒆 𝑒
𝐷2

2  ,  𝑋3 = 𝑒
−𝐷2

2 𝒇 𝑒
𝐷2

2                                      (80) 

Equations (69) are the similarity transformations of Lie algebra 𝕷𝐻, that results in an algebra 
with basis 𝑋𝑖 isomorphic to 𝕷𝐻.  

Then for 𝑋1 we have:                                   𝑋1 = 𝑒
−𝐷2

2 𝒇 𝑒
𝐷2

2                                                                  (81)                                            

                                                                 𝑋1 = 𝑒
−𝐷2

2 (𝑥𝐷 −
𝑛

2
 )𝑒

𝐷2

2                                                        (82) 

Respect to (55) this equation reduces to:                                                                          

                                                                             𝑋1 = 𝔇𝐻
′ −

𝑛

2
                                                                     (83)                    

Where 𝔇𝐻
′ = 𝑥𝐷 − 𝐷2 as proved in (57), denoted as Hermite differential operator.  

For 𝑋2 we get:                

                                                                             𝑋2 = 𝑒
−𝐷2

2 𝐷 𝑒
𝐷2

2  

Since the operator 𝐷 is commutable with both 𝑒
−𝐷2

2  and 𝑒
𝐷2

2 , we have: 

                                                            𝑋2 = 𝐷𝑒
−𝐷2

2  𝑒
𝐷2

2 = 𝑒
−𝐷2

2  𝑒
𝐷2

2 𝐷 = 𝐷        

Similarly, for 𝑋3:                                  

                                                            𝑋3 = 𝑒
−𝐷2

2  (𝑥2𝐷 − 𝑛𝑥 )𝑒
𝐷2

2  

                                                            𝑋3 = 𝑒
−𝐷2

2  (𝑥2𝐷)𝑒
𝐷2

2 − 𝑒
−𝐷2

2 (𝑛𝑥)𝑒
𝐷2

2                    

                                                            𝑋3 = 𝑒
−𝐷2

2  𝑥2𝑒
𝐷2

2 𝐷 − 𝑛𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2                                        (84) 

To calculate this generator, first we know from (57) that: 

                                                             𝔇𝐻
′ = 𝑒

−𝐷2

2 (𝑥𝐷)𝑒
𝐷2

2                                                          (85) 

Because 𝐷 commutes with 𝑒
𝐷2

2  we obtain: 

                                                             𝔇𝐻
′ = 𝑒

−𝐷2

2 𝑥𝑒
𝐷2

2 𝐷       

Or :                                                       𝔇𝐻
′ 𝐷−1 = 𝑒

−𝐷2

2 𝑥𝑒
𝐷2

2       

With:                                                    𝔇𝐻
′ 𝐷−1 = (𝑥𝐷 − 𝐷2)𝐷−1 = 𝑥 − 𝐷                               (86) 

Therefor we have:                                𝑥 − 𝐷 = 𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2  

Multiplying this with itself results in: 

                                                            (𝑥 − 𝐷)2 = (𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2 ) (𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2 ) = 𝑒
−𝐷2

2 𝑥2𝑒
𝐷2

2        (87) 

With substitutions, equation (84) reads as: 

                                                             𝑋3 = (𝑥 − 𝐷)2𝐷 − 𝑛(𝑥 − 𝐷)                                          (88) 

Then the list for generators of this representation of 𝔰𝔩(2, 𝑅) is: 

 



           𝑋1 = 𝔇𝐻
′ −

𝑛

2
   ,    𝑋2 = 𝐷 ,    𝑋3 = (𝑥 − 𝐷)2𝐷 − 𝑛(𝑥 − 𝐷)(𝑥 − 𝐷) = (𝑥 − 𝐷)(𝔇𝐻

′ − 𝑛) 

 

The Cartan subalgebra of this algebra is 𝑋1 = 𝔇𝐻
′ −

𝑛

2
. 

Clearly these generators span the Lie algebra 𝕷𝐻 isomorphic to 𝔰𝔩(2, 𝑅), which is a representation 

for an isomorphism of 𝔰𝔩(2, 𝑅). The commutation relations can be checked as: 

                        [𝑋1 , 𝑋2] = (𝔇𝐻
′ −

𝑛

2
) 𝐷 − 𝐷 (𝔇𝐻

′ −
𝑛

2
) = −𝐷 = −𝑋2                                         (89) 

                        [𝑋2 , 𝑋3] = 𝐷[(𝑥 − 𝐷)2𝐷 − 𝑛(𝑥 − 𝐷)] − [(𝑥 − 𝐷)2𝐷 − 𝑛(𝑥 − 𝐷)]𝐷                  (90) 

                                       = 2 (𝑥𝐷 − 𝐷2 −
𝑛

2
) = 2𝑋1             

For [𝑋1 , 𝑋3] , first we note: 𝑋3 = (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛), and we use 𝔇𝐻

′  instead 𝑋1without any change 

in commutator result. Thus, we have:                                                                                                   

                        [𝑋1 , 𝑋3] = 𝔇𝐻
′ (𝑥 − 𝐷)(𝔇𝐻

′ − 𝑛) − (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛)𝔇𝐻

′                                         (91) 

Due to the identity:                       (𝔇𝐻
′ − 𝑛)𝔇𝐻

′ = 𝔇𝐻
′ (𝔇𝐻

′ − 𝑛)           

The equation (80) becomes: 

                        [𝑋1 , 𝑋3] = 𝔇𝐻
′ (𝑥 − 𝐷)(𝔇𝐻

′ − 𝑛) − (𝑥 − 𝐷)𝔇𝐻
′ (𝔇𝐻

′ − 𝑛)  

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ (𝑥 − 𝐷) − (𝑥 − 𝐷)𝔇𝐻

′ ](𝔇𝐻
′ − 𝑛)                      

                           [𝑋1 , 𝑋3] = [𝔇𝐻
′ (𝑥 − 𝐷) − (𝑥 − 𝐷)𝔇𝐻

′ ](𝔇𝐻
′ − 𝑛)   

Substitution of 𝔇𝐻
′  by 𝑥𝐷 − 𝐷2 gives: 

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ (𝑥 − 𝐷) − (𝑥 − 𝐷)(𝑥𝐷 − 𝐷2)](𝔇𝐻

′ − 𝑛)  

Replacing operator 𝑥𝐷 with its equivalence 𝐷𝑥 − 1 results in: 

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ (𝑥 − 𝐷) − (𝑥 − 𝐷)(𝐷𝑥 − 1 − 𝐷2)](𝔇𝐻

′ − 𝑛)      

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ (𝑥 − 𝐷) + (𝑥 − 𝐷) − (𝑥 − 𝐷)𝐷(𝑥 − 𝐷)](𝔇𝐻

′ − 𝑛)       

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ + 1 − (𝑥 − 𝐷)𝐷](𝑥 − 𝐷)(𝔇𝐻

′ − 𝑛)       

                        [𝑋1 , 𝑋3] = [𝔇𝐻
′ + 1 − (𝑥 − 𝐷)𝐷](𝑥 − 𝐷)(𝔇𝐻

′ − 𝑛)         

                        [𝑋1 , 𝑋3] = (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛) = 𝑋3 

This proves the isomorphism of the Lie algebra 𝕷𝐻 with basis 𝑋1 , 𝑋2, 𝑋3 with 𝔰𝔩(2, 𝑅). 
 

Lowering and Raising operators of Hermite Polynomials and its Generating function 

 

In this section we introduce the raising and lowering operators of Hermite polynomials which act 

on vector space representation of 𝔰𝔩(2, 𝑅). We denote raising and lowering operators as 𝐴+and 𝐴−  

respectively. These operators act on the weight vectors which are eigenfunctions of 𝑋1or 𝔇𝐻
′  i.e., 

the Hermite polynomials ℍ𝑒𝑛. As an example, for Lie algebra 𝕷𝐻 the following relations could be 

considered.  

1) Due to the properties of 𝔰𝔩(2, 𝑅) algebra the generator 𝑋2 acts as a lowering operator 𝐴−. 

This implies that:  

                                                              𝐷ℍ𝑒𝑛
= 𝑛ℍ𝑒𝑛−1

                                                              (92) 

2) Consecutive action of the 𝑋1 and 𝑋2  generators on the eigenfunction ℍ𝑒𝑛 of 𝑋1(i.e., the 

Hermite polynomial of degree 𝑛) results in lowering of polynomial degree. Respect to (81):    

                                                             𝑋1𝑋2ℍ𝑒𝑛
= (𝔇𝐻

′ −
𝑛

2
)𝐷ℍ𝑒𝑛

                                   

                                                                               = (𝔇𝐻
′ −

𝑛

2
)ℍ𝑒𝑛−1

 

                                                                      = 𝑛(
𝑛

2
− 1)ℍ𝑒𝑛−1

                                                         (93) 

This means that the operator 𝑋1𝑋2 acts as a lowering (ladder) operator 𝐴− in the subspaces spanned 

by the Cartan subalgebra 𝑋1 of 𝕷𝐻.  



3) The raising operator can be derived from equation (85) and (86): 

                                               𝔇𝐻
′ = 𝑒

−𝐷2

2 (𝑥𝐷)𝑒
𝐷2

2 = 𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2 𝐷           

                                               𝔇𝐻
′ 𝐷−1 = 𝑒

−𝐷2

2 𝑥𝑒
𝐷2

2                                                                  (94) 

If we act the right side of (94) on a Hermite polynomial of degree 𝑛, respect to equation (41)         

we get: 

                                               𝑒
−𝐷2

2 𝑥𝑒
𝐷2

2 ℍ𝑒𝑛
= 𝑒

−𝐷2

2 𝑥𝑂−1ℍ𝑒𝑛
= 𝑒

−𝐷2

2 𝑥. 𝑥𝑛                                (95) 

                                                                      = 𝑒
−𝐷2

2 𝑥𝑛+1 = 𝑂𝑥𝑛+1 = ℍ𝑒𝑛+1
 

Thus (94) and (95) yields: 

                                 𝔇𝐻
′ 𝐷−1ℍ𝑒𝑛

= (𝑥𝐷 − 𝐷2)𝐷−1ℍ𝑒𝑛
= (𝑥 − 𝐷)ℍ𝑒𝑛

= ℍ𝑒𝑛+1
                          (96) 

Therefor the operator 𝑥 − 𝐷  acts as raising operator 𝐴+ in the associated vector space spanned by 

ℍ𝑒𝑛
.  

4) If this method be repeated for 𝑋1𝑋3 operator, we have: 

                                               𝑋1𝑋3ℍ𝑒𝑛
= (𝔇𝐻

′ −
𝑛

2
)[(𝑥 − 𝐷)2𝐷 − 𝑛(𝑥 − 𝐷)]ℍ𝑒𝑛

 

                                                             = (𝔇𝐻
′ −

𝑛

2
)(𝑥 − 𝐷)2𝐷ℍ𝑒𝑛

− 𝑛(𝑥 − 𝐷)ℍ𝑒𝑛
  

Taking into account (95) and (96) we deduce: 

                                               𝑋1𝑋3ℍ𝑒𝑛
= (𝔇𝐻

′ −
𝑛

2
)(𝑥 − 𝐷)2ℍ𝑒𝑛−1

− 𝑛ℍ𝑒𝑛+1
     

                                               𝑋1𝑋3ℍ𝑒𝑛
= (𝔇𝐻

′ −
𝑛

2
)ℍ𝑒𝑛+1

− 𝑛ℍ𝑒𝑛+1
         

                                               𝑋1𝑋3ℍ𝑒𝑛
= (

𝑛

2
+ 1)ℍ𝑒𝑛+1

− 𝑛ℍ𝑒𝑛+1
= (1 −

𝑛

2
)ℍ𝑒𝑛+1

                     (97)                                               

Clearly the operator 𝑋1𝑋3 acts as a raising operator 𝐴+.  

The results of this section can be used to derive recursive relations for Hermits polynomials as 

follows: 

Any combination of operators involved in (92),(93),(95),(96) and (97) results in a recursive 

relation for Hermite polynomials. 

5) The generating function of Hermit polynomial can be derived by a method based on 

theorem 3.2 as follows. 

By expansion of 𝑒𝑡𝑥 and acting the operator 𝑂 defined in (41) on it and taking into account the 

umbral property of 𝑂 proved in theorem 2.3. We have 

                                              𝑔(𝑥, 𝑡) = 𝑂𝑒𝑡𝑥 = 𝑒
−𝐷2

2 ∑
𝑡𝑚𝑥𝑚

𝑚!
= ∑

𝑡𝑚

𝑚!
ℍ𝑒𝑚

𝑛
𝑚=0

𝑛
𝑚=0                           (98) 

Recall that the 𝑒𝑡𝑥 are eigenfunctions of the operator 𝑒
−𝐷2

2   

                             𝑒
−𝐷2

2 𝑒𝑡𝑥 = (1 −
𝐷2

2
+ .  .  . ) 𝑒𝑡𝑥 = 𝑒𝑡𝑥 −

𝑡2

2
𝑒𝑡𝑥+ .  .  . = 𝑒

−𝑡2

2 𝑒𝑡𝑥         

Therefor we can replace 𝐷 by 𝑡 in equation (98) 

                                                          𝑔(𝑥, 𝑡) = 𝑒
−𝑡2

2 𝑒𝑡𝑥 = ∑
𝑡𝑚

𝑚!
ℍ𝑒𝑚

𝑛
𝑚=0    

                                                          𝑔(𝑥, 𝑡) = 𝑒
−𝑡2

2
+𝑡𝑥 = ∑

𝑡𝑚

𝑚!
ℍ𝑒𝑚

𝑛
𝑚=0     

This yields the Hermite polynomial generating function.  

                                                           

 

3.2 Associated Lie Algebra of Laguerre Differential Operator  

 



For Laguerre polynomials the similarity transformation of the original basis of 𝔰𝔩(2, 𝑅) will be 

obtained by operators in equation (42): 

                                                                𝑂𝑛 =
1

𝑛!
(𝐷 − 1)𝑛 

For global transformation respect to the definition, we have: 

                                                   𝑂 = ∑ 𝑂𝑛𝑃𝑛𝑛 = ∑
1

𝑛!
(𝐷 − 1)𝑛𝑃𝑛𝑛  

                                          𝑌1 = 𝑂𝒉𝑂−1 ,  𝑌2 = 𝑂𝒆 𝑂−1 ,  𝑌3 = 𝑂𝒇 𝑂−1 

These generators construct a Lie algebra 𝕷𝐿 isomorphic to both 𝔰𝔩(2, 𝑅) and 𝕷𝐻. Replacing 𝒉, 𝒆, 𝒇 

respect to (68) we get: 

                              𝑌1 = 𝑂(𝑥𝐷 −
𝑛

2
) 𝑂−1 ,  𝑌2 = 𝑂𝐷𝑂−1 ,  𝑌3 = 𝑂(𝑥2𝐷 − 𝑛𝑥) 𝑂−1 

For 𝑌1 due to equation (36), substituting 𝔇 by (𝑥𝐷 −
𝑛

2
) and 𝔇′ by 𝔇𝐿

′ −
𝑛

2
 simply we obtain: 

                                               𝑌1 = 𝑂 (𝑥𝐷 −
𝑛

2
) 𝑂−1 = 𝑂𝑥𝐷𝑂−1 −

𝑛

2
= 𝔇𝐿

′ −
𝑛

2
                              (99) 

 

Because of complex structures of 𝑂 and 𝑃𝑛, we calculate the raising operator by recursive relation:  

                                                                 (𝑛 − 𝑥𝐷)𝐿𝑛 = 𝑛𝐿𝑛−1     

We use the operator 𝑛 − 𝑥𝐷 as a lowering operator 𝐴−. Substitution of 𝐿𝑛 by 𝑂𝑥𝑛 gives rise to:     

                                                               (𝑛 − 𝑥𝐷)𝑂𝑥𝑛 = 𝑛𝐿𝑛−1           

Multiplying both side from the left by 𝑂−1: 

                                                                𝑂−1(𝑛 − 𝑥𝐷)𝑂𝑥𝑛 = 𝑛𝑂−1𝐿𝑛−1        

                                                               [𝑂−1(𝑛 − 𝑥𝐷)𝑂]𝑥𝑛 = 𝑛𝑥𝑛−1        

Action of left side on 𝑥𝑛 equals the derivative of 𝑥𝑛, then we have: 

                                                                𝑂−1(𝑛 − 𝑥𝐷)𝑂 ≅ 𝐷              

Or                                                              𝑛 − 𝑥𝐷 = 𝑂𝐷𝑂−1 

The left side should be replaced by its operator equivalent i.e., 

                                                               (𝑛 − 𝑥𝐷)𝐿𝑛 = (𝔇𝐿
′ − 𝑥𝐷)𝐿𝑛   

Thus:                                                       𝑌2 = 𝑂𝐷𝑂−1 = 𝔇𝐿
′ − 𝑥𝐷 

For 𝑌3 we need 𝑂𝑥𝑂−1: 

                                                      (𝑂𝑥𝑂−1)(𝑂𝐷𝑂−1) = 𝑂𝑥𝐷𝑂−1 = 𝔇𝐿
′  

                                                      (𝑂𝑥𝑂−1)(𝔇𝐿
′ − 𝑥𝐷) = 𝔇𝐿

′  

Or                                                   𝑂𝑥𝑂−1 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1                                                  (100)                                     

And for 𝑂𝑥2𝐷𝑂−1: 

                                                       𝑂𝑥2𝐷𝑂−1 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑥𝐷) 

                                                       𝑂𝑥2𝐷𝑂−1 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1𝔇𝐿
′    

Then 𝑌3 reads as: 

                                                       𝑌3 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1𝔇𝐿
′ − 𝑛𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1 

                                                       𝑌3 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛) 

This operator acts as raising operator. Eventually for representation of  𝔰𝔩(2, 𝑅) in basis of Laguerre  

polynomial and related differential is an algebra 𝕷𝐿 with generators: 

                         

                           𝑌1 = 𝔇𝐿
′ −

𝑛

2
    ,     𝑌2 = 𝔇𝐿

′ − 𝑥𝐷   ,    𝑌3 = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)         (101) 

 

To prove the isomorphism of 𝕷𝐿 and 𝔰𝔩(2, 𝑅), first, we calculate the commutation relation [𝑌1 , 𝑌2 ]: 

                                [𝑌1 , 𝑌2 ] = (𝔇𝐿
′ −

𝑛

2
) (𝔇𝐿

′ − 𝑥𝐷) − (𝔇𝐿
′ − 𝑥𝐷) (𝔇𝐿

′ −
𝑛

2
)    

                                [𝑌1 , 𝑌2 ] = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷) − (𝔇𝐿
′ − 𝑥𝐷)𝔇𝐿

′          



                                [𝑌1 , 𝑌2 ] = −𝔇𝐿
′ 𝑥𝐷 + 𝑥𝐷𝔇𝐿

′                                                                             

We know:                [𝑥𝐷2 + 𝐷 , 𝑥𝐷] = 𝑥𝐷2 + 𝐷                                                                         (102) 

Because −𝔇𝐿
′ = 𝑥𝐷2 + 𝐷 − 𝑥𝐷, after substitution in(100) we have: 

                                [−𝔇𝐿
′ + 𝑥𝐷 , 𝑥𝐷] = [−𝔇𝐿 

′ , 𝑥𝐷 ] = 𝑥𝐷2 + 𝐷 = −𝔇𝐿 
′ + 𝑥𝐷 = −𝑌2          (103) 

Or:                                                              [𝑌1 , 𝑌2 ] = −𝑌2    

This is compatible with 𝔰𝔩(2, 𝑅) algebra.       

For [𝑌2 , 𝑌3 ] we have: 

                                𝑌2𝑌3 = (𝔇𝐿
′ − 𝑥𝐷)[𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)]                                            (104) 

                                𝑌2𝑌3 = 𝔇𝐿
′ [𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] − 𝑥𝐷[𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)]  

       

Respect to (101) and (103), in second term, substitution of 𝑥𝐷𝔇𝐿
′  by −𝑌2+𝔇𝐿

′ 𝑥𝐷 yields: 

                                𝑥𝐷[𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)] = (𝔇𝐿

′ 𝑥𝐷 − 𝑌2)[(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)]                           
                                                                     =  [𝔇𝐿

′ 𝑥𝐷 − (𝔇𝐿
′ − 𝑥𝐷)][(𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)] 

                                                                     =  [𝔇𝐿
′ 𝑥𝐷 − (𝔇𝐿

′ − 𝑥𝐷)][(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] 
                                                                     = 𝔇𝐿

′ 𝑥𝐷[(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] − (𝔇𝐿
′ − 𝑛) 

Replacing second term of (104) by this, yields: 

             𝑌2𝑌3 = 𝔇𝐿
′ [𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] − 𝔇𝐿
′ 𝑥𝐷[(𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)] + (𝔇𝐿

′ − 𝑛)      

                     = 𝔇𝐿
′ {[𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] − 𝑥𝐷[(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)]} + (𝔇𝐿
′ − 𝑛)      

                     = 𝔇𝐿
′ {[𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)] − 𝑥𝐷[(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛)]} + (𝔇𝐿
′ − 𝑛) 

                     = 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)(𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑛) + (𝔇𝐿
′ − 𝑛) = (𝔇𝐿

′ + 1)(𝔇𝐿
′ − 𝑛) 

             𝑌2𝑌3 = (𝔇𝐿
′ + 1)(𝔇𝐿

′ − 𝑛) = 𝔇𝐿
′ 2

− (𝑛 − 1)𝔇𝐿
′ − 𝑛 

For 𝑌3𝑌2 we have: 

             𝑌3𝑌2 = [𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(𝔇𝐿
′ − 𝑛)](𝔇𝐿

′ − 𝑥𝐷) = [𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)] 
                          −𝑛[𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1(𝔇𝐿

′ − 𝑥𝐷)] 
             𝑌3𝑌2 = [𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)−1𝔇𝐿

′ (𝔇𝐿
′ − 𝑥𝐷)] − 𝑛𝔇𝐿

′    

Replacement of 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷) with relations of [𝑌1 , 𝑌2 ] gives: 

             𝑌3𝑌2 = [𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1(−𝑌2 + (𝔇𝐿
′ − 𝑥𝐷)𝔇𝐿

′ )] − 𝑛𝔇𝐿
′  

             𝑌3𝑌2 = [𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1((𝔇𝐿
′ − 𝑥𝐷)(𝔇𝐿

′ − 1)] − 𝑛𝔇𝐿
′  

             𝑌3𝑌2 = [𝔇𝐿
′ (𝔇𝐿

′ − 1)] − 𝑛𝔇𝐿
′ = 𝔇𝐿

′ (𝔇𝐿
′ − 1 − 𝑛) = 𝔇𝐿

′ 2
− (𝑛 + 1)𝔇𝐿

′   

Thus : 

                                      [𝑌2 , 𝑌3 ] = 𝑌2𝑌3 − 𝑌3𝑌2 = 2𝔇𝐿
′ − 𝑛 = 2 (𝔇𝐿

′ −
𝑛

2
) = 2𝑌1                      (105) 

This proves isomorphism of 𝕷𝐿 and 𝔰𝔩(2, 𝑅) as expected.  

 

Lowering and Raising operators of Laguerre Polynomials and its Generating function 

 

Applying the method used to derive lowering  and raising operators for Hermite polynomial could 

be repeated for Laguerre polynomials too. Respect to the properties of Lie algebra 𝕷𝐿, the 

generator 𝑌2 acts as lowering operator 𝐴− and 𝑌3 acts as raising operator 𝐴+ on the weight vectors 

𝕃𝑛 which are the eigenfunctions of 𝑌1 or 𝔇𝐿
′ :  

                                                      𝑌2𝕃𝑛 = (𝔇𝐿
′ − 𝑥𝐷)𝕃𝑛 = 𝑛𝕃𝑛 − 𝑥𝐷𝕃𝑛    

                                                      𝑌2𝕃𝑛 = (𝑛 − 𝑥𝐷)𝕃𝑛 = 𝑛𝕃𝑛−1                                                     (106) 

                                                                

The action of 𝑌1𝑌2 on 𝕃𝑛 is also a lowering operator: 

                                                      𝑌1𝑌2𝕃𝑛 = (𝔇𝐿
′ −

𝑛

2
)(𝔇𝐿

′ − 𝑥𝐷)𝕃𝑛 



                                                      𝑌1𝑌2𝕃𝑛 = (𝔇𝐿
′ −

𝑛

2
)(𝑛 − 𝑥𝐷)𝕃𝑛   

                                                                   = 𝑛(𝔇𝐿
′ −

𝑛

2
)𝕃𝑛−1 

                                                                   = 𝑛(
𝑛

2
− 1)𝕃𝑛−1                                                        (107) 

To derive raising operator due to the equation (100) we have: 

                                                      𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1 = 𝑂𝑥𝑂−1                    

Action of both side on 𝕃𝑛 gives:   

                                                      𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1𝕃𝑛 = 𝑂𝑥𝑥𝑛 = 𝑂𝑥𝑛+1 = 𝕃𝑛+1                   (108) 

Thus, the operator 𝔇𝐿
′ (𝔇𝐿

′ − 𝑥𝐷)−1 acts as the raising operator 𝐴+ in weight vector space of 

Laguerre polynomials. 

 

Proposition 3.1 

 

The generating function of Laguerre polynomial is derived by projection operator method .  

 

proof 

due to umbral properties of operator 𝑂 = ∑ 𝑂𝑛𝑃𝑛𝑛 , as we proved in theorem 2.3, we have: 

     

         𝑔(𝑥, 𝑡) = 𝑂(1 + 𝑥𝑡 + 𝑥2𝑡2 + ⋯ ) = ∑ 𝑂𝑛𝑃𝑛𝑛 (1 + 𝑥𝑡 + 𝑥2𝑡2 + ⋯ ) 

                                                                 = ∑ 𝑂𝑛𝑛 𝑥𝑛𝑡𝑛 = ∑ 𝕃𝑛𝑛 𝑡𝑛                                            (109) 

Substitution the series in 𝑥𝑡 powers with 
1

1−𝑥𝑡
  and the identity 𝑒𝑥𝐷𝑛𝑒−𝑥 = (𝐷 − 1)𝑛 gives 

                                        𝑔(𝑥, 𝑡) = ∑ 𝑂𝑛𝑃𝑛𝑛
1

1−𝑥𝑡
= ∑

1

𝑛!
𝑒𝑥𝐷𝑛𝑒−𝑥(𝑃𝑛𝑛

1

1−𝑥𝑡
) 

                                       

                                                                 = ∑
1

𝑛!
𝑒𝑥𝐷𝑛𝑒−𝑥(𝑃𝑛𝑛

𝑡𝑛𝑢−𝑛

1−𝑥𝑢
)                                              (110)  

If  [𝑢0] denoted as extractor coefficient operator for 𝑢0 = 1 , Then the term   𝑃𝑛
𝑡𝑛𝑢−𝑛

1−𝑥𝑢
is equivalent 

to                                                            [𝑢0]
𝑡𝑛𝑢−𝑛

1−𝑥𝑢
= 𝑃𝑛

𝑡𝑛𝑢−𝑛

1−𝑥𝑢
      

This yields 

                                           𝑔(𝑥, 𝑡) = ∑
1

𝑛!
𝑒𝑥𝐷𝑛𝑒−𝑥

𝑛 [𝑢0]
𝑡𝑛𝑢−𝑛

1−𝑥𝑢
  

                                                       = 𝑒𝑥 ∑
1

𝑛!
(

𝑡

𝑢
)𝑛𝐷𝑛

𝑛 𝑒−𝑥[𝑢0]
1 

1−𝑥𝑢
   

Respect to Tylor series  

                                              𝑓(𝑥 + 𝛼) = 𝑓(𝑥) + 𝛼𝑓′(𝑥) +
𝛼2

2!
𝑓′′(𝑥) + ⋯  

We get 

                        𝑔(𝑥, 𝑡) = 𝑒𝑥 ∑
1

𝑛!
(

𝑡

𝑢
)𝑛𝐷𝑛

𝑛 𝑒−𝑥[𝑢0]
1

1−𝑥𝑢
= 𝑒𝑥 𝑒−(𝑥+𝑡

𝑢 ⁄ )[𝑢0]
1

1−(𝑥+𝑡
𝑢 ⁄ )𝑢

       

                                      𝑔(𝑥, 𝑡) = [𝑢0]
𝑒(− 𝑡 𝑢 ⁄ )

1−(𝑥+𝑡
𝑢 ⁄ )𝑢

=
1

1−𝑡
[𝑢0]

𝑒(− 𝑡 𝑢 ⁄ )

1−
𝑥𝑢

1−𝑡

             

Expansion of the right side in terms of 𝑢 with some algebra results in Laguerre generating function 

                                                    𝑔(𝑥, 𝑡) = ∑ 𝕃𝑛𝑛 𝑡𝑛 =
1

1−𝑡
 𝑒(

−𝑥𝑡

1−𝑡
)
                     

   

3.3 Associated Lie Algebra of Legendre Differential Operator  

 



The main difference between Legendre differential operator and Hermite or Laguerre differential 

operator is its eigenvalues. For Hermite and Laguerre differential operators the eigenvalue are the 

same as the eigenvalues of original differential operator 𝑥𝐷. The eigenvalues of 𝑥𝐷 are integers 𝑛 

Correspond to eigenfunctions 𝑥𝑛. The Hermite and Laguerre differential operators have the same 

eigenvalues and therefore we can apply the similarity transformation 𝑂𝑥𝐷𝑂−1 to derive both 

operators from 𝑥𝐷. Note that operator 𝑂 is defined specific for each differential operator. For 

Legendre differential operator the eigenvalues are 𝑛(𝑛 + 1) which differs from eigenvalues of 

operator 𝔇 = 
𝑥2−1

2𝑥
𝐷 whose eigenvalues are integers 𝑛 and eigenfunctions are (𝑥2 − 1)𝑛 . In this 

case we alter the original operator 𝔇 to turn the same eigenvalues 𝑛(𝑛 + 1). This allows us to use 

similarity transformation 𝑂𝔇𝑂−1 to construct Legendre associated Lie algebra isomorphic to 

𝔰𝔩(2, 𝑅). Let to add 𝑛2 to 𝔇 and act the result on the original basis(𝑥2 − 1)𝑛. 

                     (𝔇 + 𝑛2)(𝑥2 − 1)𝑛 = [
𝑥2−1

2𝑥
𝐷 + 𝑛2] (𝑥2 − 1)𝑛 = 𝑛(𝑛 + 1)(𝑥2 − 1)𝑛                 (111) 

Therefor we choose 𝔇 + 𝑛2 for similarity transformation of the form 𝑂(𝔇 + 𝑛2)𝑂−1. Now we 

search for a Lie algebra 𝕷𝑃 isomorphic to 𝔰𝔩(2, 𝑅) algebra with generators to be defined based on 

Legendre differential operators. We define the following generators for Lie Algebra of Legendre 

Differential Operator. 

                                         𝑍1 = 𝑂𝒉′𝑂−1 ,  𝑍2 = 𝑂𝒆′ 𝑂−1 ,  𝑍3 = 𝑂𝒇′ 𝑂−1          

The generators 𝒉′, 𝒆′, 𝒇′ are different from 𝒉, 𝒆, 𝒇 defined for 𝔰𝔩(2, 𝑅) in previous sections. These 

operators are defined to be compatible for original basis (𝑥2 − 1)𝑛. An isomorphic algebra to 

𝔰𝔩(2, 𝑅) with generators 𝒉′, 𝒆′, 𝒇′ represented as 

                               𝒉′ =
𝑥2−1

2𝑥
𝐷 + 𝑛2    ,  𝒆′ =

𝐷

2𝑥
     , 𝒇′ =

(𝑥2−1)2

2𝑥
𝐷 − 𝑛((𝑥2 − 1)                  (112) 

The commutation relations  of these basis are: 

            [𝒉′, 𝒆′] = (
𝑥2−1

2𝑥
𝐷 + 𝑛2)

𝐷

2𝑥
−

𝐷

2𝑥
(

𝑥2−1

2𝑥
𝐷 + 𝑛2) =

1

4
[𝑥𝐷 (

1

𝑥
) 𝐷 −

1

𝑥
𝐷(𝑥𝐷)] = −

𝐷

2𝑥
= −𝒆′       

For [𝒉′, 𝒇′] we use the identity 

                                                            𝒉′ =
1

𝑥2−1
𝒇′ + 𝑛 + 𝑛2           

            [𝒉′, 𝒇′] = [
1

𝑥2−1
𝒇′ + 𝑛 + 𝑛2 , 𝒇′] = [

1

𝑥2−1
𝒇′ , 𝒇′] + [𝑛 + 𝑛2 , 𝒇′] = [

1

𝑥2−1
𝒇′ , 𝒇′]        

            [𝒉′, 𝒇′] = (
1

𝑥2−1
𝒇′ − 𝒇′ 1

𝑥2−1
) 𝒇′   

Some algebra shows 

            [𝒉′, 𝒇′] = 𝒇′     

With these commutation relations, respect to Jacobi identity we have 

            [𝒆′, 𝒇′] = 2𝒉′ 

This proves that generators 𝒉′, 𝒆′, 𝒇′ gives an isomorphic algebra to 𝔰𝔩(2, 𝑅). Based on these basis 

and conjugation them with operator 𝑂 which is defined for Legendre polynomials in  equation(71), 

we could derive its adjoint algebra with basis that are formed by Legendre differential operator. 

Due to (34) and common eigenvalues of  and 𝒉′and 𝔇ℒ
′  (not be confused with 𝔇𝐿

′  for Laguerre 

differential operator) we have 

            𝑍1 = 𝑂𝒉′𝑂−1 = 𝑂 (
𝑥2−1

2𝑥
𝐷 + 𝑛2) 𝑂−1 = 𝔇ℒ

′ + 𝑛2                                                                     (113) 

For another basis it is required to calculate 𝑂(𝑥2 − 1)𝑂−1. The action of this operator on Legendre 

polynomial ℙ𝑛 gives 

             𝑂(𝑥2 − 1)𝑂−1ℙ𝑛 = 𝑂(𝑥2 − 1)(𝑥2 − 1)𝑛 = 𝑂(𝑥2 − 1)𝑛+1 = ℙ𝑛+1         

This implies that 𝑂(𝑥2 − 1)𝑂−1 acts as raising operator and is equivalent to 𝒇′      



             𝒇′ = 𝑂(𝑥2 − 1)𝑂−1      

This equation and (113) gives 

            𝔇𝐿
′ = 𝑂 (

𝑥2−1

2𝑥
𝐷 + 𝑛2) 𝑂−1 = 𝑂 (

𝑥2−1

2𝑥
𝐷) 𝑂−1 + 𝑛2 = 𝑂(𝑥2 − 1)𝑂−1𝑂 (

1

2𝑥
𝐷) 𝑂−1 + 𝑛2 

            𝔇𝐿
′ = 𝒇′(𝑂𝒆′𝑂−1) + 𝑛2 

Or        𝑍2 = 𝑂𝒆′𝑂−1 = 𝒇′−1
(𝔇ℒ

′ − 𝑛2)                                                                                                    (114) 

For 𝑍3  respect to (113) we have 

            𝑍3 = 𝑂𝒇′𝑂−1 = 𝑂 [
(𝑥2−1)2

2𝑥
𝐷 − 𝑛((𝑥2 − 1)] 𝑂−1 

            𝑍3 = 𝑂(𝑥2 − 1)𝑂−1𝑂 (
𝑥2−1

2𝑥
𝐷) 𝑂−1 − 𝑛𝑂(𝑥2 − 1)𝑂−1 

            𝑍3 = 𝒇′(𝔇ℒ
′ − 𝑛2) − 𝑛𝒇′ = 𝒇′[𝔇ℒ

′ − 𝑛(𝑛 + 1)] 
Thus, the set of generators for Lie algebra of Legendre differential operator are as follows 

     

            𝑍1 = 𝔇ℒ
′ + 𝑛2 ,          𝑍2 = 𝒇′−1

(𝔇ℒ
′ − 𝑛2) ,          𝑍3 = 𝒇′[𝔇ℒ

′ − 𝑛(𝑛 + 1)]              (115) 

                 

3.4 Adjoint representation of 𝔰𝔩(2, 𝑐) based on Hermite differential operator                                                               

 

An appropriate representation of 𝔰𝔩(2, 𝑐) algebra presented as [8]: 

                                             𝒉 =
1

2
𝑥𝐷 +

1

2
  ,     𝒆 =

𝑖

2
𝐷2  ,      𝒇 =

𝑖

2
𝑥2                                           (116) 

The commutation relations of these generators will be unchanged after omitting the imaginary 𝒊 

from 𝒆 and 𝒇 yields a representation of 𝔰𝔩(2, 𝑅) with commutation relations of equation (79): 

                                             𝒉 =
1

2
𝑥𝐷 +

1

2
  ,    𝒆 =

1

2
𝐷2   ,      𝒇 =

1

2
𝑥2  

The adjoint representation of elements of this Lie algebra, can be derived by conjugation with any 

element of the group 𝑆𝐿(2, 𝑅): 

                                         Ad𝑔(𝑋) = 𝑔𝑋𝑔−1  ,                𝑔 ∈ 𝑆𝐿(2, 𝑅) 

The element 𝑔 could be derived by exponential map of generators of 𝔰𝔩(2, 𝑐): 
                                                                             𝑔 = 𝑒𝑡𝑋 

assume 𝑋 =
1

2
𝐷2 and 𝑡 = −1, then the adjoint representation elements will read as: 

                             Ad (𝒉) = 𝑒
−𝐷2

2 𝒉𝑒
𝐷2

2  ,     Ad (𝒆) = 𝑒
−𝐷2

2 𝒆 𝑒
𝐷2

2    ,  Ad (𝒇) = 𝑒
−𝐷2

2 𝒇𝑒
𝐷2

2                    (117)   
Respect to equations (81) to (88): 

                                              Ad(𝒉) = 𝑒
−𝐷2

2 (
1

2
𝑥𝐷 +

1

2
) 𝑒

𝐷2

2 =
1

2
𝔇𝐻

′ +
1

2
                                                     (118) 

                                              Ad(𝒆) = 𝑒
−𝐷2

2 (
1

2
𝐷2) 𝑒

𝐷2

2 =
1

2
𝐷2     

                                              Ad(𝒇) = 𝑒
−𝐷2

2 (
1

2
𝑥2) 𝑒

𝐷2

2 =
1

2
(𝑥 − 𝐷)2 

The eigenfunctions of 𝒉 as Cartan subalgebra of 𝔰𝔩(2, 𝑅) are 𝑥𝑛. After conjugation with 𝑒
−𝐷2

2 , 

the adjoint representation’s Cartan subalgebra will be 
1

2
𝔇𝐻

′ +
1

2
 with eigenfunctions or 

weight vectors 
1

2
ℍ𝑒𝑛

. The transformation of 𝑥𝑛 to ℍ𝑒𝑛
, respect to (39) is given by the relation: 

                                                  𝐻𝑒𝑛 = 𝑒
−𝐷2

2 𝑥𝑛 = 𝑔𝑥𝑛                    𝑔 ∈ 𝑆𝐿(2, 𝑅) 
Therefore, the conjugation of generators of algebra 𝔰𝔩(2, 𝑅) by an element group 𝑔, results in 
an isomorphic adjoint algebra that its Cartan subalgebra’s weight vectors (eigenfunctions) 



could be derived by action  of the same group element on the eigenfunctions of the original 
Lie algebra i.e., 𝑥𝑛.  

If we choose the exponent of  generator 𝒇 as group element 𝑔 = 𝑒
𝑥2

2  ∈ 𝑆𝐿(2, 𝑅) we have:  

                                                Ad(𝒉) = 𝑒
𝑥2

2 (
1

2
𝑥𝐷 +

1

2
) 𝑒

−𝑥2

2 = 𝑒
𝑥2

2 (𝑥𝐷)𝑒
−𝑥2

2 +
1

2
 

Due to Example 2.2 :   
1

2
𝑒

𝑥2

2 (𝑥𝐷)𝑒
−𝑥2

2 +
1

2
=

1

2
(𝑒

𝑥2

2 𝑥𝑒
−𝑥2

2 ) (𝑒
𝑥2

2 𝐷𝑒
−𝑥2

2 ) +
1

2
=

1

2
𝑥(𝐷 − 𝑥) +

1

2
 

This implies that the weight vectors of adjoint algebra should be 𝜈𝑛 = 𝑥𝑛𝑒
𝑥2

2 . And can be 
verified by the action of 𝑥(𝐷 − 𝑥) on 𝜈𝑛. 

For 𝑔 = 𝑒
𝑡𝑥2

2  we get: 

                       𝑒
𝑡𝑥2

2 𝑥𝐷𝑒
−𝑡𝑥2

2 = (𝑒
𝑡𝑥2

2 𝑥𝑒
−𝑡𝑥2

2 ) 𝑒
𝑡𝑥2

2 (−𝑥𝑡𝑒
−𝑡𝑥2

2 + 𝑒
−𝑡𝑥2

2 𝐷) = 𝑥(−𝑥𝑡 + 𝐷) 

And                                                   𝑒
𝑡𝑥2

2 𝑥𝐷𝑒
−𝑡𝑥2

2 = 𝑥(𝐷 − 𝑥𝑡) 

Thus, the eigenfunctions of this operator would be 𝜈𝑛 = 𝑥𝑛𝑒
𝑡𝑥2

2 . 
 
3.5 Representation of 𝖘𝖚(𝟐) and Hermite differential operator 

 
Let introduce the basis 𝔞1 , 𝔞2 , 𝔞3 of 𝔰𝔲(2) given by  

                    

                                  𝔞1 = [
1 0
0 −1

]  ,       𝔞2 = [
0 1
1 0

] ,       𝔞3 = [
0 1

−1 0
]                                 (119) 

With commutation relations  

                           

                                 [𝔞2, 𝔞1] = 𝔞3   ,     [𝔞3, 𝔞2] = 𝔞1  ,    [𝔞1, 𝔞3] = 𝔞2 

 

These commutation relations coincide the complexified algebra of 𝔰𝔲(2) that is the same as 

complexified 𝔰𝔩(2, 𝑅).                                   
Comparing these basis with the generators of 𝔰𝔩(2, 𝑅) presented in (78) reveals the relations 

                               

                                   𝔞1 = 2𝐻   ,       𝔞2 = (𝑋 + 𝑌)    ,      𝔞3 = (𝑋 − 𝑌)                                 (120) 

Conjugation of these basis with an element of the group 𝑆𝐿(2, 𝑅) gives the adjoint representation 

of 𝔰𝔩(2, 𝑅). Let use the operator introduced in (41) to derive Hermite polynomials from monomials 

𝑥𝑛. The similarity transformations  

                          𝑋1
′ = 𝑂𝔞1𝑂−1                 𝑋2

′ = 𝑂𝔞2𝑂−1              𝑋3
′ = 𝑂𝔞3𝑂−1                            (121) 

                       

              𝑋1
′ = 2𝑒

−𝐷2

2  𝐻𝑒
𝐷2

2   ,        𝑋2
′ = 𝑒

−𝐷2

2  (𝑋 + 𝑌)𝑒
𝐷2

2   ,      𝑋3
′ = 𝑒

−𝐷2

2 (𝑋 − 𝑌) 𝑒
𝐷2

2  

Substituting the basis 𝐻, 𝑋, 𝑌 by (78) and (79) gives       

 𝑋1
′ = 2𝑒

−𝐷2

2 (𝑥𝐷)𝑒
𝐷2

2    ,    𝑋2
′ = 𝑒

−𝐷2

2  (𝐷 + 𝑥2𝐷 − 𝑛𝑥)𝑒
𝐷2

2   ,   𝑋3
′ = 𝑒

−𝐷2

2  (𝐷 − 𝑥2𝐷 + 𝑛𝑥)𝑒
𝐷2

2   

 

Thus, by equations (82) to (87) we get 

            

            𝑋1
′ = 2(𝔇𝐻

′ −
𝑛

2
)  ,   𝑋2

′ = 𝐷 + (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛)  ,   𝑋3

′ = 𝐷 − (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛)     (122) 



The commutation relations of these basis coincide the complexified algebra of 𝔰𝔲(2) and as well 

𝔰𝔬(3), the algebra of rotation group in 3-dimensional space. 

  

3.6 General form of differential-operator representations of 𝖘𝖑(𝟐, 𝑹) 

 
Theorem 3.1  

 

Denote by 𝐵(𝑥) any function of 𝑥 and choose a set of its ordered integer exponents as linearly 

independent basis [1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)], then the set of generators  

                                      𝒉 =
𝐵

𝐵′
𝐷 −

𝑛

2
  ,             𝒆 =

𝐷

𝐵′
  ,            𝒇 =

𝐵2

𝐵′
𝐷 − 𝑛𝐵                                  (123)   

Satisfy the commutation relations of 𝔰𝔩(2, 𝑅) and yields an isomorphic algebra to it. 

 

Proof 

                 [𝒉 , 𝒆 ] = (
𝐵

𝐵′ 𝐷)
𝐷

𝐵′ −
𝐷

𝐵′ (
𝐵

𝐵′ 𝐷)   

                   
𝐵

𝐵′ (
𝐷𝐵′−𝐵′′ 

𝐵′2 𝐷 +
𝐷2

𝐵′
) −

1

𝐵′
(

𝐵′2
−𝐵′′ 𝐵

𝐵′2 𝐷 +
𝐵

𝐵′ 𝐷2) = −
𝐷

𝐵′ = −𝒆 

                  [𝒉 , 𝒇] =
𝐵

𝐵′
𝐷 (

𝐵2

𝐵′
𝐷 − 𝑛𝐵) − (

𝐵2

𝐵′
𝐷 − 𝑛𝐵)

𝐵

𝐵′ 𝐷 =
𝐵2

𝐵′
𝐷 − 𝑛𝐵 = 𝒇 

By Jacobi identity, these two commutation relations imply the third commutation relation 

                  [𝒆 , 𝒇 ] = 𝟐𝒉 

Thus, the above generators are representation of the algebra 𝔰𝔩(2, 𝑅) based on an arbitrary linearly 

independent basis [1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)] of polynomial space.  

 

Assume these basis be transformed to new linearly independent basis 𝒫𝑛 by the equation 

                                                                     𝒫𝑛 = 𝑂𝐵𝑛(𝑥)                                                              (124) 

Where, 𝑂 denoted as an operator that introduced in proposition (2.1 ) and equation (8) i.e., 𝑂 =
∑ 𝑂𝑗𝑃𝑗𝑗  acts on 𝐵𝑛(𝑥) as the n-th power of 𝐵(𝑥). Associated algebra of polynomials 𝒫𝑛 can be 

derived as the similarity transformation or adjoint representation of 𝔰𝔩(2, 𝑅) as defined in 

examples. Note that the corresponding differential operator 𝔇𝒫 is derived by 𝔇𝒫 = 𝑂𝒉𝑂−1. The 

generators of related associated algebra are 

                                                            

                                   𝔛1 = 𝑂𝒉𝑂−1   ,           𝔛2 = 𝑂𝒆𝑂−1    ,           𝔛3 = 𝑂𝒇𝑂−1                     (125) 

In this setting 𝑂𝐵𝑂−1 can be acts as a raising operator for 𝒫𝑛basis 

                                       

                                                      𝑂𝐵𝑂−1𝒫𝑛 = 𝑂𝐵𝐵𝑛 = 𝑂𝐵𝑛+1 = 𝒫𝑛+1 

Therefor we could apply this operator as raising operator 𝐴+.  
                                                               

                                                                        𝑂𝐵𝑂−1 = 𝐴+                                                                       (126) 

By this substitution, The general form of generators could be derived 

                   𝔛1 = 𝑂𝒉𝑂−1 = 𝑂 (
𝐵

𝐵′
𝐷 −

𝑛

2
) 𝑂−1 = 𝔇𝒫 −

𝑛

2
   

                   𝔇𝒫 = 𝑂𝐵𝑂−1𝑂
𝐷

𝐵′
𝑂−1 = 𝐴+𝑂

𝐷

𝐵′
𝑂−1   

                   (𝐴+)−1𝔇𝒫 = 𝑂
𝐷

𝐵′ 𝑂−1                                                                                             (127)              

Consequently, respect to (123) and (125) for 𝔛2 we get 



                   𝔛2 = 𝑂𝒆𝑂−1 = 𝑂
𝐷

𝐵′
𝑂−1 = (𝐴+)−1𝔇𝒫            

And for 𝔛3 

                   𝔛3 = 𝑂𝐴+𝑂−1 = 𝑂 (
𝐵2

𝐵′
𝐷 − 𝑛𝐵) 𝑂−1 = 𝑂𝐵𝑂−1𝑂

𝐵

𝐵′
𝐷𝑂−1 − 𝑛𝑂𝐵𝑂−1    

                   𝔛3 = 𝐴+(𝔇𝒫 − 𝑛) = 𝐴+(𝔇𝒫 − 𝑛)              

Thus, the generators                                             

               

                               𝔛1 = 𝔇𝒫 −
𝑛

2
    ,           𝔛2 = (𝐴+)−1𝔇𝒫    ,           𝔛3 = 𝐴+(𝔇𝒫 − 𝑛)              (128) 

 

Form an algebra 𝕷𝒫 as a representation of 𝔰𝔩(2, 𝑅). 
The polynomials 𝒫𝑛 are the eigenfunctions of 𝔛1 as weight vectors of Cartan subalgebra of 𝕷𝒫.  

As an example, the generators of Hermite algebra can be derived by this formula regarding the 

raising operator Of Hermite polynomials i.e., 𝐴+ = 𝑥 − 𝐷   

                 𝑋1 = 𝔇𝐻
′ −

𝑛

2
     

                 𝑋2 = (𝐴+)−1𝔇𝐻
′ = (𝑥 − 𝐷)−1𝔇𝐻

′ = (𝑥 − 𝐷)−1(𝑥𝐷 − 𝐷2) = (𝑥 − 𝐷)−1(𝑥 − 𝐷)𝐷 

                      = 𝐷   

                 𝑋3 = (𝑥 − 𝐷)(𝔇𝐻
′ − 𝑛)                                                                       

As it is expected. 

The Lie algebra 𝕷𝒫 is the general form of representation of 𝔰𝔩(2, 𝑅) whose weight vectors are 

eigenfunctions of arbitrary differential operator 𝔇𝒫. This implies that for any differential equation 

with eigenfunction problem, we can apply the corresponding algebra 𝕷𝒫 and its raising operator 

to derive its solutions as described below. 

 

3.7   Solutions to Differential equations by Raising operator method 

 

In this section we apply the raising operators of the Lie algebra associated with differential 

operators defining the related differential equations to derive its solutions. We start with a known 

differential equation and first two solutions i.e., the first two eigenfunctions with the lowest 

eigenvalues. Then by the definition of raising operator 𝐴+ defined by (126), we derive this operator 

by restriction to 2 dimension of polynomial space and using the first two terms of ∑ 𝑂𝑗𝑃𝑗𝑗  and 

Forbenius covariant operator, the entire eigenfunction (solutions) of the differential equation could 

be derived. 

 

Example 3.1 

 

As an example, for Laguerre differential equation, if we know the first two monomial i.e., 𝕃0 = 𝟏 

and 𝕃1 = −𝑥 + 1  as the trivial eigenfunctions, respect to equation (126) the raising operator is 

                                                                  𝐴+ = 𝑂𝐵𝑂−1      
Where operator 𝑂 transforms the basis [𝑥𝑛] to Laguerre polynomials 𝕃𝑛.                                                           

For Laguerre differential equation by 𝐵 = 𝑥, the raising operator appears as 

                                            𝐴+ = 𝑂𝑥𝑂−1 = (∑ 𝑂𝑗𝑃𝑗𝑗 )𝑥𝑂−1                                                         (129) 

                                            𝐴+ = (𝑂1𝑃1)𝑥𝑂−1       

And acting both side on 𝟏 as the first monomial we get                     

                                            𝐴+. 𝟏 = (𝑂1𝑃1)𝑥𝑂−1. 𝟏                                                                      (130) 

By 𝑂−1. 𝟏 = 𝟏 and 𝑃1𝑥 = 𝑥 and by the 𝑂1 = 𝐷 − 1 , this equation yields 



                                            𝐴+. 𝟏 = (𝐷 − 1)𝑥 

                                                   𝟏 = (𝐴+)−1(𝐷 − 1)𝑥                                                   

The action of operator (𝐴+)−1(𝐷 − 1) on 𝑥 is the same as 𝐷, then we have the identity  

                                     

                                           (𝐴+)−1(𝐷 − 1) = 𝐷                                                                          (131) 

                                           (𝐴+)−1(𝐷 − 1)𝐷−1 = 𝟏     

                                           (𝐴+)−1(1 − 𝐷−1) = 𝟏 

And this gives  

                                             𝐴+ = 1 − 𝐷−1                                                                                  (132) 

Applying this operator on the first two Laguerre polynomials gives the nth solution 

 

                                             𝕃𝑛 = (𝐴+)𝑛. 𝟏 = (1 − 𝐷−1)𝑛. 𝟏                                                      (133) 

This method can be applied for any differential operator to find its eigenfunctions or ordered 

solutions. 

  

Example 3.2 

 

For Hermite differential equation to derive 𝑂1 due to equation (37) for 2 dimension we have 

                                         

                                              𝔇𝐻
′ = (𝜆′

0𝑂0𝑃0 + 𝜆′
1𝑂1𝑃1)(∑ 𝑂𝑃𝑗𝑗 )−1 

We assume 𝜆′
0 = 0, 𝜆′

1 = 1 and 𝑂 = (∑ 𝑂𝑃𝑗𝑗 )−1 

                     

                                              𝔇𝐻
′ = 𝑂1𝑃1𝑂−1                                                                             (134) 

Acting both side on first basis 𝑥 definition for projection operator 𝑃1 , gives 

                                           

                                              𝔇𝐻
′  𝑥 = 𝑂1𝑃1𝑂−1𝑥       

                                              𝔇𝐻
′  𝑥 = 𝑂1𝑃1 𝑥 

                                              𝔇𝐻
′  𝑥 = 𝑂1(𝑥𝐷)𝑥    

This equation shows both operators in the equation are equivalent 

                                             

                                              𝔇𝐻
′ = 𝑂1(𝑥𝐷)                                                                                  (135) 

Substitution for 𝔇𝐻
′  and action of 𝐷−1 on both sides, yields 

                                              (𝑥𝐷 − 𝐷2)𝐷−1 = 𝑂1(𝑥𝐷)𝐷−1  

                                              𝑥 − 𝐷 = 𝑂1𝑥 

Or                                          (𝑥 − 𝐷)𝑥−1 = 𝑂1                                                                            (136) 

Respect to 𝐴+ = 𝑂1𝐵𝑂−1 we get 

                                              𝐴+ = (𝑥 − 𝐷)𝑥−1𝑥𝑂−1                                                                

Acting both side on 𝟏 as the first 𝟏 basis  

                                              𝐴+. 𝟏 = (𝑥 − 𝐷)𝑥−1𝑥𝑂−1. 𝟏                                                          (137) 

                                              𝐴+. 𝟏 = (𝑥 − 𝐷)𝑥−1𝑥. 𝟏  

Thus, we have 

                                              𝐴+ = 𝑥 − 𝐷   

With raising operator, we derive all Hermits eigenfunctions as solutions to its differential equation 

 

                                              ℍ𝑒𝑛
= (𝐴+)𝑛. 𝟏 = (𝑥 − 𝐷)𝑛. 𝟏                                                         (138)  



 

3.8 Baker-Campbell-Hausdorff formula application for Lie Algebras of Differential 

Operators 

 

A specific version of Baker-Campbell-Hausdorff formula implies that if the commutator relation 

of a Lie algebra generators 𝑋1 , 𝑋2 meets the equation [6]: 

  

                                                       [𝑋1 , 𝑋2] = 𝑠 𝑋2                                                                   (139) 

With 𝑠 ∈ 𝑅, then the BCH formula reduces to 

                                                         𝑒𝑋1𝑒𝑋2 = exp (𝑋1 +
𝑠𝑋2

1−𝑒−𝑠)                                                 (140) 

Adjoint representation of 𝔰𝔩(2, 𝑐) as defined in equations (116) and (118) represented by generators 

                              Ad(𝒉) =
1

2
𝔇𝐻

′ +
1

2
      ,      Ad(𝒆) =

1

2
𝐷2   ,     Ad(𝒇) =

1

2
(𝑥 − 𝐷)2      

That obey the commutation relations in equations (79) 

                                                      [
1

2
𝔇𝐻

′  ,
1

2
𝐷2  ] = −

1

2
𝐷2     

Multiplying by −1 yields 

                                                      [
1

2
𝔇𝐻

′  , −
1

2
𝐷2  ] =

1

2
𝐷2  

Due to (139) and (140) we have 

                                             𝑒𝔇𝐻
′

 𝑒− 
1

2
𝐷2

= exp (𝔇𝐻
′ +

𝐷2

2(1−𝑒)
)           

Acting both sides on 𝑥𝑛 by equation (39) yields  

                                             𝑒𝔇𝐻
′

 𝑒− 
1

2
𝐷2

𝑥𝑛 = exp (𝔇𝐻
′ +

𝐷2

2(1−𝑒)
) 𝑥𝑛   

                                             𝑒𝔇𝐻
′

ℍ𝑒𝑛
= exp (𝔇𝐻

′ +
𝐷2

2(1−𝑒)
) 𝑥𝑛  

                                                𝑒𝑛ℍ𝑒𝑛
= exp (𝔇𝐻

′ +
𝐷2

2(1−𝑒)
) 𝑥𝑛  

                                                    ℍ𝑒𝑛
= exp (𝔇𝐻

′ − 𝑛 +
𝐷2

2(1−𝑒)
) 𝑥𝑛 

This is a new relation the converts 𝑥𝑛 to ℍ𝑒𝑛
 and alternative to the classic relation:  

                                                    ℍ𝑒𝑛
= 𝑒− 

1

2
𝐷2

𝑥𝑛   

This technique is also applicable to other differential operators such as Laguerre and Legendre 

differential operators.                     
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