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ABSTRACT
Background: The development and rollout of vaccines and the use of various drugs have contributed to controlling the 
coronavirus disease 2019 (Covid-19) pandemic. Nevertheless, challenges such as the inequitable distribution of vaccines, the 
influence of emerging viral lineages and immunoevasive variants on vaccine efficacy, and the inadequate immune defense in 
subgroups of the population continue to motivate the development of new drugs to combat the disease.
Aim: In this study, we sought to identify, prioritize, and characterize drug repurposing candidates appropriate for treating 
mild, moderate, or severe Covid-19 using a network-based integrative approach that systematically integrates drug-related 
data and multi-omics datasets.
Methods: We leveraged drug data and multi-omics data and used a random walk with restart algorithm to explore an inte-
grated knowledge graph comprising three subgraphs: (i) a Covid-19 knowledge graph, (ii) a drug repurposing knowledge 
graph, and (iii) a Covid-19 disease state-specific omics graph.
Results: We prioritized 20 US Food and Drug Administration-approved agents as potential candidate drugs for mild, mod-
erate, and severe Covid-19 disease phases. Specifically, drugs that could stimulate immune cell recruitment and activation 
including histamine, curcumin, and paclitaxel have potential utility in mild disease states to mitigate disease progression. 
Drugs like omacetaxine, crizotinib, and vorinostat that exhibit antiviral properties and have the potential to inhibit viral 
replication can be considered for mild to moderate Covid-19 disease states. Also, given the association between antioxidant 
deficiency and high inflammatory factors that trigger cytokine storms, antioxidants like glutathione can be considered for 
moderate disease states. Drugs that exhibit potent anti-inflammatory effects like (i) anti-inflammatory drugs (sarilumab 
and tocilizumab), (ii) corticosteroids (dexamethasone and hydrocortisone), and (iii) immunosuppressives (sirolimus and 
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cyclosporine) are potential candidates for moderate to severe disease states that trigger a hyperinflammatory cascade of 
Covid-19.
Conclusion: Our study demonstrates that the multi-omics data-driven integrative analysis within the drug data enables pri-
oritizing drug candidates for Covid-19 disease phases, offering a comprehensive basis for therapeutic strategies that can be 
brought to market quickly given their established safety profiles. Importantly, the multi-omics data-driven integrative anal-
ysis within the drug data approach implemented here can be used to prioritize drug repurposing candidates appropriate for 
other diseases.

KEYWORDS
multi-omics; drug repurposing; random walk; Covid-19, networks.

BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
the highly contagious and virulent coronavirus responsible for the 
global outbreak of coronavirus disease 2019 (Covid-19). Between 
2020 and 2023, Covid-19 imposed an unprecedented burden on 
global public health systems, and by December 2023, it had been 
responsible for at least 770 million reported cases and close to 7 
million reported deaths.1

The pandemic’s containment and the restoration of societal 
normalcy have been achieved through two key routes: (i) the 
development and widespread use of SARS-CoV-2 vaccines and (ii) 
the gradual increase in natural infection-acquired immunity. While 
progress has been made, critical hurdles remain, notably the need 
for equitable vaccine distribution and effective treatment options 
for those unvaccinated or immunocompromised.2 Furthermore, 
there are also some concerns surrounding vaccine efficacy 
against a backdrop of waning immunity2,3 and the emergence of 
immunoevasive viral strains.4,5 It is now a widely held view that 
Covid-19 is likely to transform into another endemic human coro-
navirus, possibly with seasonal epidemic waves.6 Irrespective of 
the number of infections that occur or the intensiveness with 
which vaccines are used, it remains uncertain whether true herd 
immunity of sorts achieved with measles and rubella will ever be 
achieved for Covid-19.

While data are currently being collected and analyzed to under-
stand how newly evolved SARS-CoV-2 variants might impact the 
effectiveness of vaccines and the severity of future Covid-19 infec-
tion waves, there remains a demand for both host-directed and 
pathogen-directed drugs that could be utilized to treat the mild, 
moderate, and severe manifestations of the disease.

In light of this, multiple existing drugs have been sought to treat 
or control SARS-CoV-2 infection.7 An example is ritonavir-boosted 
nirmatrelvir (Paxlovid) (DrugBank: DB16691), a protease inhibitor 
used for the treatment of mild to moderate Covid-19 in adults 
who are at high risk of developing severe symptoms.8 Additionally, 
remdesivir (Veklury) (DrugBank: DB14761), an adenosine triphos-
phate (ATP) analog targeting the conserved viral RNA-dependent 
RNA polymerase, shortens the recovery time for adults hospital-
ized with Covid-19 infection and pneumonia, while also mitigating 
disease severity and associated mortality.9–11 Other virus-directed 
antiviral drugs like favipiravir (DrugBank: DB12466), molnupira-
vir (DrugBank: DB15661), and ritonavir (DrugBank: DB00503) 

may also potentially improve the health outcomes of Covid-19 
patients.12 Furthermore, a host-directed drug such as dexameth-
asone (DrugBank: DB01234), an anti-inflammatory corticosteroid, 
has demonstrated its effectiveness in reducing mortality among 
severely infected patients. It achieves this by modulating inflam-
mation-mediated lung injury, preventing in some cases progres-
sion to respiratory failure and death.13 Another host-directed drug, 
aspirin (DrugBank: DB00945),14 decreases the risk of complications 
and mortality in hospitalized Covid-19-infected patients.14–16

While these drugs are mainly utilized for severe Covid-19 cases, 
some virus-directed monoclonal antibodies (e.g., bebtelovimab, 
casirivimab) received emergency use authorization at various 
stages of the pandemic for managing mild to moderate Covid-19.17 
Additionally, other monoclonal antibodies including the combina-
tion of bebtelovimab, casirivimab, and imdevimab and the com-
bination of bamlanivimab and etesevimab have been useful for 
managing mild to moderate Covid-19 in adults.17 These monoclo-
nal antibodies inhibit viral entry into host cells by preventing viral 
attachment to human ACE2 receptors.

Host-targeted monoclonal antibodies such as tocilizumab 
(DrugBank: DB06273) and sarilumab (DrugBank: DB11767),18–21 
which modulate aberrant immune responses to infection by bind-
ing to the host interleukin 6 (IL6) receptor (IL6R), have also been 
granted emergency use authorization. Specifically, these IL6R-
binding monoclonals are used for treating hospitalized adults and 
pediatric patients (2 years of age and older) who are receiving 
systemic corticosteroids and require supplemental oxygen, non-
invasive or invasive mechanical ventilation, or extracorporeal 
membrane oxygenation.21

Although existing drugs have been recommended for managing 
Covid-19, concerns have arisen about post-hospitalization effects 
and the appropriateness of using these drugs in different Covid-19 
disease phases.22–24 Covid-19 exhibits a wide spectrum of symp-
toms and severities, necessitating a nuanced approach to treat-
ment. Personalized medicine, where the right drug is administered 
to the right patient group at the right disease phase, could revolu-
tionize Covid-19 treatment strategies. Hence, it would be useful to 
identify effective drugs that are specific to different phases of the 
disease, and which could also be potentially applicable to combat-
ing any future emergence of other coronaviruses.

Given that the development of new medications is a time-
consuming process, the repurposing of existing medications for 
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other indications may prove to be a viable alternative. However, 
most studies that have implemented computational methods to 
identify drug repurposing candidates for Covid-19 have so far lev-
eraged disease–gene associations, protein–protein interaction, and 
drug–target data, but less consideration is given to the interactions 
between other biomedical and molecular features specific to differ-
ent Covid-19 disease phases, such as those recorded in large-scale 
multi-omics profiling efforts.25–28 Applying computational multi-
omics data-driven analysis to the repurposing of existing medications 
is, in fact, a potentially and highly efficient means of drug discovery 
since the pharmacological properties, formulations, and toxicities 
of such agents are already known.25–31 In this study, we explore the 
utility of incorporating disease state-specific omics graphs (DSOGs) 
along with drug-related data to identify drug repurposing candidates 
for mild, moderate, or severe Covid-19 disease states. We employ 
MultiXrank,32 a random walk with restart (RWR) algorithm that can 
combine multiple heterogeneous networks and allows for universal 
multi-layer network exploration. We demonstrate that this integra-
tive multi-omics network-based approach with drug data has the 
potential to repurpose drugs in different disease states and can be 
applied to other diseases.

MATERIALS AND METHODS

Study Design and Procedures

The methodology employed in this study (Figure 1) encompasses 
five main steps: (i) curation and pre-processing of data related to 
the action of drugs and to the molecular omics profiles associ-
ated with the different phases of the disease; (ii) multi-layer net-
work-based random walk analysis; (iii) predicting drug repurposing 
candidates; (iv) drug prediction robustness analysis; and (v) valida-
tion of predicted candidate drugs.

Table 1: Description of the Node Types in the Drug Repurposing 
Knowledge Graph.

Node Type   Number of Features

Anatomy   400
Anatomical Therapeutic Chemical   4048
Biological process   11,381
Cellular component   1391
Compound   24,313
Disease   5103
Gene   39,220
Molecular function   2884
Pathway   1822
Pharmacologic class   345
Side effect   5701
Symptom   415
Taxonomy   215

Figure 1. Diagram illustrating the workflow implemented in this study. The workflow begins with curating multi-omics data and drug data, followed by 
a random walk with restart network analysis using both data-driven and hypothesis-driven approaches. Next, we prioritized and characterized candidate 
drugs, followed by drug prediction robustness analysis. Finally, we concluded the analysis by validating the predicted drug candidates.

Drug Repurposing Knowledge Graph, Covid-19 Knowledge 
Graph, and DSOGs

We utilized an existing drug repurposing knowledge graph (DRKG) 
constructed by Ioannidis et al.31 The DRKG is a biological knowledge 
graph relating genes, compounds, diseases, biological processes, 
side effects, and symptoms as of 2020 when it was constructed. 
The DRKG includes information from six existing databases: (i) 
Global Network of Biomedical Relationships,33 (ii) STRING,34 
(iii) IntAct,35 (iv) Hetionet,36 (v) DrugBank,37 and (vi) Drug–Gene 
Interaction Database.38 The DRKG includes 97,238 entities classi-
fied into 13 different node types (Table 1) and consists of 5,874,261 
triplets belonging to 107 edge types (Supplementary Table 1). We 
leveraged the gene pathway and gene biological process edge 
types (Supplementary Table 1) in the DRKG to construct pairwise 
interaction between biological processes and pathways based 



F. E. Agamah et al.: Network-based Multi-omics Disease–Drug Associations

4

on the semantic relation that biological processes and pathways 
that share similar disease-related genes are indirectly associated. 
This was achieved by exploring the associations between genes, 
biological processes, and pathways to investigate the biological 
processes and pathways enriched among the disease-associated 
genes. We then paired pathways and biological processes sharing 
common genes.

We additionally considered the Covid-19 knowledge graph 
(Covid-19 KG) built by Hsieh et al. in 2021.29 This Covid-19 KG is 
notable for its integration of drug data from the Comparative 
Toxicogenomics Database, specifically data available as of 2021,39 
along with protein–protein interactions involving SARS-CoV-2 and 
host proteins from a study by Gordon et  al.40 In addition to the 
virus–host interaction data, we also included SARS-CoV-2 and host 
protein interactions from IntAct database.35 The SARS-CoV-2 and 
host protein interaction data extracted from IntAct were derived 
from several studies that examined protein–protein interactions 
between SARS-CoV-2 and humans. Following the merge of the 
Covid-19 KG and virus–human protein interaction data, the result-
ing graph represents the interactions between entities belonging 
to five different node types (Table 2) and consists of 33,621 triplets 
belonging to five edge types (Supplementary Table 2).

Furthermore, we considered DSOGs constructed from our 
previous study41 for downstream analysis. The DSOGs were con-
structed by integrating harmonized proteomics, transcriptomics, 
metabolomics, and lipidomics datasets retrieved from the stud-
ies by Overmyer et  al.42 and Su et  al.,43 together with a unified 
knowledge graph, assembled by merging protein–protein interac-
tome, metabolite–metabolite interactome, transcript–transcript 
interactome, and lipid–lipid interactome curated from literature 
and databases.41 The DSOG consisted of four node types (i.e., pro-
tein, transcript, metabolite, and lipid) and nine edge types (i.e., 
protein–protein, transcript–transcript, metabolite–metabolite, 
lipid–lipid, protein–transcript, protein–metabolite, transcript–
metabolite, protein–lipid, and transcript–lipid).

The process used to construct the graphs is described in 
Agamah et al.41 In summary, the World Health Organization Ordinal 
Scale was used as a disease severity reference to harmonize Covid-
19 patient metadata across the studies by Overmyer et al.42 and Su 
et al.43 These harmonized metadata were then used to categorize 
the multi-omics data into mild, moderate, and severe Covid-19 dis-
ease phases. Subsequently, a correlation network approach was 
implemented to construct co-expression networks for proteom-
ics, transcriptomics, metabolomics, and lipidomics data for each 

Table 2: Description of the Node Types in the Covid-19 
Knowledge Graph.

Node Type   Number of Features

SARS-CoV-2 baits   23
Host genes and drug targets   10,959
Pathways   274
Drugs (chemical/compound)   4266
Biological process (phenotypes)   1893

Covid-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2.

disease state. The co-expression networks generated were inte-
grated/merged based on the disease state and omics data type to 
construct DSOGs.

Overall, these above data sources were used to construct a uni-
fied and integrated knowledge graph comprising three subgraphs 
including the Covid-19 KG, the DRKG, and the DSOG from which 
we conducted an in-depth quality check (see the section Data 
Pre-processing, Quality Control, and Filtering), prioritize, charac-
terize, and repurpose specific drugs for the mild, moderate, and 
severe state of Covid-19.

Data Pre-processing, Quality Control, and Filtering

We observed differences in the gene and drug identifiers across 
the DRKG and Covid-19 KG. To achieve consistency in the iden-
tifiers across the datasets, we mapped gene identifiers onto 
gene symbols using the UniProt database resource44 and drug 
identifiers onto drug names using the DrugBank database.37 
To identify clinically approved drugs with known safety pro-
files and pharmacokinetic properties, we filtered/cleaned the 
drug-related data by maintaining (i) drug–drug interactions 
between US Food and Drug Administration (FDA)-approved drug 
candidates, (ii)  drug–protein/gene interactions between FDA-
approved drug candidates and proteins/genes, and (iii) biolog-
ical process/pathway–chemical interactions between biological 
processes/pathways and FDA-approved chemicals. As our inves-
tigation is centered around identifying potential repurposable 
drugs for Covid-19, we took additional measures to refine our 
analysis. To prioritize approved drugs with known safety pro-
files for Covid-19, we specifically removed interactions involving 
drugs that have been studied (based on literature evidence) and 
found to lack therapeutic effectiveness in treating Covid-19, as 
is the case with quinolones like chloroquine and hydroxychloro-
quine.45,46 Moreover, we omitted certain endogenous substances 
including hormones such as progesterone, testosterone, and 
melatonin, as well as alcohol (ethanol), various compounds like 
cholesterol, and cocaine, and gases such as oxygen and hydrogen 
from our analysis. Overall, we utilized about 2782 FDA-approved 
drugs for downstream analysis.

RWR Network Analysis

The random walk method is a technique for detecting the spread 
of biological information through networks. The concept behind 
the random walk method is such that a hypothetical particle 
exploring the network structure takes discrete steps (walks) in 
some direction from a seed node.47 The walk explores different 
layers based on the premise that related nodes lie close to each 
other in the network.47 To perform RWR network analyses, we uti-
lized MultiXrank,32 an RWR on a multi-layer network algorithm, to 
explore DSOGs, Covid-19 KG, and DRKG. Whereas the MultiXrank 
algorithm enables random walk analysis on multiple large multi-
dimensional datasets in a multi-layer network framework, other 
methods are limited in the combination and heterogeneity of 
networks that they can handle.48 In brief, the first step of the 
algorithm is to create adjacency matrices for the input graphs, 
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followed by computing different transition probabilities of the 
RWR on the graphs. The probabilities are estimated based on the 
concept that an imaginary particle starts a random walk from the 
seed node to other nodes in the network. These different transi-
tion probabilities describe the walks within a graph and the jumps 
between graphs. A higher probability score (close to 1) suggests a 
higher likelihood of walking or jumping between graphs. We made 
specific adjustments to the algorithm’s configuration script based 
on the input datasets. While the global restart probability was 
set at 0.7, the intra-layer jump probability and the probability to 
restart in a specific layer were set to 0.5 and 1, respectively. Other 
parameters such as inter-layer jump probability were fine-tuned to 
align with the number of input graph layers. We set parameters in 
the algorithm to control the behavior of the algorithm to achieve 
desired outcomes.

As a result of this analysis, we obtained multi-layered graphs 
that detailed the exploration of seed nodes across various omics 
layers and drug data, along with a ranked list of features in each 
graph layer.

RWR analysis on the DRKG, Covid-19 KG, and DSOG

We performed an initial analysis focused on identifying drugs that 
can be repurposed for Covid-19 without accounting for omics pro-
files. Thus, we employed the DRKG and Covid-19 KG as the input 
data sources in the RWR algorithm to predict candidate drugs for 
Covid-19. The algorithm accepts as layers, monoplex graphs, and/
or a combination of monoplex graphs (multiplex). Specifically, in 
our analysis, edge types with the same node entities including the 
drug–drug and gene–gene interactions each served as a monoplex 
and were interconnected by edge types with different node enti-
ties including the gene–drug, pathway–gene, phenotype (biologi-
cal process)–gene, phenotype (biological process)–drug, and SARS-
CoV-2–host gene interactions (Supplementary Tables 1 and 2). 

In subsequent analysis to predict potential drugs for different 
Covid-19 disease states, we utilized the DRKG, Covid-19 KG, and 
DSOG as input data. Herein, the input data included the proteom-
ics, transcriptomics, metabolomics, and lipidomics disease state 
graphs, which also served as individual monoplex layers. Similar 
to the analysis on the DRKG and Covid-19 KG, graphs with edge 
types of the same node entities were interconnected by graphs 
with edge types of different node entities including the protein–
transcript, protein–metabolite, transcript–metabolite, protein–
lipid, and transcript–lipid interactions from the DSOG which were 
not utilized in the previous analysis.

Prediction of drugs using the RWR algorithm is based on a 
network exploration process where simulated particles walk itera-
tively from one node to one of its neighbors with some probability. 
In this process, the walk is restricted to restart from seed nodes 
to prevent the random walker from being trapped in dead ends.47

Selection of seeds for RWR based on a hypothesis- and  
data-driven approach

To select seed nodes for the analysis, we implemented two 
approaches: (i) a hypothesis-driven approach where we selected 

seeds based on their impact on disease severity to test the 
hypothesis of their differential associations with mild, moderate, 
and severe Covid-19 disease states and (ii) a data-driven approach 
where we selected, after merging the different co-expression 
networks, the features with the highest node integrated cen-
trality score in each omics layer as seeds. The hypothesis-driven 
approach has the advantage of bringing the question being inves-
tigated into focus by designing the model with a specific biological 
hypothesis in mind and exploring variations across disease phases, 
whereas the data-driven approach enables a more unbiased and 
informed model.49,50 Although hypothesis- and data-driven mode-
ling approaches are not mutually exclusive, it is worth noting that 
this diversity is beneficial: Most model-building tools and models 
have a specific and clear role; however, at the same time, com-
bining hypothesis- and data-driven approaches in an interoper-
able way provides an immense impact on our understanding of 
the disease phases as modeling and integrating data at different 
biological scales.49,50

IL6 and IL6R features were used as hypothesis-driven seeds for 
the random walk analysis because of the evidence for their signif-
icant role in the pathology of SARS-CoV-2 and Covid-19.51–53 IL6 is 
a cytokine, a type of signaling molecule involved in various inflam-
matory and immune responses. The inflammatory response plays 
a critical role in Covid-19, with an excessive inflammatory response 
leading to a “cytokine storm” increasing the severity of Covid-19. 
Since IL6 interacts with cells via IL6R, it has been hypothesized that 
inhibition of IL6R might reduce the likelihood of cytokine storms 
developing, ameliorate the symptoms of severe Covid-19, and 
reduce mortality.48 In this context, we, therefore, used IL6 and IL6R 
as hypothesis-driven seeds in an RWR analysis that we refer to as 
our “hypothesis-driven approach.”

For an RWR using data-driven seeds, we selected seeds follow-
ing the approach described in our previous study.41 Specifically, 
we selected, after merging the different co-expression networks, 
the features with the highest integrated centrality score in each 
omics layer.41 The features were ranked by leveraging the node 
degree, closeness, betweenness, and eigenvector centrality met-
rics to compute an integrated score (see Supplementary data, 
Equation 1). These centrality metrics provide insight into the 
importance of a node. For instance, the closeness metric meas-
ures how close a node is to all other nodes in the network. A lower 
closeness centrality score indicates the node is on average closer 
to other nodes, potentially making it a faster “information hub.” 
The degree metric measures the number of connections (edges) a 
node has with other nodes. A higher degree signifies the node has 
more direct connections, suggesting it might be more influential 
or receive more information flow. The betweenness metric cap-
tures how often a node lies on the shortest path between other 
pairs of nodes in the network. A higher betweenness score sug-
gests the node acts as a crucial bridge for information flow within 
the network. The eigenvector metric considered goes beyond 
the number of connections and considers the “importance” of a 
node’s neighbors. Nodes with high eigenvector centrality are con-
sidered influential due to their connections to other influential 
nodes. By integrating these diverse perspectives, the calculated 
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score provides a comprehensive understanding of a node’s rel-
ative importance within the network structure and its potential 
role in information flow and communication. Herein, the RWR 
analysis using the data-driven seeds is referred to as our “data-
driven approach.”

Ranking candidate drugs for Covid-19 disease states

The RWR approach has the benefit of capturing the global topol-
ogy of a graph and representing a measure of proximity from 
all the nodes to the seed(s) based on the graph topology.54 The 
measure of proximity between nodes is a relevant measure quan-
tifying how closely connected a node is with the seeds and can 
be used to rank nodes.47,54,55 Overall, the network’s structure 
and connectivity patterns impact how random walks propagate 
through the nodes and influence the ranking of nodes based on 
their importance and relevance. Highly connected nodes or hubs 
may attract more random walkers and have a greater influence on 
the ranking of nodes. In this study, nodes within each layer were 
ranked based on their measure of proximity to the seed nodes, 
representing the relatedness of nodes to the seeds. The measure 
of proximity was the geometric mean of the node’s proximity to 
the seeds.47

RESULTS

Predicting Candidate Drugs Using Existing Knowledge Graphs and 
Hypothesis-driven Seeds

To predict potential Covid-19 drugs, we systematically analyzed the 
DRKG and Covid-19 KG excluding DSOGs by implementing an RWR 
analysis (see Materials and Methods). The RWR is an approach 
that allows for the exploration of the DSOGs, Covid-19 KG, and 
DRKG to identify patterns and prioritize features within the net-
work. The algorithm, MultiXrank, conducts multiple random walks 
over the graphs, each originating from the seed nodes. These 
walks iteratively traverse from one node to a neighboring node at 
random, thus simulating a pattern that results in a multi-layered 
graph. In our hypothesis-driven approach, we selected IL6 and 
IL6R as seeds given their established roles as aggravators of the 
disease. The random walk process restricts the restarts from seed 
nodes (IL6 and IL6R) during network exploration. The RWR anal-
ysis revealed a multi-layered graph describing the random walks 
from the seed nodes (Figure 2) and a set of potential therapeutics 
(Table 3) for the treatment of Covid-19. These included immuno-
suppressants, vital minerals, anticancer agents, antivirals, antibiot-
ics, angiotensin receptor blockers, and corticosteroids (as detailed 
in Table  3). Notable among these are presently recommended 

Figure 2. Graph representation of interactions between drugs and other features as observed from predicting candidate drugs using existing knowledge 
graphs and hypothesis-driven seeds. Blue edges represent interactions between drugs (green nodes). Cyan edges represent interactions between biologi-
cal processes (pink nodes) and drugs. Red edges represent biological process–proteins (gray nodes) interactions and biological process–transcript (yellow 
nodes) interactions. Black edges represent drug–protein, drug–transcript, protein–transcript, and transcript–transcript interactions. The graphs were gen-
erated by defining filtering criteria based on the node degree between 4 and 1633 in Cytoscape.
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drugs for treating the disease such as tocilizumab,21,56,57 dexameth-
asone,13 and losartan.58,59 Furthermore, our analysis pinpointed 
additional potential pharmaceutical options, such as cannabid-
iol and doxorubicin.60–62 While these have yet to be definitively 
endorsed for Covid-19 treatment, prior research indicates their 
potential candidacy based on their efficacy and merits for further 
experimental validations.60,63 Figure 2 shows a multi-layered graph 
generated from the RWR analysis highlighting interactions involv-
ing highly ranked drug candidates and other features such as IL2, 
IL1B, HCK, and TYK2.

Predicting Candidate Drugs Using Existing Knowledge Graphs, 
DSOGs, and Hypothesis-driven Seeds

To discover potential candidate drugs that could be used to spe-
cifically treat the disease in either its mild, moderate, or severe 
phases, we employed the RWR method in a network-based 
approach utilizing the knowledge graphs (DRKG and Covid-19 KG), 
alongside the DSOGs encompassing transcriptomics, proteomics, 
metabolomics, and lipidomics data (see Materials and Methods). 
The outcome of the RWR analysis is a ranked list of potential drugs 

and a multi-layered graph describing the random walks from the 
seed nodes (IL6 and IL6R). Across different analyses of the mild, 
moderate, and severe disease states, we consistently identified 
the same sets of drugs (Table 4) that could potentially be impact-
ful during Covid-19 treatment. Notably, our analysis revealed 
that drugs known to suppress the immune response and reduce 
inflammation, including those promoting IL6 production, consist-
ently ranked high across all investigated disease states (Table 4). 
This observation aligns with expectations, considering our choice 
of IL6 and IL6R as seeds: Both are pivotal biomarkers identified in 
multiple studies as displaying expression levels that are positively 
associated with severe disease states.64,65 These biomarkers are 
prominently expressed during cytokine storms that are character-
istic of severe Covid-19 cases.65

We observed differences between the multi-layered graphs 
generated by the RWR analysis on the mild, moderate, and severe 
disease states. Specifically, these differences were observed in 
the levels of connectivity between molecular features and the 
drug repurposing candidates. We therefore performed network 
topology analysis on the multi-layered graphs generated from the 
RWR analysis to explore the differences between these graphs 

Table 3: Top 20 Potential Covid-19 Drugs, Ranked According to Their Measure of Proximity to IL6 and IL6R Seed Nodes as Determined 
Through the RWR Analysis of the DRKG and Covid-19 KG.

Drug Name   Drug Category   Mechanism of Action Potentially Linked with Covid-19   Measure of Proximity   Referencea

Tocilizumabb   IL6R antagonist   Suppresses immune response by blocking IL6 signaling   0.0353861   21

Zinc   Essential mineral/nutrient   Interferes with viral RNA synthesis to inhibit replication   0.0007941   123

Sirolimus   Immunosuppressive drug   Expresses immunomodulatory and anti-inflammatory 
properties and inhibits the expression of pro-
inflammatory cytokines

  0.0003784   124,125

Choline   Essential nutrient   Supports cell membrane integrity and neurotransmitter 
function

  0.0003440   126

Ivermectin   Antiparasitic drug   Inhibits viral replication and modulates the host immune 
response

  0.0003056   127

Dactinomycin   Anticancer   Expresses immunomodulatory properties and inhibits 
viral cellular transcription

  0.0002734   79,80

Losartan   Angiotensin receptor 
blocker

  Reduces the activity of the renin–angiotensin system   0.0002327   128

Ribavirin   Antiviral   Interferes with viral RNA synthesis and replication   0.0002168   129,130

Azithromycin   Antibiotic   Expresses antiviral and anti-inflammatory properties   0.0002000   131

Tenofovir   Antiviral   Interferes with viral RNA synthesis to inhibit replication   0.0001930   132

Acetaminophen   Analgesic   Expresses antipyretic and analgesic effects and inhibits 
the cyclooxygenase pathways

  0.0001665   133,134

Dexamethasone   Corticosteroid   Suppresses immune response   0.0001633   98

Methotrexate   Immunosuppressive drug   Suppresses immune response   0.0001624  
Cyclosporine   Immunosuppressive drug   Express anti-inflammatory and antiviral properties   0.0001614   135,136

Cisplatin   Anticancer     0.0001555  
Tacrolimus   Immunosuppressive drug   Mitigates the hyperinflammatory response   0.0001532   137

Indomethacin   Non-steroidal anti-
inflammatory drug

  Expresses anti-inflammatory properties and reduces pain 
and fever

  0.0001505   63,138

Cannabidiol   Cannabinoid   Inhibits viral replication by upregulating the host inositol-
requiring enzyme 1α ribonuclease endoplasmic reticulum 
stress response and interferon signaling pathways

  0.0001488   60

Doxorubicin   Anticancer   Expresses antiviral and immunomodulatory properties   0.0001486   61

Diclofenac   Non-steroidal anti-
inflammatory drug

  Expresses anti-inflammatory properties and reduces pain 
and fever

  0.0001481   138

aThe references point to publications that have reported the drugs’ mechanism of action potentially linked with Covid-19.
bDrugs with direct contact to seed nodes as observed in first neighbors.
Covid-19, coronavirus disease 2019; Covid-19 KG, Covid-19 knowledge graph; DRKG, drug repurposing knowledge graph; IL6, interleukin 6; IL6R, interleukin 6 receptor; RWR, 
random walk with restart.
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and how that can provide more insights into the use of predicted 
drugs across mild, moderate, and severe disease states. First, we 
evaluated the degree, betweenness, and closeness measures of 
the drug repurposing candidates and observed relatively similar 
scores (Table 5). The node degree indicates the number of connec-
tions a drug has, revealing its involvement in broader disease pro-
cesses. Higher degrees might suggest broader applicability across 
multiple diseases. The betweenness centrality measures a drug’s 
“traffic control” role, indicating how often it lies on the shortest 
paths between other nodes. High betweenness suggests a poten-
tial “bridge” molecule connecting different disease pathways. The 
closeness centrality reflects how quickly information can reach 
other disease elements or nodes from a candidate drug. High close-
ness suggests a central position within the disease network, poten-
tially making it a good starting point for treatment. For instance, 
cyclosporine had a higher degree of 6 in the multi-layered graph 
generated by the RWR analysis on the moderate disease state as 
compared to a degree of 5 in the multi-layered graph generated 
by the RWR analysis on the mild disease state and a degree of 4 
in the multi-layered graph generated by the RWR analysis on the 
severe disease state with a corresponding high betweenness score 
of 0.0014 and a closeness score of 0.4832, suggesting it might have 
potential utility for the moderate disease state.

Similarly, mycophenolic acid had a higher degree of 5 in the 
multi-layered graph generated by RWR for the moderate disease 
state as compared to a degree of 4 in both the multi-layered graph 
generated by the RWR analysis on the mild disease state and the 
multi-layered graph generated by the RWR analysis on the severe 
disease state with a corresponding high betweenness score of 
0.009 and a closeness score of 0.4739, also suggesting it might 
have potential utility for the moderate disease state.

In Table 5, the drugs were ranked according to the node degree 
(starting from the mild disease state) with the corresponding 
betweenness and closeness scores. There are variations in the 
betweenness and closeness scores. For instance, drugs with higher 
degree scores for specific disease states have high betweenness 
and closeness scores for that disease state. As shown in Table 5, 
three drugs (dexamethasone, tocilizumab, and sarilumab) had 
betweenness scores between 0.024 and 0.64 in at least one dis-
ease state. The remaining had a betweenness score between 0.0 
and 0.007 across all disease states. Additionally, all drugs in Table 5 
had a closeness score between 0.3 and 0.63. 

Next, we evaluated the contribution of other molecular fea-
tures in the networks. To begin with, beyond the central influence 
of top-ranked drugs (dexamethasone, tocilizumab, and sarilumab) 
in the multi-layered graph generated from the RWR analysis on 
the mild disease state (Figure 3A), three key inflammatory-related 
features, C-C motif chemokine ligand 2 (CCL2), C-C motif chemok-
ine ligand 4 (CCL4), and negative elongation factor complex mem-
ber C/D (NELFCD), formed distinct subnetworks, acting as crucial 
hubs that connected seed nodes and promising candidates for 
drug repurposing. In mild Covid-19 cases, CCL2 helps recruit 
monocytes and macrophages, which are essential for fighting the 
virus as compared to excessive immune cell recruitment in severe 
disease states.66,67 Also, CCL4 levels in mild disease states help 
recruit necessary immune cells to fight the virus.68 Thus, using 
drug repurposing candidates that could influence the recruitment 
of immune cells in mild disease states could be more appropriate, 
acknowledging the fact that the development of clinical Covid-19 
involves cell activation such as dysfunctional mast cell activa-
tion.69 From the predicted drugs, histamine is a biogenic amine 
known to attract and activate immune cells, particularly mast 

Table 5: Node Degree, Betweenness, and Closeness Centrality Measures for the Drug Repurposing Candidates Predicted Using the 
Hypothesis-driven Approach.

Drug Name  

Degree, 
Mild 
State  

Degree, 
Moderate 
State  

Degree, 
Severe 
State  

Betweenness, 
Mild State  

Betweenness, 
Moderate 
State  

Betweenness, 
Severe State  

Closeness, 
Mild State  

Closeness, 
Moderate 
State  

Closeness, 
Severe 
State

Dexamethasone   1633   1632   1633   0.6282   0.5881   0.6293   0.6355   0.6233   0.6228
Tocilizumab   830   829   830   0.11436   0.1008   0.1103   0.4643   0.4482   0.4571
Sarilumab   469   469   469   0.0286   0.0246   0.0283   0.4432   0.4289   0.4373
Sirolimus   7   8   6   0.0063   0.0068   0.0054   0.4831   0.4889   0.4512
Vitamin C   6   6   4   0.0047   0.0034   0.0004   0.4860   0.4525   0.4460
Cyclosporine   5   6   4   0.0007   0.0014   0.0004   0.4769   0.4832   0.4460
Dactinomycin   5   4   4   0.0007   0.0003   0.0004   0.4769   0.4367   0.4460
Paclitaxel   5   5   4   0.0007   0.0009   0.0004   0.4769   0.4739   0.4460
Simvastatin   5   5   4   0.0007   0.0009   0.0004   0.4769   0.4739   0.4460
Hydrocortisone   4   5   4   0.0004   0.0007   0.0004   0.4528   0.4454   0.4460
Zinc   4   5   4   0.0005   0.0011   0.0005   0.3652   0.3903   0.3637
Indomethacin   4   5   4   0.0004   0.0009   0.0004   0.4528   0.4739   0.4460
Mycophenolic acid   4   5   4   0.0004   0.0009   0.0004   0.4528   0.4739   0.4460
Doxorubicin   4   5   4   0.0004   0.0009   0.0004   0.4528   0.4739   0.4460
Methotrexate   4   5   4   0.0004   0.0007   0.0004   0.4528   0.4454   0.4460
Morphine   4   4   3   0.0005   0.0007   0.0003   0.4768   0.4738   0.4459
Curcumin   3   4   3   0.0   0.0001   0.0004   0.4644   0.4716   0.4483
Metformin   3   3   2   0.0   0.0   0.0   0.4644   0.4355   0.4354
Histamine   3   3   1   0.0002   0.0   0.0   0.3866   0.3705   0.3601
Dopamine   1   1   1   0.0   0.0   0.0   0.3615   0.3584   0.3601
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Figure 3. (A) Graph representation of the interaction between drugs (green nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red 
nodes), and biological process (pink nodes) as observed from predicting candidate drugs using existing knowledge graphs, mild disease state-specific omics 
graphs (DSOGs), and hypothesis-driven seeds. The graph reveals distinct subnetworks formed by hubs CCL2, CCL4, and NELFCD demonstrating extensive 
interactions with drug candidates, seed nodes (IL6 and IL6R), and other molecular features. (B) Graph representation of the interaction between drugs 
(green nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red nodes), and biological process (pink nodes) as observed from predicting 
candidate drugs using existing knowledge graphs, moderate DSOGs, and hypothesis-driven seeds. The graph reveals distinct subnetworks formed by hubs 
NFKB1, IL10, and NELFCD demonstrating extensive interactions with drug candidates, seed nodes (IL6 and IL6R), and other molecular features. (C) Graph 
representation of the interaction between drugs (green nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red nodes), and biologi-
cal process (pink nodes) as observed from predicting candidate drugs using existing knowledge graphs, severe DSOGs, and hypothesis-driven seeds. The 
graph reveals distinct subnetworks formed by hubs CXCL1, CCL4, and JAK2 demonstrating extensive interactions with drug candidates, seed nodes (IL6 
and IL6R), and other molecular features. Yellow edges represent drug–protein and drug–transcript pairwise interactions. Red edges represent biological 
process–protein interactions and biological process–transcript interactions. Green edges represent protein–protein interactions. Black edges represent 
transcript–transcript interactions and protein–transcript interactions. Blue edges represent drug–drug interactions. Light blue edges represent biological 
process–biological process interactions and biological process–pathway interactions. The graphs were generated by defining filtering criteria based on the 
node degree between 4 and 1633 in Cytoscape. CCL2, C-C motif chemokine ligand 2; CXCL1, C-X-C motif chemokine ligand 1; IL6, interleukin 6; IL6R, inter-
leukin 6 receptor; JAK2, Janus kinase 2; NFKB1, nuclear factor kappa B subunit 1; NELFCD, negative elongation factor complex member C/D.

cells, basophils, neutrophils, and certain T cells, through specific 
histamine receptors.70 Histamine can stimulate mast cell degran-
ulation, leading to the release of CCL4 and CCL2 among other 
inflammatory mediators.71,72 This suggests a potential indirect 
link between histamine and these chemokines in inflammatory 
processes. Paclitaxel is known to modulate the immune system 
in various ways, including (i) promoting the migration of T cells 
and other immune cells into tumors, (ii) enhancing the activity 
of antigen-presenting cells, vital for activating T cells, and (iii) 
modulating the expression of immune-related genes that influ-
ence inflammation and immune responses. Paclitaxel induces 
the release of cytokines like tumor necrosis factor (TNF) and IL6 

and chemokines like CCL2 and might, therefore, help control viral 
infection by stimulating immune cell recruitment and boosting 
immune responses.73 Metformin might enhance the activity of 
certain immune cells like macrophages and natural killer cells, 
potentially aiding in viral clearance.74,75 Metformin activates 5’ 
adenosine monophosphate-activated protein kinase (AMPK), 
a cellular energy sensor that regulates various metabolic and 
inflammatory processes.76 AMPK activation can downregulate 
pro-inflammatory signaling pathways and reduce the production 
of inflammatory mediators like TNF and IL6.77

The NELFCD, as part of NELF, regulates RNA polymerase II paus-
ing, potentially influencing viral RNA synthesis during viral genome 
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replication.78 This suggests that drugs with the potential to inhibit 
SARS-CoV-2 replication could be appropriate for repurposing. Such 
drugs would include, for example, dactinomycin which, besides 
having immune-modulatory properties, also inhibits viral genome 
replication.79,80

Analysis of the multi-layered graph generated by the RWR anal-
ysis during predictions for the moderate disease state identified 
NELFCD, nuclear factor kappa B subunit 1 (NFKB1), and IL10 as hubs 
influencing the network based on their high connectivity, forming 
both direct and indirect pathways between the seed nodes and 
the top candidates for drug repurposing (Figure 3B). NFKB1 acti-
vates genes encoding pro-inflammatory cytokines, chemokines, 
and adhesion molecules, orchestrating the body’s initial response 
to viral infection and enhancing the severity of Covid-19 symp-
toms.81,82 Thus, moderating NFKB1 activity could mitigate cytokine 
storms and improve outcomes. Corticosteroids like dexametha-
sone can be used in severe Covid-19 to suppress NFKB1 activity 
and reduce inflammation. It is, however, important to note that 
while dampening NFKB1 can be beneficial, completely suppressing 
it could impair the body’s ability to fight the virus. Thus, finding 
the right balance remains crucial. IL10 is a natural anti-inflamma-
tory cytokine, acting as a brake on the immune response. It helps 
control excessive inflammation, as disease severity progresses, 
particularly in moderate disease states, to prevent tissue damage. 
However, overactive IL10 production in moderate Covid-19 cases 
can dampen the immune system’s ability to fight the virus, poten-
tially prolonging the infection and allowing persistent viral repli-
cation. From our results (Figure 3B), drugs with the potential to 
modulate IL10 activity could be beneficial during moderate disease 
states to balance the suppression of excessive inflammation with 
optimal immune functioning. For instance, sirolimus inhibits the 
mammalian target of the rapamycin (mTOR) pathway, which can 
indirectly suppress IL10 production by limiting signal transducer 
and activator of transcription 3 (STAT3) signaling.83,84 Also, it can 
dampen the activation of certain immune cells like T cells, which 
may indirectly decrease IL10 production. Additionally, sirolimus 
promotes the differentiation and expansion of regulatory T cells, 
a subset of T cells that naturally suppress inflammation and can 
promote IL10 production as part of their suppressive function.85

In the multi-layered graph generated by the RWR analysis during 
predictions for the severe disease state (Figure 3C), we observed 
key inflammation-related features like C-X-C motif chemokine 
ligand 1 (CXCL1), CCL4, and Janus kinase 2 (JAK2) to establish sub-
networks which included both direct and indirect interactions with 
the seed nodes and top-ranked drug candidates (Figure 3C). JAK2, a 
signaling molecule inside immune cells, expresses both inflamma-
tory and anti-inflammatory effects during Covid-19. For its inflam-
matory role, JAK2 activates certain signaling pathways, including 
the JAK2/STAT3 pathway, that trigger inflammatory responses in 
the lungs, which may help fight viral infections.86 For its anti-in-
flammatory role, JAK2 also activates pathways promoting tissue 
repair and regeneration. Thus, drug repurposing candidates with 
the potential to influence JAK2 signaling may represent an effec-
tive therapeutic strategy for controlling the disease.87 For instance, 
IL6 binds to soluble and transmembrane IL6R and the resultant 

complex induces homodimerization of gp130, leading to activa-
tion of JAK2.88 This suggests that sarilumab and tocilizumab tar-
geting the IL6R indirectly activate JAK2 downstream by limiting the 
IL6-mediated signaling pathway.88,89 Sirolimus targeting an mTOR 
pathway connected to JAK2 can be appropriate. Increased levels 
of CXCL1 and CCL4 have been associated with severe disease and 
hyperinflammatory states, suggesting a potential role in Covid-19 
disease progression.67,90 In general, the drug repurposing candi-
dates (Table 4) with anti-inflammatory activities, immunomodu-
latory activities, and viral replication inhibitory activities have the 
best potential to manage excessive inflammation and limit viral 
persistence during the severe disease state. We further observed 
from the shortest path analysis how these molecular features act 
as mediators connecting the drug repurposing candidates to the 
seed nodes across the mild, moderate, and severe disease states 
(Supplementary File 4).

Predicting Candidate Drugs Using Existing Knowledge Graphs, 
DSOGs, and Data-driven Seeds

To investigate the prediction of drugs that might be differentially 
applicable to treating different Covid-19 disease states, we used 
a data-driven approach to identify seeds by computing an inte-
grated node centrality metric score leveraging the node degree, 
closeness, betweenness, and eigenvector centrality metrics (see 
Materials and Methods and Supplementary Table 3).

In the transcriptomics layer, we identified STAT1 as a seed 
node. STAT1 is known to be involved in immune responses and 
antiviral activity67 and is reported to be upregulated in mild and 
severe Covid-19 cases, with the phosphorylation of the gene asso-
ciated with both the upregulation of ACE2 expression and the 
development of severe disease states.91,92 In the proteomic layer, 
superoxide dismutase 2 (SOD2) was identified as a seed node. 
SOD2 is an essential antioxidant enzyme that protects cells from 
superoxide radical anions which are known to be significantly 
under-expressed in the plasma93 and lung cells of severe Covid-19 
patients.94 In the metabolomics layer, 3-hydroxyoctanoate was 
identified as a seed node. This metabolite is generated during 
medium-chain fatty acid oxidation and serves as a marker for 
primary defects in beta-hydroxy fatty acid metabolism. It is also 
affiliated with essential pathways such as those responsible for 
macrophage activation and platelet aggregation, with increases in 
3-hydroxyoctanoate concentrations being associated with asymp-
tomatic Covid-19 infections.95 In the lipidomics layer, we identified 
“unknown_mz_815.61548_+_RT_27.063,” an uncharacterized 
lipid associated with disease severity, as a seed node.

Using these seed nodes for the RWR analysis across the vari-
ous disease states, we identified several potential drug repurpos-
ing candidates (Table 6) including “natural compounds” (such as 
glutathione and curcumin) and inhibitors of signal transduction 
pathways of protein kinases and cell proliferation (tyrosine, his-
tone deacetylase, and methyltransferase). The results revealed 
the same drug repurposing candidates across the various disease 
states (Table 6). However, network topology analysis revealed 
differences between the multi-layered graphs generated by the 
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RWR analysis (Figure 4A–C). Specifically, these differences were 
observed in the connectivity of the drug repurposing candidates 
with the corresponding node degree, betweenness centrality, and 
closeness centrality scores (Table 7). This provides more insights 
into the most appropriate drug repurposing candidates for the 
different disease states. For instance, curcumin had a higher 
degree of 1076 in the multi-layered graph generated by the RWR 
analysis on the mild disease state as compared to a degree of 
4 in the multi-layered graph generated by the RWR analysis on 
the moderate disease state and a degree of 2 in the multi-lay-
ered graphs generated by the RWR analysis on the severe disease 

state. Podofilox had a higher degree of 478 in the multi-layered 
graph generated by the RWR analysis on the severe disease state 
as compared to a degree of 2 for both multi-layered graphs gener-
ated by the RWR analysis on the mild and moderate disease states. 
Therefore, whereas curcumin is an appropriate drug repurposing 
candidate with potential utility during mild Covid-19, podofilox is 
an appropriate drug repurposing candidate with potential utility 
during severe Covid-19. Furthermore, vinblastine showed a high 
degree of 1905 in the multi-layered graph generated by the RWR 
analysis on the moderate disease state and a degree of 1378 in 
the multi-layered graph generated by the RWR analysis on the 

Figure 4. (A) Graph representation of the interaction between drugs (green nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red 
nodes), lipids (blue nodes), and biological processes and pathways (pink nodes) as observed from predicting candidate drugs using existing knowledge 
graphs, mild disease state-specific omics graphs (DSOGs), and data-driven seeds. The graph reveals distinct subnetworks formed by hub CCL4, demon-
strating extensive interactions with drug candidates and other molecular features including seed nodes (STAT1 and SOD2). (B) Graph representation of the 
interaction between drugs (green nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red nodes), lipids (blue nodes), and biological pro-
cesses and pathways (pink nodes) as observed from predicting candidate drugs using existing knowledge graphs, moderate DSOGs, and data-driven seeds. 
The graph reveals distinct subnetworks formed by the hub HGF, demonstrating extensive interactions with drug candidates and other molecular features 
including seed nodes (STAT1 and SOD2), as well as a subnetwork formed among lipids. (C) Graph representation of the interaction between drugs (green 
nodes), proteins (yellow nodes), transcripts (gray nodes), metabolites (red nodes), lipids (blue nodes), and biological processes and pathways (pink nodes) 
as observed from predicting candidate drugs using existing knowledge graphs, severe DSOGs, and data-driven seeds. The graph reveals distinct subnetworks 
formed by the hub HGF, demonstrating extensive interactions with drug candidates and other molecular features including seed nodes (STAT1 and SOD2), as 
well as a subnetwork formed among lipids. Yellow edges represent drug–protein and drug–transcript pairwise interactions. Red edges represent biological 
process–protein interactions and biological process–transcript interactions. Pink edges represent pairwise interactions between lipids. Green edges repre-
sent protein–protein interactions. Black edges represent transcript–transcript interactions and protein–transcript interactions. Dark blue edges represent 
drug–drug interactions. Light blue edges represent biological process–biological process interactions and biological process–pathway interactions. The 
graphs were generated by defining filtering criteria based on the node degree between 4 and 1633 in Cytoscape. CCL4, C-C motif chemokine ligand 4; HGF, 
hepatocyte growth factor; SOD2, superoxide dismutase 2; STAT1, signal transducer and activator of transcription 1.
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severe disease state as compared to a degree of 4 in the mul-
ti-layered graph from the RWR analysis on the mild disease state. 
This suggests that vinblastine might be most effective in tackling 
advanced disease stages. Also, crizotinib showed a high degree of 
1919 in the multi-layered graph generated by the RWR analysis on 
the mild disease state and a degree of 1947 in the multi-layered 
graph generated by the RWR analysis on the moderate state as 
compared to a degree of 2 in the multi-layered graph from the 
RWR analysis on the severe disease state; this indicates that it 
might be most appropriate for treatment of the mild and mod-
erate stages of Covid-19 (Table 7). Similarly, glutathione showed 
a high degree of 212 in the multi-layered graph generated by the 
RWR analysis on the mild disease state and a degree of 234 in the 
multi-layered graph generated by the RWR analysis on the moder-
ate disease state as compared to a degree of 118 in the multi-lay-
ered graph from the RWR analysis on the severe disease state; 
this suggests that it can be a promising drug repurposing candi-
date for the mild and moderate disease states. Noticeably, nodes 
with higher degree scores (Table  7) have higher betweenness 
and closeness scores revealing how often these nodes lie on the 
shortest paths between other nodes in the network and mediate 
how quickly information can reach other disease-related features 
from a candidate drug (Supplementary File 5). Such nodes have 
high relevance within biological systems and, besides their spe-
cific biological activities, might also facilitate communication and 
synergy between biological pathways, making them key targets 
for the management of the disease.

Analysis of the multi-layered graphs generated by the RWR 
analysis revealed several features that establish subnetworks 
(Figure 4). Specifically, we observed the CCL4 to establish sub-
network in the mild disease state and hepatocyte growth factor 

(HGF) to establish subnetworks in both the moderate and severe 
disease states. HGF expresses anti-inflammatory properties and 
plays a complex and multifaceted role in the battle against Covid-
19.96 While it initially acts as a crucial player in lung tissue repair 
following viral damage, its activity can also contribute to exces-
sive inflammation if not properly regulated.96 HGF can activate 
certain signaling pathways that promote inflammation in mod-
erate to severe cases. On the other hand, upregulation of HGF 
represents a robust counter-regulatory mechanism employed 
by the host immune response to counteract pro-inflammatory 
cytokines.

Drug Prediction Robustness Analysis

The three highest-ranked candidate drugs yielded by both the 
hypothesis-driven approach (dexamethasone, sarilumab, and 
tocilizumab) and the data-driven approach (glutathione, crizotinib, 
and curcumin) are all known to be efficacious in controlling moder-
ate to severe Covid-19. However, the high rankings of these drugs 
(based on the measures of proximity) are expected simply because 
their efficacy during moderate to severe Covid-19 treatment has 
been comprehensively reported in the literature up to 2021. These 
reports are reflected in the Covid-19 KG layers of our networks.

In this section, we removed direct interactions between the 
top three predicted potential drug candidates identified using 
the hypothesis-driven and data-driven approaches and other fea-
tures (such as drugs, proteins, and transcripts) to assess the influ-
ence of these interactions and features on the drug predictions. 
We assessed the robustness of the drug predictions in both the 
hypothesis-driven and data-driven approaches by repeating the 
RWR analysis (as described in the Materials and Methods section) 

Table 7: Node Degree, Betweenness, and Closeness Centrality Measures for the Drug Repurposing Candidates Predicted Using the 
Data-driven Approach.

Drug Name  

Degree, 
Mild 
State  

Degree, 
Moderate 
State  

Degree, 
Severe 
State  

Betweenness, 
Mild State  

Betweenness, 
Moderate 
State  

Betweenness, 
Severe State  

Closeness, 
Mild State  

Closeness, 
Moderate 
State  

Closeness, 
Severe 
State

Crizotinib   1919   1947   2   0.5147   0.4171   0.0025   0.5478   0.5297   0.3987
Curcumin   1076   4   2   0.3281   0.0005   0.0   0.5389   0.4317   0.3983
Glutathione   212   234   118   0.0397   0.0350   0.0439   0.3532   0.3611   0.3657
Vinblastine   4   1905   1378   0.0009   0.4787   0.6440   0.4364   0.5639   0.5556
Acetylcysteine   2   2   1   0.0   0.0   0.0   0.3106   0.3028   0.2743
Calcipotriol   2   2   1   0.0   0.0   0.0   0.3178   0.3186   0.3370
Etoposide   2   2   2   0.0   0.0   0.0001   0.3987   0.3993   0.3715
Fludarabine   2   3   2   0.0   0.0   0.0   0.3178   0.3902   0.3983
Iron   2   2   1   0.0   0.0   0.0   0.3106   0.3028   0.2743
Mebendazole   2   2   1   0.0   0.0   0.0   0.3178   0.3186   0.3370
Omacetaxine   2   2   1   0.0   0.0   0.0   0.2438   0.2466   0.2460
Podofilox   2   2   478   0.0   0.0   0.1438   0.3178   0.31863   0.4092
Teniposide   2   2   2   0.0   0.0   0.0001   0.3987   0.3993   0.3715
Thimerosal   2   2   1   0.0   0.0   0.0   0.3106   0.3028   0.2743
Valine   2   2   1   0.0   0.0   0.0   0.3106   0.3028   0.2743
Vorinostat   2   4   2   0.0009   0.0005   0.0   0.4199   0.4317   0.3983
Carglumic acid   1   1   1   0.0   0.0   0.0   0.2610   0.2653   0.2678
L-glutamine   1   1   1   0.0   0.0   0.0   0.2610   0.2653   0.2678
Threonine   1   2   1   0.0   0.0   0.0   0.3106   0.3028   0.2743
Pregabalin   1   1   1   0.0   0.0   0.0   0.3539   0.3463   0.3463
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after individually and collectively removing direct interactions 
associated with the three highest-ranked candidate drugs and 
examining changes in the drug rankings.

These analyses yielded a relatively consistent trend 
(Supplementary Files 1 and 2): Drugs such as sirolimus, histamine, 
cyclosporine, and vorinostat that initially ranked below the drugs 
that were removed tended to achieve higher rankings following the 
removal of the initial top-ranked drug candidates. The measure of 
proximity of the drugs that attained elevated rankings varied from 
one drug removal experiment to the next, but generally increased 
relative to the measure of proximity that the drugs obtained in the 
absence of any exclusions (Supplementary Files 1 and 2).

Furthermore, the drug removal analyses revealed additional 
candidate drugs that were not apparent in the absence of drug 
removal. For instance, with the hypothesis-driven approach, when 
we removed dexamethasone and tocilizumab simultaneously 
for each disease state, drugs like dinoprostone and perhexiline 
emerged among the top drug candidates across the mild, mod-
erate, and severe disease states (Supplementary File 1). Similarly, 
when we removed sarilumab, we observed ketamine, acetylsali-
cylic acid (aspirin), and menadione in the top 20. Concurring with 
the individual drug removal, when dexamethasone, tocilizumab, 
and sarilumab were collectively removed, we observed that dino-
prostone, perhexiline, menadione, iron, and ketamine all entered 
the top 20 for the disease states.

When we excluded the top-ranked drug candidates that were 
revealed by the data-driven approach (glutathione, crizotinib, and 
curcumin), we observed similar ranking score changes to those 
seen with the drug candidates identified by the hypothesis-driven 
approach. For example, when glutathione was removed, the meas-
ure of proximity of both L-glutamine and carglumic acid dropped 
substantially (from 0.0000945 and 0.0000942 to 0.0000022 and 
0.0000594, respectively) resulting in lower rankings, whereas 
thimerosal disappeared completely (Supplementary File 2). This 
observation could be partly because (i) thimerosal interacted with 
nodes that established connections with glutathione and crizotinib 
and (2) thimerosal established direct interactions with glutathione 
and crizotinib.

When glutathione, crizotinib, and curcumin were collectively 
removed, several notable drug candidates surfaced among the top hits, 
including penicillamine, pregabalin, dexamethasone, midostaurin, 
and treprostinil (Supplementary File 2). Similar to when crizotinib 
and curcumin were individually removed, the measure of proximity 
of L-glutamine and carglumic acid increased from 0.0000945 and 
0.0000942 to 0.0001621 and 0.0001629 for crizotinib removal and 
from 0.0000945 and 0.0000942 to 0.0001306 and 0.0001308 for 
curcumin removal, respectively (Supplementary File 2).

In Silico Validation of Top Hit Candidate Drugs

To validate the Covid-19 drug predictions, we aimed to inves-
tigate how enriched the potential candidate drugs are as anti-
Covid drugs in other databases. Specifically, we conducted RWR 
analyses using hypothesis-driven seeds on drug data extracted 
from DrugCombDB (version 2.0), a drug resource database.97 We 

implemented these analyses to investigate whether we were able 
to predict known efficacious Covid-19 drugs (Table 4). Among 
the top-ranked drugs (Supplementary File 3) revealed by these 
analyses were dexamethasone (rank 1), simvastatin (rank 7), 
cyclosporine (rank 8), hydrocortisone (rank 9), paclitaxel (rank 11), 
indomethacin (rank 15), and methotrexate (rank 16).

DISCUSSION

In this work, we employed computational analyses for the predic-
tion of drug repurposing candidates tailored for disease state-spe-
cific Covid-19 treatment. Leveraging a combination of knowledge 
graphs (DRKG and Covid-19 KG), along with Covid-19 DSOGs gen-
erated from experimental proteomics, transcriptomics, metabo-
lomics, and lipidomics data, enabled the identification of various 
drug repurposing candidates that could potentially be usable as 
treatments for specific Covid-19 disease states. In our study, we 
recognize the importance of edge information in characterizing the 
interactions between nodes as described in Supplementary Tables 
1 and 2. Within the framework of the RWR algorithm, each layer 
is made up of interactions of specific edge types, such as drug–
drug, drug–protein, and drug–transcript interactions, which can 
offer unique insights into the connectivity and relationships within 
the network, including the potential indirect associations between 
nodes and their impact on network dynamics. We implemented 
MultiXrank, a random walk algorithm capable of handling multiple 
multi-layered graphs and integrated drug data to predict candidate 
drugs for the mild, moderate, and severe Covid-19 disease states. 
The analysis resulted in the generation of multi-layered graphs that 
described the exploration of seed nodes across different DSOGs. 
One of the key advantages of the RWR analysis compared to the 
naïve first neighbor method is its ability to explore distant nodes 
in multi-layered graphs beyond just the immediate neighbors of a 
given seed node. The RWR analysis enables us to “restart” random 
walks from the seed nodes, traverse the network iteratively, and 
assign restart probabilities to nodes based on their likelihood of 
being visited. By incorporating restart probabilities and iteratively 
exploring the network based on random walks, RWR can uncover 
connections to nodes that may not be directly adjacent to the seed 
but are still given network connectivity and influence.

Although the hypothesis-driven and data-driven methodol-
ogies differed, the findings from both approaches have contrib-
uted to prioritizing potential drug repurposing candidates for 
mild, moderate, and severe Covid-19. We recommend considering 
both data- and hypothesis-driven approaches in studies utilizing 
multiple-source omics datasets. The hypothesis-driven approach 
revealed mostly drugs known to suppress the immune response 
and reduce inflammation, including those promoting IL6 produc-
tion. In contrast, the data-driven approach revealed more diverse 
drugs including “natural compounds” (such as glutathione and 
curcumin) and inhibitors of signal transduction pathways of pro-
tein kinases and cell proliferation (tyrosine, histone deacetylase, 
and methyltransferase). The random walk analysis using both the 
hypothesis-driven and data-driven approaches yielded distinct 
multi-layered graphs (Figures 3 and 4) characterized by different 
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hubs and interactions with the candidate drugs, highlighting the 
unique perspectives offered by each method. With these differ-
ences, a consistent finding emerged from both approaches: Cross-
layer interactions between omics features and drug repurposing 
candidates play a role in the dynamics of the drugs at the different 
disease states.

Some of the drugs identified through both hypothesis-driven 
and data-driven approaches are being, or have already been, 
tested in various clinical trials to assess their efficacy and effective-
ness in the treatment of Covid-19. For instance, from the hypoth-
esis-driven approach, corticosteroids such as dexamethasone and 
hydrocortisone have demonstrated an association with lower 
28-day all-cause mortality in critically ill patients with Covid-19,98 
including mycophenolic acid, which has been investigated and vali-
dated to reduce mortality and hospital stays in patients with mod-
erate to severe Covid-19,99 indomethacin, which has been found 
in clinical trials to be safe and effective for treating mild and mod-
erate Covid-19 cases,63 and the diabetes medication metformin, 
which exhibits potential in reducing prolonged illness by inhibit-
ing virus replication when administered during the acute phase 
of Covid-19.100 From the data-driven approach, the antihelmin-
thic drug mebendazole enhanced innate immune responses and 
restored inflammation to normal levels in symptomatic non-hos-
pitalized Covid-19 patients during a recent clinical trial.101 Also, 
etoposide has been investigated for its potential to treat severe 
disease, albeit with observed adverse events that warrant further 
investigation.102

In general, immunosuppressive drugs might have a beneficial 
effect in the moderate to severe phase of Covid-19 because it is 
in this phase dysregulated pro-inflammatory immune responses 
can precipitate tissue damage and result in acute respiratory 
distress syndrome, organ failure, and mortality.103 On the other 
hand, drugs predicted using the data-driven approach either had 
antioxidant properties (such as glutathione, and curcumin) or 
were inhibitors of tyrosine kinase, histone deacetylase, methyl-
transferase, and protein synthesis (Table 7). The antioxidants can 
protect immune system cells and those directly targeted by SARS-
CoV-2 from oxidative stress. For example, glutathione is an anti-
oxidant assumed to have a vital role in maintaining the balance 
of reactive oxygen species (ROS) and aids in diverse cellular pro-
cesses including immune responses.104,105 Notably, oxidative stress 
reflects an imbalance between ROS generation and antioxidation 
mechanisms106 and plays an important role in Covid-19 onset, pro-
gression, and severity,107–109 possibly by exacerbating inflammation 
and tissue damage.110 This, therefore, suggests that glutathione’s 
capability to counteract ROS and diminish oxidative stress holds 
promise for mitigating some of the adverse effects inflicted by the 
virus.104 Glutathione and SOD2 bring unique strengths such that 
their combined efforts provide a multi-layered defense against 
oxidative stress and its harmful consequences. By neutralizing 
superoxide radicals, SOD2 sets the stage for glutathione to effi-
ciently handle other free radicals and detoxify the cell. Also, given 
the aggressive inflammatory response and the production of 
cytokines occurring during severe Covid-19 disease states, some 
known inhibitors of receptor tyrosine kinases and cell proliferation, 

such as crizotinib and vorinostat, have been investigated as Covid-
19 treatments.111,112 For instance, a recent study has shown that 
histone deacetylase inhibitors modulate immune responses in 
stimulated monocytes,112 whereas tyrosine kinase inhibitors have 
the potential to reverse pulmonary insufficiency because of their 
anti-inflammatory activities, cytokine suppression activities, or 
antifibrotic activities.111

Overall, the prioritized drug repurposing candidates (Tables 3, 
4, and 7) exhibit the potential to target a multitude of specific 
biological pathways and gene ontology processes that are associ-
ated with Covid-19 outcomes. Among these candidates are those 
that have shown promise in treating other diseases or conditions 
such as cancer, malaria, viral infections, and obstructive pulmo-
nary disease. For instance, glutathione shows activity against 
HIV, influenza A, and hepatitis C by inhibiting viral replication and 
modulating immune response.113 Curcumin shows activity against 
HIV, influenza A, hepatitis C, and dengue virus by inhibiting viral 
entry and replication.114 Vorinostat shows activity against HIV by 
inhibiting viral replication and disrupting HIV-1 latency in patients 
on antiretroviral therapy.115 Consequently, there is the possibility 
of repurposing these drugs to combat Covid-19 and other virus-
induced conditions.

The approach implemented in this study is relevant to iden-
tifying drugs that warrant further exploration. Our methodology 
leading to the findings has been controlled through leveraging 
a data-driven approach complemented by a hypothesis-driven 
approach to minimize bias and ensure the robustness of findings 
effectively. However, validation procedures on interactome data-
sets such as (i) training a model to predict with which targets a 
previously unseen drug will interact and (ii) finding new putative 
interactions between drugs and other omics data types already in 
the datasets, can be implemented to reduce bias.116 It is important 
to mention that some of the drugs that were highly ranked in our 
hypothesis-driven and data-driven analyses as potential Covid-
19 treatments have not, to our knowledge, been tested before 
in the context of Covid-19 treatment. These included podofilox, 
calcipotriol, vinblastine, etoposide, and carglumic acid identified 
from the data-driven approach and paclitaxel identified from the 
hypothesis-driven approach. The shortest path analysis revealed 
molecular features that were close to the drugs (Supplementary 
Files 4 and 5). Considering the drugs generated from the data-
driven approach, podofilox, for example, inhibits topoisomerase 
I by stabilizing the covalent complex formed between the enzyme 
and a broken DNA strand.117 This prevents religation, causing DNA 
damage and eventually cell death.117 Podofilox is known to down-
regulate SOD2 expression in cancer cells and indirectly modulate 
SOD2 activity, impacting ROS levels and influencing cell survival 
and death. The ROS impact on Covid-19 progression107–109 sug-
gests that podofilox may have a potential role in Covid-19 treat-
ment. Also, etoposide possesses an immunosuppressive effect. 
While suppressing certain immune cells, etoposide may also 
selectively eliminate abnormal or activated T cells involved in the 
inflammatory process.118 This can be beneficial in some inflamma-
tory conditions, potentially mitigating immune-mediated dam-
age. Additionally, etoposide has the potential to influence the 
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production of certain cytokines and signaling molecules involved 
in immune communication.119 In the context of Covid-19, this 
could have both pro-inflammatory and anti-inflammatory effects. 
Vinblastine can modulate the production of certain cytokines, sig-
naling molecules that orchestrate immune responses.120

Furthermore, the analysis conducted indicated that ritonavir, 
an HIV protease inhibitor utilized in combination with nirmatrelvir 
in the potent COVID-19 treatment paxlovid, was assigned a lower 
ranking in our data-driven analysis. This may be attributed to the 
characteristics of the exploited knowledge graphs that contained 
limited information about the impacts of ritonavir on the tran-
scriptomics, proteomics, lipidomics, and metabolomics of human 
cells. As a result, the topology of the networks that we used was 
biased in favor of ranking better-researched compounds like dex-
amethasone and tocilizumab. In our analysis, we did not identify 
nirmatrelvir among the ranked drug candidates either. This obser-
vation is partly attributed to the choice of seeds for the RWR anal-
yses and also to the fact we focus here on the omics networks 
from the host because nirmatrelvir targets the viral genome (poly-
protein 1ab) and could, therefore, not be captured by the network 
exploration.

This analysis, drawing on diverse datasets, has provided 
valuable insights that contribute to ongoing efforts to combat 
endemic Covid-19 and the long-term health consequences of 
repeated SARS-CoV-2 infections. While some of the identified 
drugs have been implemented in disease management, several 
promising candidates are yet to be investigated for Covid-19 
disease treatment and require experimental validation which is 
beyond the scope of this study. However, the predictions provide 
a starting point for further experimental validation and clinical 
investigations. Ensuring the safety and efficacy of new Covid-19 
drugs requires rigorous experimental and clinical testing and val-
idation. In vitro analyses and clinical trials must be conducted to 
determine the cytotoxicity, optimal dosages, administration pro-
tocols, and potential interactions with other medications. These 
experiments would ultimately be needed to provide actual proof 
that many of the less well-studied drug repurposing candidates 
that we have identified could indeed be used to effectively treat 
Covid-19. Importantly, the algorithmic framework implemented 
in this study can be translated to other diseases to investigate 
relevant drug repurposing candidates and to explore the dynam-
ics among drugs and multi-omics features in a multi-layered 
network. We recommend considering both data- and hypothe-
sis-driven approaches in studies utilizing multiple-source omics 
datasets.

LIMITATIONS

Considering the limitations of the DRKG and Covid-19 KG data, 
which predate large-scale drug evaluations, incorporating more 
recent drug information is crucial for future studies. While this 
study identified potential drugs for acute Covid-19 treatment, 
it did not address long Covid or the impact of comorbidities 
and disease severity. Thus, future investigations should explic-
itly explore treatment options for long Covid Furthermore, our 

drug prediction analysis did not account for Covid-19 comorbid-
ities and recommends further studies to refine drug prediction 
analysis specific for mild, moderate, or severe Covid-19-infected 
patients experiencing other infections. Additionally, we acknowl-
edge that incorporating information about pharmacokinetics, 
pharmacodynamics, and drug effects such as activator, or inhib-
itor, status or details on drug synergy could provide a more 
comprehensive understanding of the therapeutic implications. 
To maximize the potential of our approach, future work should 
incorporate pharmacokinetics, pharmacodynamics, drug effect 
information, and drug synergy analysis. By systematically eval-
uating how the therapeutic activities of different drugs might 
combine, we can identify and prioritize the most promising 
combination therapies for further testing and development in 
the fight against Covid-19. While we have not used dynamic net-
works in this study, we compared static networks in the mild, 
moderate, and severe phases of Covid-19 and drew conclusions 
on the drugs that may be effective in each of these phases. We 
did not account for temporal changes such as the dynamic nature 
of biological interactions in the network. We acknowledge this 
limitation and recognize the implications it may have on the rel-
evance of the results, especially in scenarios where temporal 
dynamics may play a critical role. We recommend future studies 
to incorporate temporal changes and time-dependent processes, 
as well as methods to explore time series data and time-depend-
ent processes.121,122

CONCLUSION

This study explored an integrative multi-layered network approach 
to identify drugs for repurposing against Covid-19 disease phases. 
We analyzed multi-omics data (proteomics, transcriptomics, 
metabolomics, and lipidomics) and drug-related data (DRKG and 
Covid-19 KG) using the RWR technique. Notably, we conducted 
RWR analyses in both hypothesis-driven and data-driven manners, 
incorporating information specific to disease severity levels (mild, 
moderate, severe) via dedicated DSOGs. Our multi-layered net-
work approach successfully identified potential drug candidates 
for repurposing against mild, moderate, and severe Covid-19. The 
incorporation of disease state-specific omics data significantly influ-
enced the predicted drug candidates. Both immunosuppressive and 
pathway-targeting mechanisms emerged as potential approaches 
for Covid-19 treatment. 
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