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Abstract

Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of

common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive

differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the

basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly tem-

perate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations

and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus,

responding to climate change will likely require that the quantitative traits of populations again match their environ-

ments. We examine what kind of information is needed for evaluating the potential to respond, and what information

is already available. We review the genetic models related to selection responses, and what is known currently about

the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need

for more modeling to understand specific issues at southern and northern margins. We need new common garden

experiments for less known species. For extensively studied species, new experiments are needed outside the current

ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions

within species and interactions between species deserve more consideration. Despite the long generation times, the

strong background in quantitative genetics and growing genomic resources make forest trees useful species for cli-

mate change research. The greatest adaptive response is expected when populations are large, have high genetic vari-

ability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.
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Introduction

Populations can respond to environmental change

through phenotypic plasticity, by moving to a new area

corresponding to environmental conditions they are

adapted to, by genetically adapting to the new condi-

tions, or by combinations of these responses (Aitken

et al., 2008). Most attention has been paid to range

expansion or contraction (Parmesan, 2006; Chen et al.,

2011), typically using models that assume the species

are genetically homogenous. The potential for genetic

responses has often been neglected, for instance in the

IPCC reports (IPCC, 2001, 2007), even if it is well

known that evolutionary changes, i.e., genetic

responses, have historically accompanied changes in

climate (Davis & Shaw, 2001). Furthermore, it is also

now understood that the rate of adaptation required by
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climate change varies among geographic regions

(Loarie et al., 2009). Modeling work on the potential of

populations and species to respond genetically to recent

climate change is advancing (see Hoffmann & Sgr�o,

2011; Franks & Hoffmann, 2012; Shaw & Etterson, 2012

for recent reviews). The immediate responses via

phenotypic plasticity have also been considered in the

context of climate change (Nicotra et al., 2010).

Here, we examine the importance of and potential

for genetic responses to climate change in forest tree

populations. Trees are ecologically key species in many

terrestrial ecosystems, including boreal and temperate

forests in Europe and North America. Their response to

climate change can substantively impact the global car-

bon cycle. Local adaptation (Kawecki & Ebert, 2004) is

more common in trees than in some other plant species.

Tree species are adapted to the current climate, and

they are thus potentially greatly influenced by the rapid

changes in climate (Savolainen et al., 2007). The long

generation times are a challenge for research, but trees

also provide some advantages for these studies, as

described below.

First, adaptation to climate change will depend on

phenotypic traits relevant in the new environments,

such as timing of growth and drought or cold tolerance.

There is an extraordinary wealth of information on the

quantitative genetics and population differentiation of

trees for these traits, based on 250 years of forestry

common garden experiments, known as provenance

trials (Langlet, 1971; Morgenstern, 1996), and on exten-

sive tree breeding experience.

Second, the demographic history since the last glacial

maximum has been reconstructed for several tree spe-

cies by combining phylogeographic and palynological

approaches with coalescent-based studies of population

demography (Petit et al., 2002; McLachlan et al., 2005;

Cheddadi et al., 2006; Heuertz et al., 2006; Magri et al.,

2006; Soltis et al., 2006; Eckert et al., 2010; Parducci

et al., 2012). Rates of past adaptation of trees to climate

changes can be inferred from these studies (Hendry &

Kinnison, 1999). The increasing knowledge of the

molecular basis of quantitative trait variation (see Neale

& Kremer, 2011 for references) can improve predictive

models (see e.g., Wilczek et al., 2010). This body of

background information allows us to examine the

potential for adaptation in natural conditions better

than in many other organisms. For instance, in butter-

flies, studies of responses to climate change have relied

nearly exclusively on examining molecular marker var-

iation (Hill et al., 2011).

Trees have very long generation times, but they share

population genetic characteristics with other outcross-

ing plants and animals with high levels of gene flow

and large effective population sizes (Petit & Hampe,

2006). Trees are highly fecund, and may rapidly

increase their population sizes. Because they are sessile,

they generally have good tolerance of a range of envi-

ronmental conditions and large plastic responses. There

are ecologically and commercially important trees with

large continuous distributions, such as Picea abies, Pinus

contorta, and P. sylvestris, but also species with small,

fragmented distributions more susceptible to genetic

drift. The dispersal capacity of tree species will play a

crucial role in their potential for adaptation. Hybridiza-

tion between closely related tree species can also influ-

ence their adaptive capacity out of their current range,

as it has been shown in other organisms (Hoffmann &

Sgr�o, 2011; Olson-Manning et al., 2012 and references

therein).

The focus of this review was on predicting evolution-

ary responses, with as much evolutionary, genetic, and

ecological realism as possible. We examine the models

needed for prediction, starting with the simplest mod-

els of evolution in individual populations, and contin-

uing to more complex and more realistic models

involving multiple populations in heterogeneous envi-

ronments. We discuss what data are needed for realistic

prediction of genetic responses, what information is

already available, and what additional information we

need in terms of new models, new data, or new analy-

ses of existing data (Lindner et al., 2010). Quantitative

genetic models of evolutionary response deal with

traits that will confer adaptation to future environ-

ments. While it is not easy to predict what traits will be

most important in the future, it is reasonable to exam-

ine traits related to climate, such as the timing of

growth and reproduction (Rohde & Bhalerao, 2007;

Hänninen & Tanino, 2011) or cold and drought toler-

ance (Niinemets, 2010).

Evolution in one isolated population

A single population: the breeder’s equation

According to the breeder’s equation, the simplest

model governing response to directional selection on a

single trait, the response in a large population with no

gene flow depends on the strength of selection, on the

amount of genetic variation, and its ratio to total pheno-

typic variation (heritability; see Falconer & Mackay,

1996). If there is no genetic variation, any change in

phenotype in a novel environment inducing directional

selection would be due to phenotypic plasticity alone.

Forest tree populations harbor considerable genetic var-

iability in many quantitative traits (Cornelius, 1994;

Morgenstern, 1996; Howe et al., 2003) as well as at the

DNA level (see Fig. 1 and Savolainen & Pyhäjärvi,
2007). While tree breeders can control the intensity of

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1645–1661

1646 F. J . ALBERTO et al.



selection and predict responses in breeding popula-

tions, it is much more difficult to make such predictions

in the wild. Environmental variances will be higher,

and heritabilities generally lower (Conner et al., 2003).

Methods for estimating heritabilities in the wild are

improving because of much better estimates of related-

ness (Ritland, 1996; Sillanpää, 2011), and will be of criti-

cal importance to understanding responses to climate

change.

Assessing the strength of directional selection is a

demanding task, as we do not even know exactly which

traits are most important for fitness, and the longevity

of trees makes lifetime fitness estimates unattainable in

a realistic timeframe. Estimates of directional selection

are available for natural populations (Kingsolver et al.,

2001; Kingsolver & Diamond, 2011), but studies on for-

est trees are lacking. Furthermore, selection is likely to

be variable across environments, years, and life stages.

In natural populations, the traits are also subject not

just to directional selection but also to stabilizing and

disruptive selection, not included in this simplest

model. Thus, for most natural situations, the breeder’s

equation is far from the reality of populations respond-

ing to natural selection.

Temporal variation in selection

Two general classes of quantitative genetic models have

been developed to study the risk of extinction in single

populations: models with a sudden single step-change

in the optimum phenotype (Pease et al., 1989;

Gomulkiewicz & Holt, 1995; Gomulkiewicz & Houle,

2009; Gomulkiewicz et al., 2010), and models with a

continuous change in the optimum phenotype (Lynch

& Lande, 1993; Burger & Lynch, 1995; Bj€orklund et al.,

2009; Chevin et al., 2010). In single step-change models,

extinction occurs as a consequence of decreasing

population size due to selective deaths as the popula-

tion adapts to the change in environment. In the contin-

uous-change models, by contrast, extinction is assumed

to occur when the pace of adaptation lags behind the

rate of change in the optimum phenotype (see Aitken

et al., 2008 for further discussion). There are several

interesting ways in which these models could be

extended to increase biological realism. Most of these

models assume that the strength of selection does not

vary with population density, which is unrealistic for

most forest trees, as competition is likely greatly

reduced at low densities (see Bj€orklund et al., 2009 for a

simulation model incorporating density dependent

selection). Also, failing to account for changes in biotic

interactions that may be associated with climatic

change could cause models to under- or overestimate

extinction risks (Gilman et al., 2010). Climate change

may result in the introduction of new pests, as for

instance the mountain pine beetle (Robertson et al.,

2009) or new pathogens (Netherer & Schopf, 2010), but

also losses of current competitors, insects, or diseases

caused for example by phenological shifts between

trees and associated pests (van Asch & Visser, 2007).

While it is possible to parameterize some of these

models to make quantitative predictions about extinc-

tion risk, the assumptions involved greatly limit the

faith that should be placed in any such predictions (see

Aitken et al., 2008 for further discussion). Rather, they

seem most useful as heuristic tools to identify the most

likely factors causing population extinction and to com-

pare relative risk among species. In general, these mod-

els find that the probability of extinction decreases for

species with large population sizes, high fecundity,

high heritabilities, and high amounts of standing

genetic variation. While many forest trees present such

characteristics, extra effort should be made to study

species that are on the low end of the spectrum for any

of these characteristics. Some examples of species that

may be particularly vulnerable due to their small popu-

lation sizes are P. torreyana in North America, or A. pin-

sapo in Europe. More study is necessary to see whether

such vulnerable species also have lower levels of stand-

ing variation.

Genetic basis of adaptive trait variation

The expected genetic responses in many models

depend on the genetic architecture of the trait (e.g.,

Gomulkiewicz et al., 2010). While the traditional poly-

genic model of Fisher (Fisher, 1918, 1930) is based on

small effects at a very large number of loci, some mod-

els of selection predict larger effect sizes (Orr, 1998;

Yeaman & Whitlock, 2011). Overall, quantitative trait

locus (QTL) studies in forest trees have generally found
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Fig. 1 Mean silent nucleotide diversity per site (psilent) estimates

for several tree species. Average nucleotide diversity at silent

sites (for more details and references see Table S2). Angio-

sperms appear in light color and conifers in dark color.
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large numbers of loci with relatively small effect sizes,

compared with some crop plants (Barton & Keightley,

2002; Howe et al., 2003; Laurie et al., 2004). Association

studies have further confirmed this view of moderate

effect sizes (summarized in Fig. 2), e.g., in P. taeda

(Quesada et al., 2010; Cumbie et al., 2011), Populus trem-

ula (Ingvarsson et al., 2008), P. sitchensis (Holliday et al.,

2010a), and Pseudotsuga menziesii (Eckert et al., 2009).

These findings are consistent with the small effect sizes

of flowering time and leaf trait variation loci in maize

(Buckler et al., 2009; Tian et al., 2011), and human

height (Hill et al., 2008). In contrast, Atwell et al. (2010)

found large effect SNPs for many phenotypic traits of

Arabidopsis. There may also be major effect loci for dis-

ease resistance, such as for rust disease caused by fun-

gal pathogens in North American conifers (Kayihan

et al., 2010). The associated loci may well differ between

environments due to genotype by environment interac-

tions (Jermstad et al., 2003) or because of different

genetic basis in different areas (Goldstein & Holsinger,

1992; Hancock et al., 2011). In many conditions, the

phenotypic differences between populations can be due

to combined effects of several loci rather than differen-

tiation at the level of individual loci (Latta, 1998;

LeCorre & Kremer, 2003; Kremer & Le Corre, 2012).

Weak genetic correlations allow traits to respond to

selection independently, whereas genetic correlations

opposing the direction of selection will delay the

response (Etterson & Shaw, 2001), and reinforcing cor-

relations will accelerate it. Under stabilizing selection,

responses are facilitated, if the selection is weak

(Duputie et al., 2012). The underlying causes of genetic

correlations are so far not known in trees.

Overall, the limited findings so far suggest that the

response to strong selection on phenotypes will often

be based on many loci with small effects, and fairly

weak selection on individual loci, as has been also

found in humans (Turchin et al., 2012). If larger effect

loci are involved, response predictions could then use

specific information on such loci. Alternatively, geno-

mic selection methods could be used to build predictive

models that do not need to identify the particular loci

underlying adaptive genetic responses (Grattapaglia &

Resende, 2011; Iwata et al., 2011; Holliday et al., 2012;

Resende et al., 2012).

We do not know whether most adaptations in trees

are due to existing variation or new mutations. During

interglacial periods, tree populations have repeatedly

colonized northern areas and have rapidly adapted to

those conditions, likely because the north-adapted vari-

ants may have remained in southern populations at

lower frequencies (De Carvalho et al., 2010; Savolainen

et al., 2011). Typically, large effective population sizes

in forest trees would have contributed to rapid fixation

of adaptive variants. This supports an interpretation of

evolution from standing rather than de novo variation.

Phenotypic plasticity and adaptation

Trees exhibit a high degree of phenotypic plasticity

with respect to climatic variation. Phenological shifts of

bud flush in response to recent increases in tempera-

tures have been widely documented (Menzel & Fabian,

1999; Menzel et al., 2006; Parmesan, 2006). Arid years or

an arid microsite may favor the development of deeper

and denser root systems (Kozlowski & Pallardy, 2002).

In such a context, adaptive plasticity can buffer the

impact of changing conditions on population size

(Lynch & Lande, 1993). However, these plastic changes

may take time to develop, as in the root example above.

In addition, more plasticity also means less intense

selection, causing populations to genetically track

changing optima more slowly. Recent models have

shown that the decreased selection is more than com-

pensated for by the increased phenotypic match

allowed by plasticity (Chevin & Lande, 2010). In fact,

the evolution of plasticity can provide populations with

a transient and efficient response to large environmen-

tal changes (Lande, 2009).

Multiple-site provenance trials can be used to exam-

ine the plastic responses of populations in new environ-

ments. This can be quantified with response functions

for individual populations, which describe the change

in a trait as a function of transfer distance or change in

environmental factors (Rehfeldt et al., 1999, 2002). Prov-

enance trials have been planted in sites that vary with

respect to many environmental variables, such as tem-

perature or water availability (Morgenstern, 1978;

Kramer, 1995; Shutyaev & Giertych, 1997; Rehfeldt

et al., 1999, 2002; Worrell et al., 2000; Reich & Oleksyn,
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2008; Vitasse et al., 2010). Transfers to the south have

been used to predict responses to a warming climate

(Beuker et al., 1998; Rehfeldt et al., 2002; Wang et al.,

2006) even if the future conditions may be different

(e.g., photoperiod). Furthermore, these experiments

take place in spaced plantings of seedlings, and thus

ignore germination, establishment, and early intra- and

interspecific competitive effects. Response functions of

individual populations have been developed for

growth using very large datasets of multiple trials

including more than a hundred populations available

for P. contorta (Rehfeldt et al., 2001), P. sylvestris

(Rehfeldt et al., 2002), and Larix occidentalis (Rehfeldt &

Jaquish, 2010). Recently, Wang et al. (2010) developed a

universal response function for P. contorta, which inte-

grated populations and environment effects and can be

used to predict the performance of any population in

any climatic conditions. Incorporating provenance trial

data on local adaptation and phenotypic plasticity in

models predicting future distributions reduced dramat-

ically the extinction risk in southern populations

(Morin & Thuiller, 2009; Benito-Garz�on et al., 2011).

The plastic response of different traits (e.g., phenology

in trees) to variation in climate is, however, often much

more complex than in heuristic models of adaptation

(see e.g., Valladares et al., 2007; Caffarra et al., 2011;

Hänninen & Tanino, 2011).

Finally, epigenetic effects on phenotypic plasticity

and inheritance of phenotypic variation need further

investigation. Epigenetic variation can be partly inher-

ited from one generation to the next while being still

sensitive to environmental variation (Richards et al.,

2010). Maternal epigenetic effects are known in Arabid-

opsis (Johannes et al., 2009), but so far their nature has

not been studied much in trees (Bräutigam et al., 2013).

Epigenetic effects can also occur during seed matura-

tion. Temperature differences during embryogenesis

caused differences in phenology in P. abies (Skrøppa &

Kohmann, 1997) and the molecular mechanisms

involved are being studied (Yakovlev et al., 2010). They

could have significant implications for the interpreta-

tion of provenance trial data, explaining some of the

phenotypic variation among populations that is com-

monly interpreted as genetic variation.

Evolution in multiple populations

Geographic distribution and genetic structure

Natural populations of a species in a heterogeneous

landscape may have very different patterns of distribu-

tion, which can influence its population genetic charac-

teristics (Fig. 3) as reviewed by Charlesworth &

Charlesworth (2010). The classical island model

assumes populations of equal finite constant size, with

equal migration rates between them (Wright, 1931).

These assumptions can be relaxed, with variable migra-

tion rates and changing population sizes. Species can

also be distributed in large continuous populations

where parts of the range are connected by symmetric

gene flow, as described in the isolation by distance

model by Wright (1943). Populations located at range

margins represent a special case, as they are at the edge

of environmental gradients where carrying capacity

may be limited. In such cases, there is more migration

from the core populations to the margin than vice versa,

resulting in asymmetric gene flow (Kirkpatrick &

Barton, 1997).

Many economically important temperate and boreal

species have large populations covering vast areas, but

other tree species do not fit this distribution model. We

examined the population structure of European coni-

fers in the Pinaceae (including pines, spruces and firs), a

limited group of species with very good distributional

and reasonable population genetics information. A

compilation of the distributions of these 27 species (and

sometimes subspecies; from Jalas & Suominen, 1973),

allowed us to classify them as having northern or

central large, southern large or southern small or frag-

mented distributions (Table 1). Note that the classifica-

tion is based on the current distributions, although

some currently fragmented species may have had much

larger distributions in the past (Soto et al., 2010). Spe-

cies with a predominantly northern distribution, but

also occurring in the south (e.g., P. sylvestris) were clas-

sified as northern species. Figure 3 shows examples of

distributions of three species (P. omorika, P. pinaster,

and P. sylvestris). There are 11 species with predomi-

nantly northern or central, large, continuous distribu-

tions, and four southern species with large, but

somewhat fragmented distributions. About half of the

European conifers (12) have southern, small, or frag-

mented distributions. Furthermore, the southern mar-

gin of most species seems to consist of fragmented

small populations, whereas in the north, the range mar-

gin is part of a continuous distribution for several spe-

cies. This analysis shows that in many tree populations,

the threats associated with climate change are accompa-

nied by and likely exacerbated by the effects of frag-

mentation at southern range margins (see also Lynch,

1996). However, if there is still extensive gene flow

among the fragments, the population structure should

resemble that of a continuous population.

Consistent with the theoretical predictions, the Euro-

pean conifers with continuous distributions have

higher genetic diversity (He) than the fragmented ones

(Table 1). The widespread northern species such as

P. abies and P. sylvestris have low levels of genetic
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differentiation (FST) in their main range (Heuertz et al.,

2006; Pyhäjärvi et al., 2007). Similar findings have been

made in North America for species such as P. menziesii

(Eckert et al., 2010), P. sitchensis, P. glauca, and P. mariana

(Namroud et al., 2008; Chen et al., 2009; Holliday et al.,

2010a,b). In contrast, the level of population differentia-

tion is almost twice for the southern fragmented species

compared with the northern widely distributed ones

(Table 1). Thus, the genetic data available are broadly

consistent with the population structure classification

based on species distribution and census size. However,

current census size may ignore effects of past demo-

graphic history such as population size changes or

hybridization, and we do not expect the current distribu-

tions to account for all variation in patterns of diversity.

Next, we examine the patterns of quantitative genetic

variation in tree species in general and in these

European conifers in particular to evaluate the effects

of selection for local adaptation. We reviewed the

literature of provenance trials and found a total of

112 studies on 19 relevant traits related mostly to

phenology, growth, cold or drought tolerance or other

ecophysiological traits, among which were 36 studies

on European conifers (Table S1). Among 59 tree species

studied, most were native to Europe and North America

(23 and 29 species, respectively) while conifers were

more studied than angiosperms (36 and 23 species,

respectively). Only three traits had been measured in a

sufficiently large number of experiments (Table 2) to

make general comparisons and draw general patterns.

We focused on the patterns of genetic variation for height

increment and for the timing of bud flush, at the begin-

ning of the growing season in spring, and the timing of

bud set, an indication of cessation of growth in fall.

Among all studies, these three traits had comparable lev-

els of genetic differentiation between populations (mean

value equal to 0.249, 0.324, and 0.392 for bud flush,

height increment, and bud set, respectively; Table 2).

Quantitative variation in fragmented populations

In Europe, small and fragmented conifer populations

occur mainly in the southern Mediterranean area. Pro-

vided population sizes are sufficiently large, species

with greater differences among populations in local

phenotypic optimum and higher levels of genetic vari-

Fig. 3 Schemes of the population models used to discuss evolutionary responses. The three different schematic models of population

structure encountered in tree species illustrated by the different cases of Picea omorika (one limited population), Pinus pinaster (several

fragmented populations) and Pinus sylvestris (large and continuous population). The color of the circle indicates the environmental con-

dition of the population which is either undefined (in gray) or following a temperature gradient from warm (in red) to cold (in blue).

The arrows represent gene flow connecting populations, with thickness indicating gene flow intensity. For the fragmented populations,

the brown line symbolizes a physical barrier to gene flow, such as a mountain.
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Table 1 Distribution range and genetic estimates for the 27 European conifers

Species Range Distribution

Mean

QST* QST range* FST He Reference †

Abies nebrodensis Sicilia South small 0.201 Ducci et al. (1999)

Abies pinsapo Andalusia South small 0.056 Scaltsoyiannes et al.

(1999)

Pinus nigra ssp

dalmatica

South Croatia South small 0.091 0.292 Nikolic & Tucic

(1983)

Picea omorika Croatia Serbia South small 0.261 0.067 Ballian et al.

(2006)

Pinus nigra ssp laricio Corsica Calabria

Sicilia

South small 0.005 0.182 Scaltsoyiannes et al.

(1994)

Abies cephalonica Balkans South small 0.140 0.100–0.170 0.048 0.221 Fady & Conkle

(1993)

Pinus peuce Balkans South small 0.083 0.124 Zhelev & Tsarska

(2009)

Pinus brutia Aegean Sea South

fragmented

0.040 0.053 0.196 Kara et al. (1997)

Pinus heldreichii Balkans South

fragmented

0.054 0.177 Boscherini et al.

(1994)

Abies borisii-regis Balkans South

fragmented

0.273 Scaltsoyiannes et al.

(1999)

Pinus nigra ssp pallasiana Greece Serbia

Bulgaria

South

fragmented

0.028 0.020 - 0.040 0.070 0.114 Tolun et al. (1999)

Pinus nigra ssp salzmannii East Spain South

France

South

fragmented

0.216 Scaltsoyiannes et al.

(2009)

Pinus nigra ssp nigra North Italy Croatia

Greece

South large

fragmented

0.264 Scaltsoyiannes et al.

(2009)

Pinus pinaster South West

Europe

South large

fragmented

0.616 0.441–0.791 0.076 0.142 Salvador et al.

(2000)

Pinus pinea South Europe South large

fragmented

0.279 0.011 Fallour et al. (1997)

Pinus halepensis South Europe South large

fragmented

0.130 0.040 Schiller et al. (1986)

16 species with small

or fragmented range

0.192 0.082‡ 0.171‡

Pinus cembra Alps Romania North large

continuous

0.830 0.040 0.081 Belokon et al. (2005)

Pinus uncinata Central West

Europe

North large

continuous

0.006 0.260 Lewandoski et al.

(2000)

Larix decidua Central Europe North large

continuous

0.051 0.223 Maier (1992)

Pinus sibirica East Siberia North large

continuous

0.027 0.278 Goncharenko et al.

(1992)

Pinus mugo Central East

Europe

North large

continuous

0.041 0.214 Slavov and Zhelev

(2004)

Abies alba Central Europe North large

continuous

0.075 0.000–0.150 0.252 Ducci et al. (1999)

Abies sibirica Siberia North very large

continuous

0.102 0.083 Semerikova &

Semerikov (2006)

Larix sibirica Siberia North very large

continuous

0.082 0.159 Semerikov et al.

(1999)

Picea abies ssp obovata Lapland Siberia North very large

continuous

0.011 0.213 Krutovskii &

Bergmann (1995)

Picea abies ssp abies North Central

Europe

North very large

continuous

0.417 0.106 - 0.727 0.044 0.252 Krutovskii &

Bergmann (1995)
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ance would be expected to have higher equilibrium dif-

ferentiation. Gene flow in contrast, would reduce differ-

entiation (Hendry et al., 2001). In general, if there is

strong differential selection between populations, we

would expect that the proportion of total genetic vari-

ance found between populations, QST, should be higher

than FST calculated from neutral markers with appro-

priate mutation rates (Leinonen et al., 2008; Edelaar

et al., 2011).

In the limited set of provenance trials on European

conifers, estimates of quantitative genetic differentia-

tion among populations for species with small or frag-

mented range were low over all traits (mean

QST = 0.192, five species; Table 1). This average is about

twice as high as the neutral FST (0.082; nine species;

Table 1). Even though sampling across an environmen-

tal gradient is clearly not concordant with the assump-

tions of the island model, data of this kind are

frequently analyzed by comparing QST and FST
estimates for distinct samples from large and continu-

ous populations. The average QST estimate for large

populations in northern areas is 0.463 while average

FST is 0.044. Thus, in this small set of studies, the ratio

of QST to FST is much lower for species with small or

fragmented range than that found in more widespread

species. In small populations or fragments, selection for

local adaptation is less efficient because of the effects of

genetic drift on individual loci, and further, on the asso-

ciations of alleles at different loci (Le Corre & Kremer,

2012). A review by Leimu & Fischer (2008) found that

in plants only about 50% of all population pairs in reci-

procal transplantations studies showed evidence of

local adaptation, i.e., each population at its native site

had higher fitness than other populations introduced to

that site. Local adaptation was much less likely in small

than large populations. However, QST values could also

differ because the studies on species with limited

distributions have sampled a smaller range of environ-

mental variation than studies in species with large

ranges, or because the scale of fragmentation does not

match the scale of environmental variation. Reciprocal

transplant experiments are needed to assess the level of

local adaptation directly. In the large provenance trial

data set over all 19 traits and 59 tree species, 264 of 294

analyses (around 90%) showed significant differentia-

tion across populations (Table S1), in most cases likely

due to climatic selection.

There is also some evidence in the literature for local

climatic adaptation in southern European fragmented

populations, such as for water use efficiency in P. halep-

ensis (Voltas et al., 2008). Furthermore, some allelic vari-

ants at candidate loci for drought tolerance have also

been found to be associated with environmental vari-

ables (Grivet et al., 2011). In some of these species,

selection may have been strong enough for local

adaptation to evolve. Clearly, more studies on the

patterns of local adaptation are needed in the species

with fragmented southern distributions. Forests at

Mediterranean southern limits are threatened by faster

changes in precipitation than in the northern range

limit. If indeed their adaptive capacity is lower, this

could make southern fragmented populations even

more vulnerable.

It is also possible that these populations have evolved

high adaptive phenotypic plasticity in response to envi-

ronmental variability instead of genetic differentiation,

either for some specific traits or across the genome

(Nicotra et al., 2010). This could be likely if there is also

a strong temporal component of environmental

variation (Hedrick, 2006). In a changing climate, the

responses due to phenotypic plasticity may maintain

fitness despite climatic changes. More growth chamber

or reciprocal transplant experiments will be needed to

assess the response functions for these species.

Table 1 (continued)

Species Range Distribution

Mean

QST* QST range* FST He Reference †

Pinus sylvestris Whole Europe North very large

continuous

0.519 0.080 - 0.860 0.033 0.286 Goncharenko et al.

(1994)

11 species with

continuous range

0.463 0.044 0.209

*Mean QST and QST range were calculated from estimates only for height increment, bud flush, and bud set (for more details and

references see Table S1). QST estimates corresponds to the levels of population differentiation measured either as the proportion of

phenotypic variation between populations (Vpop) or as the proportion of additive genetic variance between populations (QST) in the

provenance trials (for more details see Table S1).

†References of the studies using allozyme markers to assess FST and He. See supporting information references for full reference

information.

‡Pinus pinea, which has hardly any within-population variation (Vendramin et al., 2008), was not included in the calculation of

mean FST and mean He.
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Quantitative variation in continuous populations along
environmental gradients

Species present in Central and Northern Europe gener-

ally have continuous distributions covering large areas

encompassing much heterogeneity in abiotic and biotic

environmental factors with large effective population

sizes connected by extensive gene flow. If there is dif-

ferential selection along environmental gradients, we

expect to see patterns of clinal variation in traits

(Barton, 1999). These patterns can be described by the

slope of a regression along an environmental gradient.

The proxies for environmental gradients most

frequently used are latitude and altitude. For height

increment, populations from warmer environments

generally grew faster in the provenance trials (see Table

S1), but quantitative estimates of the slopes were rarely

available. Populations from cold environments cease

growth earlier, as an adaptation to the approaching

winter (see e.g., Savolainen et al., 2004). To compare

slopes of clinal variation, we focused on the two pheno-

logical traits, the timing of bud flush and the timing of

bud set, and compared altitudinal and latitudinal clines.

To summarize data across species and environments, we

considered that one degree of latitude corresponds

approximately to a temperature change of 0.6 °C, and
correspondingly, 100 m of altitude (Jump et al., 2009).

We show examples of an altitudinal cline in bud flush

in Q. petraea (Fig. 4a) and a latitudinal cline in bud set

in P. sylvestris (Fig. 4b).

The results of the summary in Table 3 show that the

two phenological traits differ in their patterns. For bud

flush, both altitudinal and latitudinal clines showed

similar shallow slopes, but the direction of adaptation

varied greatly among species (Table 3a). For example,

high altitude populations from the same transect

flushed late in Q. petraea (Fig. 4a), whereas in F. sylvati-

ca they flushed early (Vitasse et al., 2009). This could

reflect different compromises in the adaptive tradeoff

between maximizing the growing season length and

exposing new leaves to late frosts. Bud flush is trig-

gered by the accumulation of cold (or chilling) sums

followed by heat (or forcing) sums above a threshold

temperature sum. These genetically determined critical

temperature sums and thresholds may vary among

species, and to a lesser extent among populations of the

same species (Hänninen & Tanino, 2011). Bud flush in

late successional species is also more influenced by

Table 2 Genetic differentiation (QST) estimates for the 19 quantitative traits studied in provenance trials

Trait Category

QST estimates* Qualitative estimation †

Mean QST QST range Nb‡ Trend Nb‡

Dark respiration Ecophysiology 0 Moderate 2

Leaf mass per area Ecophysiology 0.022 0.000 – 0.044 2 Variable 6

Net assimilation Ecophysiology 0.045 0.015 – 0.075 2 Variable 8

Nitrogen leaf content Ecophysiology 0.042 0.000 – 0.083 2 Variable 6

Photosynthetic capacity Ecophysiology 0.101 0.000 – 0.201 2 Variable 1

Stomatal conductance Ecophysiology 0.061 0.000 – 0.150 4 Variable 4

Stomatal density Ecophysiology 0.028 0.000 – 0.056 2 Low 5

Water use efficiency (A/gs) Ecophysiology 0.075 1 Variable 7

Water use efficiency (d13C) Ecophysiology 0 Variable 6

Fall frost hardiness Frost hardiness 0.581 0.030 – 0.890 9 High 10

Spring frost hardiness Frost hardiness 0.126 0.000 – 0.352 4 Variable 3

Winter frost hardiness Frost hardiness 0.170 0.000 – 0.291 3 0

Growth rate per day Growth 0.284 0.050 – 0.710 8 Moderate 3

Height increment Growth 0.324 0.040 – 0.880 36 High 33

Root allocation Growth 0.340 0.251 – 0.430 2 Moderate 4

Bud flush Phenology 0.249 0.000 – 0.700 24 Moderate 37

Bud set Phenology 0.392 0.040 – 0.904 16 High 16

Germination Phenology 0.521 0.200 – 0.940 6 High 3

Senescence Phenology 0.108 0.080 – 0.180 5 Low 3

*QST estimates corresponds to the levels of population differentiation measured either as the proportion of phenotypic variation

between populations (Vpop) or as the proportion of additive genetic variance between populations (QST) in the provenance trials

(for more details see Table S1).

†Qualitative estimation of genetic differentiation between populations corresponds to studies where no QST estimate was available,

but significance of genetic differentiation was mentioned in the text.

‡Nb, number of studies used to calculate mean QST and QST range, and the trend of population differentiation.
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photoperiod than in early successional species (K€orner

& Basler, 2010; Basler & K€orner, 2012). Bud set showed

steeper slopes for both gradients and in all species more

northern or higher altitude populations had earlier bud

set (Table 3b). These data suggest that differential selec-

tion on bud set is systematically stronger than on bud

flush. Bud flush may display higher phenotypic plastic-

ity as temperatures increase. In contrast, bud set is

largely governed by photoperiods, and modulated by

temperatures and drought, which results in a more pre-

dictable environmental signal from year to year and

location to location (B€ohlenius et al., 2006). In a warm-

ing climate, spring phenology can likely respond and

advance without much genetic change, as has already

been seen in many species (Gienapp et al., 2008), pro-

vided that the chilling requirement has been met. How-

ever, if chilling temperature requirements have not

been met, in some cases bud flush may even be delayed

(Hänninen & Tanino, 2011), as already seen recently in

Tibet (Yu et al., 2010). In the fall, a change in bud set

date is more likely to require a genetic change in photo-

periodic responses. Some studies suggest that the heri-

tability of bud flush is higher than for bud set (Howe

et al., 2003), but estimates of the additive genetic com-

ponent are rarely available in the literature. The latitu-

dinal slopes were also much steeper than the

altitudinal ones (Table 3b). Sundblad & Andersson

(1995) have suggested that along the altitudinal gradi-

ents there may be more gene flow so populations do

not become as differentiated. The simple calibration

factors we used also may not capture all aspects of the

environment.

In the large set of provenance trial studies, clinal vari-

ation along environmental gradients was very common.

In the 112 studies, 309 analyses of clinal variation in dif-

ferent quantitative traits, 243 (78%) showed evidence of

clinal variation with latitude, altitude, and sometimes

longitude (Table S1).

Adaptation at range margins

An important hypothesis for species range limits is that

gene flow constraints adaptation (Haldane, 1932; Mayr,

1963). Many models suggest that gene flow could limit

adaptation, and even more so with asymmetrical gene

flow toward small peripheral populations (see Lenor-

mand, 2002 for review). In a model of species range

involving local adaptation, a strong coupling between

fitness and population size favors a feedback effect (a

‘migration meltdown’) that acts to stabilize a range

margin, as exemplified in the now well-known

Kirkpatrick & Barton (1997) model. However, there is

limited evidence to evaluate this model, and some

issues that complicate the predictions. Some models

assume that genetic variance is fixed (Pease et al., 1989;

Kirkpatrick & Barton, 1997), while gene flow may also

increase genetic variance and the response to selection

(Barton, 2001; Polechova et al., 2009). Evidence in P.

contorta suggests that gene flow between populations

inhabiting heterogeneous environments can increase

levels of standing genetic variation (Yeaman & Jarvis,

2006), but it remains unclear whether this effect would

be important in other species. Genetic drift can also
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Fig. 4 Clines of phenological traits along environmental gradi-

ents. (a) Timing of bud flush along an altitudinal gradient in

Quercus petraea, based on data from Alberto et al. (2011). The

timing of bud flush is expressed as the number of days from 1st

January to reach the fourth developmental stage of leaf unfold-

ing. Means of populations (large diamonds) are plotted against

the altitude of origin. Bars represent standard deviations of the

populations. Means of maternal tree progenies (small dia-

monds) in populations located at 131 m and 1235 m of elevation

illustrate high additive genetic variance within populations,

slightly decreasing with increasing altitude. Dark colored points

represent populations and maternal trees from Luz valley while

light colored points represent populations from Ossau valley.

(b) Timing of bud set along a latitudinal gradient in P. sylvestris,

based on data from Mikola (1982). The timing of bud set is mea-

sured as the number of days from the day of sowing. Means of

populations (large diamonds) are plotted against latitude of ori-

gin. Bars represent standard deviations of the populations.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1645–1661

1654 F. J . ALBERTO et al.



reduce genetic variance and thus adaptation in peripheral

populations (Alleaume-Benharira et al., 2006; Polechova

et al., 2009; Bridle et al., 2010), but gene flow may replen-

ish genetic variation. Gene flow may even introduce

better adapted genes than local ones, especially in a

changing climate (Alleaume-Benharira et al., 2006).

Some environments, in particular some polar or arid

range margins, are intrinsically less favorable than

Table 3 Slopes of the linear regressions of (a) bud flush and (b) bud set along altitudinal, and latitudinal gradients

Gradient Species Pop * Cline Slope Reference

(a)

Altitudinal Abies amabilis 5 High early �1.18 Worrall (1983)

Abies lasiocarpa 2 High early �0.83 Worrall (1983)

Fagus sylvatica 9 High early �0.43 Vitasse et al. (2009)

Fagus sylvatica 158 High early �0.17 Von Wuehlisch et al. (1995)

Pseudotsuga menziesii 7 High early �4.38 Acevedo-Rodriguez et al. (2006)

Pseudotsuga menziesii 18 No cline 0.00 Rehfeldt (1978)

Picea abies 23 No cline �0.22 Chmura (2006)

Picea abies 8 No cline �0.03 Skroppa & Magnussen (1993)

Abies alba 6 No cline �0.20 Vitasse et al. (2009)

Acer pseudoplatanus 7 No cline �0.20 Vitasse et al. (2009)

Fraxinus excelsior 9 Low early 1.90 Vitasse et al. (2009)

Larix occidentalis 82 Low early 0.23 Rehfeldt (1982)

Quercus petraea 10 Low early 1.15 Alberto et al. (2011)

Quercus rubra 4 Low early 1.93 Mc Gee (1973)

Total �0.17

Latitudinal Picea abies 9 North early �2.08 Sogaard et al. (2008)

Picea glauca 63 No cline 0.43 Li et al. (1997a)

Picea sitchensis 17 No cline �0.08 Mimura & Aitken (2007)

Pinus strobus 66 No cline �0.83 Li et al. (1997b)

Populus balsamifera 4 No cline 0.10 Farmer (1993)

Fagus sylvatica 158 South early 0.20 Von Wuehlisch et al. (1995)

Quercus petraea 16 South early 4.17 Deans & Harvey (1996)

Tsuga heterophylla 8 South early 2.17 Hannerz et al. (1999)

Total 0.51

(b)

Altitudinal Abies lasiocarpa 5 High early �3.33 Green (2005)

Larix occidentalis 82 High early �1.28 Rehfeldt (1982)

Picea abies 23 High early �9.07 Chmura (2006)

Picea abies 8 High early �2.63 Skroppa & Magnussen (1993)

Picea glauca 5 High early �1.00 Green (2005)

Picea contorta 5 High early �1.67 Green (2005)

Picea contorta 173 High early �0.22 Rehfeldt (1988)

Pseudotsuga menziesii 7 No cline 0.37 Acevedo-Rodriguez et al. (2006)

Total �2.35

Latitudinal Betula pendula 7 North early �4.63 Viher€a-Aarnio et al. (2005)

Picea glauca 63 North early �3.83 Li et al. (1997a)

Picea sitchensis 17 North early �4.90 Mimura & Aitken (2007)

Picea strobus 66 North early �3.33 Li et al. (1997b)

Pinus sylvestris 4 North early �5.00 Hurme et al. (1997)

Pinus sylvestris 4 North early �2.35 Notivol et al. (2007)

Pinus sylvestris 2 North early �6.83 Savolainen et al. (2004)

Populus balsamifera 4 North early �5.00 Farmer (1993)

Populus tremula 12 North early �8.33 Luquez et al. (2008)

Total �4.91

Slopes of linear regressions are given for each study and expressed as days/°C (for details about the calculation see in the text and

for references see Table S1). No cline indicates a nonsignificant regression.

*Number of populations in the provenance trial.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1645–1661

EVOLUTIONARY RESPONSES OF TREES 1655



others, and would sustain only very low population

sizes even after a very long history of adaptation. Main-

land-island models of local adaptation implicitly

address this issue with population sizes, but spatially

continuous models are still more informative. In partic-

ular, Nagylaki (1975) showed that extrinsic asymme-

tries in habitat quality strongly modified or could even

compensate for asymmetries in selection across habi-

tats. In other words, alleles showing a local advantage

can be maintained despite having considerable antago-

nistic effects in other habitats, provided that the local

habitat is of better quality (Nagylaki, 1978). Incorporat-

ing differences in carrying capacity in quantitative

models could critically affect the potential for popula-

tion adaptation (Bridle et al., 2010).

The leading and the trailing edge of migrating tree

distributions face quite different challenges due to the

warming climate (Hampe & Petit, 2005). At the south-

ern range edge (in northern hemisphere), the distribu-

tions are likely already limited by high temperatures or

drought conditions, and associated biotic and abiotic

stresses, whereas at the northern margin, many popula-

tions have been limited by the cold temperatures

(Rehfeldt et al., 2002). For the southern margin, at least

at low altitudes, the environment is clearly deteriorat-

ing. The risk of extinctions will come from the interplay

of multiple factors. In particular, the reduction of water

availability and a longer growing season with exces-

sively warm temperatures (IPCC, 2007) could lead to

massive diebacks of trees due to drought stress or car-

bon starvation (Sabate et al., 2002; Br�eda et al., 2006)

higher mortality due to reduced defense of trees against

insects (Rouault et al., 2006), and more frequent forest

fires (Mouillot & Field, 2005). Increased mortality due

to heat and drought stress has already been observed in

many locations globally (Allen et al., 2010). The impact

of environmental change will be higher in small popu-

lations due to high demographic or environmental sto-

chasticity (Hampe & Jump, 2011).

At the southern margin, there are no populations fur-

ther south contributing genes conferring necessary

adaptation, but gene flow from similar environments

could still increase the variance within populations

(Barton, 2001). Experimental evidence of gene flow

from like populations increasing fitness at warm range-

edges exists for some plant species (e.g., Mimulus spe-

cies, Sexton et al., 2011), and long distance dispersal can

be important in fragmented landscapes (Klein et al.,

2006; Fayard et al., 2009; Kremer et al., 2012).

Until now, the severe climatic conditions at boreal

northern range margins have constrained growth, pol-

len production, seed maturation and dispersal (Sarvas,

1962; Savolainen, 1996), as well as survival (Persson,

1998), and have limited expansion to the north (Chuine

& Beaubien, 2001; Morin et al., 2007). In the northern-

most areas, temperatures are expected to increase by

about 4 °C (Kattsov & Källen, 2005). Ecophysiologists
have used the immediate plastic responses of trees to

increased temperature to predict changes in species

composition (Kellomäki & Kolstr€om, 1992; Kellomäki
et al., 2001). However, these predictions have not

explicitly taken into account the possibilities of genetic

response (Davis & Shaw, 2001; O’Neill et al., 2008). The

warming in the north will improve survival, increase

growth (Rehfeldt et al., 2002; Reich & Oleksyn, 2008),

increase sexual reproduction (Andalo et al., 2005), and

increase pollen production (Savolainen et al., 2011).

Based on modeling studies, pollen and seed are pre-

dicted to be dispersed further than before (Kuparinen

et al., 2009, 2010). Production of mature filled seed will

likely increase many fold (Kellomäki et al., 1997) and

the warmer air and soil may result in improved germi-

nation and establishment. Northern range margin pop-

ulations are already colonizing more northern and

higher altitude areas (Kullman, 2002; Juntunen et al.,

2006; Chen et al., 2011). The increased survival rates of

existing, established trees may, however, reduce estab-

lishment opportunities for better adapted genotypes

generated by gene flow and local selection (Kuparinen

et al., 2010).

At altitudinal range limits, adaptation could be facili-

tated by the short geographical distance between popu-

lations, associated with low climate change velocity

(Loarie et al., 2009). Gene flow from populations at low

altitudes could help the populations at higher altitudes

to adapt, as has already been observed, e.g., in oak phe-

nological shifts in situ (Alberto et al., 2010). Both coloni-

zation of new areas at higher altitudes, if available, and

local selection aided by gene flow may contribute to

adaptation, as many altitudinal gradients show clinal

genetic differentiation (see above).

Conclusions and suggestions for future research

Forest trees are exceptionally well characterized with

respect to adaptive quantitative variation, and with

respect to responses to different climatic variables. The

existing set of provenance trials can be used to extract

even more information, for instance on the level of local

adaptation, or even on the strength of selection, when

the datasets are further analyzed. Long-term estimates

of the strength of selection, in particular in natural con-

ditions, would be very valuable for providing parame-

ter range estimates for the prediction models. New

reciprocal transplant experiments are needed for com-

mercially less-important species, which may be most

threatened, but which are under-represented in existing

provenance trials. Furthermore, the present provenance
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trials ignore the likely important early fitness compo-

nents of germination and establishment – these compo-

nents also need to be studied (as is being done in

herbaceous plants, Huang et al., 2010; Stanton-Geddes

et al., 2012). The new experiments should include field

sites at and beyond existing range margins. Experi-

ments in controlled growth chambers can also help

identify those abiotic aspects of temperature and mois-

ture regimes to which populations are locally adapted,

and to generate climatic regimes analogous to those

predicted for the coming century.

The role of plasticity and its interaction with natural

selection is just starting to be explored in the climate

change context (Chevin et al., 2010) – provenance trials

can also provide more information on these aspects. The

extent and significance of adaptive phenotypic plasticity

is still debated (Valladares et al., 2007), and experimental

studies on range margins are still few (Angert, 2009;

Stanton-Geddes et al., 2012). Wang et al. (2010) universal

response function approach could be used as a mechanis-

tic model to predict population responses.

Commercially less-important species are poorly rep-

resented in previously established common gardens,

whether they have narrow or wide distributions. The

species with smaller ranges are especially vulnerable.

Are these species locally adapted to climate? Do these

species have limited adaptive potential due to their his-

torically small effective population sizes? While many

important boreal and temperate species in the northern

hemisphere (and some eucalypts or tropical acacias)

have been extensively studied, there is much less infor-

mation on subtropical or tropical species, which are

outside the scope of this review. These species will also

be affected by the changing climate, through both abi-

otic and many complex biotic factors.

Most of the studies on quantitative traits have been

conducted in spaced, reasonably well-tended prove-

nance trial experiments. Within or between-species

interactions, such as competition or diseases have lar-

gely been ignored. Many between-species interactions

depend on the synchronous timing of events in the dif-

ferent species. Even before any evolutionary responses,

phenotypic responses will affect such biotic interactions

(Gilman et al., 2010; Yang & Rudolf, 2010). During the

past decade, phenological shifts have been already

observed between trees and pest populations (Visser &

Holleman, 2001; van Asch et al., 2007; Desprez-Loustau

et al., 2010; Gordo & Sanz, 2010).

Much of the information on northern trees has been

accumulated through decades of field experiments.

Combining genomic tools with results from the quanti-

tative and ecological approaches can significantly aid in

predicting selection responses to climate change (for

crop plants, see Morrell et al., 2012). Genomic studies

will allow researchers to examine the geographical pat-

tern of alleles conferring adaptation – are they globally

occurring alleles with varying frequencies or very local-

ized ones? Coupled with studies at the quantitative

trait level, genomic surveys will aid in assessing the

prospects for adaptation at the level of the population.

Furthermore, the contribution of epigenetic and mater-

nal effects to phenotypic variation needs to be assessed.

This review has pointed to several areas where man-

agement and breeding can possibly contribute to main-

tenance of populations. An evaluation of such options

is beyond the scope of this review (see e.g., McLachlan

et al., 2007; Aitken & Whitlock, 2013).

In conclusion, the concordant patterns of current

local adaptation among tree populations in numerous

northern species in Europe and North America show

that selection has repeatedly established such patterns.

Populations facing the largest evolutionary challenges

are at the range margins, but the northern and southern

margins face quite different limitations. Better data and

models are thus necessary to evaluate accurately

whether natural selection, and migration, may again

allow evolutionary responses for populations to suffi-

ciently match their new climates.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Description of the provenance trial studies. aNum-
ber of populations sampled. bMean number of individuals
sampled within populations. Bulk indicates that mixes of
seeds without knowledge of genetic identity were collected
in the populations. cNumber of provenance trials in the
study. dAmplitude of the environmental gradient is given in
meters of elevation above sea level for altitudinal gradients
and in decimal degrees for latitudinal and longitudinal gra-
dients. When values appear in italic the approximate ampli-
tude is given. eThe levels of population differentiation in the
provenance trials were measured either as the proportion of
the total phenotypic variation which is between populations
(Vpop) or as the proportion of the additive genetic variance
which is between populations (QST), which appear in bold.
For simplicity, we used QST for both parameters in the text.
No differentiation indicates that population differentiation
was not significant. fSlopes were calculated for bud flush
and bud set only because they were the only traits with
enough data to make comparisons between traits and
between environmental gradients. No cline indicates that
clinal variation was not significant along the environmental
gradient considered. n.i. means that the information was not
indicated.
Table S2. Nucleotide diversity estimates per gene. aptotal:
Nucleotide diversity per gene calculated for silent and
replacement sites. bpsilent: Nucleotide diversity per gene cal-
culated for silent sites only, which correspond to synony-
mous sites and sites located in noncoding regions (introns or
3′- and 5′-UTR) n.i. means that the value was not indicated.
Cells highlighted in gray indicate studies for which average
nucleotide diversity were calculated for a set of genes or
fragments of genes.
Table S3. SNP effect sizes in association studies. aR² marker:
Percentage of phenotypic variance explained by the marker.
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