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Abstract: This study presents a comprehensive review of the automated classification in partial discharge (PD) source
identification and probabilistic interpretation of the classification results based on the relationship between the variation of the
phase-resolved PD (PRPD) patterns and the source of the PD. The proposed automated classification system consists of
modern, high-performance statistical feature extraction methods and classifier algorithms. Their application in online monitoring
and recognition of the PD patterns is investigated based on their low-processing time and high-performance evaluation. The
application of modern statistical algorithms and pre-processing methods configured in this automated classification system
improves the pattern recognition accuracy of the different PD sources that are suitable to be employed in different high-voltage
(HV) insulation media. To evaluate the performance of the different combinations of the feature extraction/classier pairs,
laboratory setups are designed and built that simulate various types of PDs. The test cells include three sources of PD in SF6,
two sources of PD in transformer oil, and corona in the air. Data samples for different classes of PD sources are captured under
two levels of voltage and two different levels of noise. The results of this study evaluate the suitability of the proposed
classification systems for probabilistic source identification in various insulation media. Furthermore, of importance to the
problem of the PD source identification is to assign a ‘degree of membership’ to each PRPD pattern, besides assigning a class
label to it. Some of the classifier algorithms studied in this study, such as fuzzy classifiers, are not only able to show high
classification accuracy rate, but they also calculate the ‘degree of membership’ of a sample to a class of data. This enables
probabilistic interpretation of a new PRPD pattern that is being classified. The determination of the degree of membership for
future PRPD samples allows safer decision making based on the risk associated with the different sources of PD in HV
apparatus.

1 Introduction
Safe, stable, and reliable electric power systems rely on solid,
liquid, and gaseous insulation materials to isolate energised
components from other components and the ground. These
insulation materials experience large electrical stresses during
operation, especially in high-voltage (HV) environments where the
stress causes nanoscale molecular defects (ageing). These defects,
in turn, become concentration points for the electrical stress,
resulting in a gradual proliferation of defects and the creation of
micron-scale defects in the material. Once the defect achieves a
critical size, the electric field can cause small, local breakdowns
known as partial discharges (PDs) to occur within the defect. This
threshold also marks the beginning of a much faster deterioration
of the material condition during which PD activity is associated
with increasing rates of degradation leading to catastrophic failure
(breakdown) [1].

Monitoring PDs, as a symptom of insulation deterioration, can
be used to improve the reliability of HV insulation. Early detection
of PDs and their cause prevents costly failures of electrical
equipment. PD measurements were first carried out almost 80
years ago [2, 3], but were not considered seriously for the
reliability assessment of HV insulations until the 1950s–1960s [4].
The techniques employed for PD detection are based on chemical,
acoustic, optical, electrical, and ultra-high frequency
measurements. The electrical measurements of the PD in HV
alternating current (AC) systems are widely used and are the focus
of this work.

One important application of the PD measurements is the
identification of the source of the PD. In the AC systems, the
phase-resolved PD (PRPD) pattern, which visualises the
occurrence of the PD activities in reference to the phase of the AC
voltage, has been a valuable diagnosis tool. In a PRPD pattern, two

important parameters, both in reference to phase angles, are the
discharge magnitude and discharge rate. This forms a bivariate
distribution where each of the discharge magnitude and discharge
rate can be separately analysed with reference to each other and to
the phase angle of the AC source [5].

Each type of insulation defect has its own discharge mechanism
and features, and as such it leads to the generation of a unique
discharge pattern. Visual inspection of the PRPD patterns by
human experts has been one of the major PD analysis approaches.
The identification of defects is normally accompanied by
uncertainty due to some overlap of different discharge patterns.
However, in recent years, due to the availability of high-speed data
processors and well-developed statistical techniques in machine
learning, the automated identification of the PD sources seems to
be more achievable [6]. Reliable, automated, and classification of
the PD sources enables online monitoring of HV apparatus more
accurately and efficiently. In this way, the ability to identify defects
in early stages can lead to safety augmentation of HV apparatus,
such as transformers, electric machines, cables, and gas-insulated
switchgear (GIS).

The existence of a correlation between the nature of the PD
sources and their PRPD patterns has been the motivation of
designing a thoroughly automated feature extractor and pattern
classifier system for the application in the area of HV insulation
monitoring. In the last three decades, the automated recognition of
the PD patterns has been progressively investigated and several
signal processing methods and classification algorithms have been
employed for the analysis of discharge patterns, such as the relative
identification factor [7], time series analysis [8, 9], artificial neural
networks (ANNs) [4, 5, 9–13], fuzzy algorithms [14], support
vector machine (SVM) [15, 16], hidden Markov models [17],
pattern recognition based on the chaos theory [18], kernel
statistical uncorrelated optimum discriminant vectors algorithm
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[19], statistical tools [6, 20], inductive learning approach [21],
Bayesian [15], and K means [22]. In [6], Krivda used Fisher
discriminant analysis (FDA) and principal component analysis
(PCA) for feature extraction. The application of the wavelet
transforms has also been shown to be useful for PD source
recognition [12, 15]. To improve the performance of the ANN in
the classification of discharge patterns, the knowledge-based pre-
processing method and time series approach have been presented in
[8, 10]. A characteristic that distinguishes some of these
approaches from the others is the ability to assign a posterior
probability to an unknown sample. Such a characteristic enables
risk management and decision-making for asset managers with
regard to condition-based maintenance.

This study presents a review of the application of artificial
intelligence and pattern recognition techniques to develop an
automated classification system for the improvement of the PD
source identification using modern statistical methods to identify
PD sources with a high accuracy rate. The main characteristic
sought is the capability of performing probabilistic interpretation of
the classification results and calculating the ‘degree of
membership’ of a sample to a class of data. This is a feature that
simple techniques, such as k-nearest neighbour (kNN) [23], are not
capable of. Another limitation of a kNN classifier is that it is a
local approach that does not provide a model. kNNs tend to have
low biases but high variances. They are also computationally
expensive for large data sets and are unable to determine the
importance of the features. Also, for high-dimensional cases, the
notion of the nearest neighbours is very hard to define and the data
tends to be spare.

In this study, we explored techniques that are able to provide
the statistical interpretation of the new data that are being
classified. Knowing the posterior probability level of a sample is
mostly important for the class prediction of a new, unknown PRPD
sample which is generated from the same type of defect but does
not originally belong to the original data set. This also enables us to
take into account the risk associated with various types of defects
by setting a threshold for an acceptable ‘degree of membership’
and referring marginal classifications to an expert operator.

An automated classification system consists of feature
extraction methods and classifier algorithms that are implemented
and suitable to improve the recognition of the PD patterns of
various sources in different insulation media. Once the phase-
resolved PD patterns are recorded, features are generated.
Subsequently, to present a comprehensive classification system to
work in different insulation media, high performance, applicable
dimensionality reduction methods are chosen (exploring almost all
available well-developed feature extraction techniques) that are
combined with almost all well-known classifier algorithms.
Dimensionality reduction is required to extract features that
represent the fingerprints of the PD source. This removes
redundant and ineffective information and decreases the number of
features while still capturing a high portion of information [23, 24].
The feature extraction step is very important in this procedure and
the efficiency of a classifier is highly dependent on the wellness of
extracted features.

In this work, in order to present a comprehensive classification
system and to explore almost all available well-developed feature
extraction techniques, the application of 12 high performance
dimensionality reduction techniques (including the traditional
statistical operators) that are applicable to the PRPD pattern data is
investigated. Following the feature extraction procedure, ten well-
known algorithms for the classification of the PD sources are
employed and investigated. The classification success rate of their
application on the PD patterns of the discharge activities in
different insulation media including air, oil, and SF6 gas has been
evaluated.

Some of the classifier algorithms studied such as fuzzy
classifiers are not only able to show a high-classification accuracy
rate but also can calculate the ‘degree of membership’ of a sample
to a class of data. This enables probabilistic interpretation of a new
PRPD pattern that is being classified. The availability of this
degree of membership feature for future PRPD samples would
allow safer decision making based on the risk associated with the

different sources of the PD in HV apparatus. This also allows us to
reject a sample from classification by setting a threshold for an
acceptable ‘degree of membership’ for different sources in
different HV insulation systems.

The paper is organised as follows. In Section 2, the framework
that has been used for the classification of the PD sources is
described. The experimental setup that was used to generate the
datasets is presented in Section 3. The PRPD patterns of the test
cells studied are presented in Section 4. Sections 5 and 6 are a
review of the feature extraction techniques and classifiers. The
results are discussed in Section 7, and finally, Section 8 concludes
the paper.

2 Comprehensive framework for partial discharge
classification
A pattern classification algorithm generally consists of three main
steps [23, 24]:

i. data pre-processing,
ii. feature extraction (dimensionality reduction), and
iii. implementation of the classifier algorithm and conducting a

probabilistic interpretation.

Below is a description of each step when applied to a PD source
classification problem using the PRPD patterns.

2.1 PRPD data pre-processing

PRPD patterns provide a bivariate distribution Hn(φ, q) that shows
the relationship between discharge rate (n), discharge magnitude
(q), and power frequency phase angle (φ) of the PD pulses. To
generate a dataset from this bivariate distribution, the 2π phase
angle window is divided into M phase windows and fingerprints
are extracted from the PRPD pattern. In each 2π /M-wide phase
window, parameters such as the average of discharge magnitudes,
the maximum value of discharge magnitude, and the number of
discharges are derived. Considering these parameters in reference
to the phase angle results in three univariate distributions of peak
discharge, Hqmax(φ), average discharge, Hqmean(φ), and discharge
rate, Hn(φ), respectively. To generate one data point of the dataset,
the PRPD pattern is recorded for T seconds and then the univariate
distributions are evaluated. To generate a dataset of P points, we
have to repeat this process P times. Finally, the data points are
transformed into a matrix whose dimension is 3M × P. In this
work, typical values for these parameters are M = 100, P = 300,
and T = 3 s (or 180 cycles of a 60 Hz sinusoidal) for each type of
defect used for training and evaluating the classifiers. The values of
parameters M, P, and T are selected based on the optimisation
algorithm that uses both the percentage of misclassified test
samples as an estimate of the error rate and the processing time.
This algorithm optimises the parameters by minimising the
multiplication of these two factors. We normally allow 2 s between
every two consequence data points.

2.2 PRPD feature extraction

The first major problem in building a classifier is the curse of
dimensionality [23], which should be resolved by selecting a
proper combination of available features through the application of
dimensionality reduction. Another reason for reducing the features
is due to the need for less computational complexity, high speed of
classification, and less required memory. A large number of
features and a limited number of observations can also lead the
learning algorithm to over-fit to noise. In addition, more features
will make training a classifier more difficult. Moreover, the
implementation of the feature extraction techniques leads to the
removal of multi-collinearity, which improves the performance of
the classification algorithm [23]. To address these problems, one
needs to select as many potentially-useful features as possible, and
then reduce the number of features for classification.

A limited number of dimensionality reduction techniques have
been applied in the classification of the PDs in the past [6,15];
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however, during the last couple of decades, new linear and
nonlinear algorithms for dimensionality reduction have been
presented in the area of machine learning. These modern, more
powerful techniques, which are suitable for improving the online
monitoring of PD sources, are employed in the proposed system.
These techniques attempt to extract and identify data resting on a
low-dimensional manifold of dimension K (K < 3M), from a high-
dimensional space ℝ3M that the manifold is embedded in. ‘K’ is
typically referred to as the intrinsic dimension of the dataset [23].

2.3 PRPD classifier algorithms

Following the feature extraction step and construction of a set of
training data from each of the PD sources, a classifier algorithm is
required to find decision boundaries between classes in the low-
dimensional space. The classification stage comprises performing
of two tasks: training (learning) and testing (classifying) [25].

The training task aims at partitioning the new low-dimensional
feature space, whereas the testing task is to assign the input pattern
to one of the classes. Performance evaluation is then carried out
based on the errors, which might have happened in these
assignments. Indeed, a recognition system is designed to assign
future samples that are probably different than the training data.
The trained system should be efficiently optimised to show the
desired performance on the prediction of the test data. A highly-
optimised classifier (to get maximum performance on the training
dataset) sometimes results in undesired performance (overfitting)
on the test set. Another problem that may occur during the
classification of the test set is due to the large number of unknown
parameters related to the classifier, such as the number of
parameters in a large neural network [25]. Moreover, the ratio of
the number of training samples to the number of features is an
important factor. If too small, it would influence the performance
of the classifier (i.e. curse of dimensionality).

To design a powerful classifier for accurate PD source
identification in different insulation media, a thorough
investigation is required, using various algorithms for extracting
features from the PRPD patterns and building a number of
classifiers. This investigation is performed in this work to improve
the classification accuracy rate of the PD sources in different
insulation systems and conducting probabilistic interpretation of
the results.

3 Experimental procedure
The classification of the different sources of the PD requires a
database for training the classifier and testing. In almost all
previous studies, such a database is generated based on the
measurements conducted on artificial defects that are implemented
in controlled laboratory test cells [4–6,11,14,15]. The measurement
procedure and system calibration have been performed according

to the IEC 60270 standard [26] using a commercial PD
measurement system, Omicron MPD 600.

Fig. 1 shows the experimental setup that consists of a HV
transformer energising the test cell, a coupling capacitor, the
quadruple measuring impedance, and commercial PD measuring
equipment. The voltage levels of 20 and 50% above the inception
voltage have been applied to different test cells and PRPD patterns
have been recorded for each test sample. The scope of the current
work is limited to single-source defects. The authors have also
proposed a novel approach to identify PD sources when multiple
sources of PD are present [27]. 

The test cells used in this work, originally proposed by
Hampton and Meats [28], are shown in Figs. 2 and 3. These test
cells are built to model different types of PD activities with
different discharge mechanisms in the air, oil, or SF6. SF6 test cells
are designed to model the common defects of the GIS in small
scale and be able to withstand a pressure of up to 500 kPa,
consistent with gas pressure in the GIS. Sparking from a floating
electrode, moving particles and the fixed protrusion are some of the
major sources of the PD in a GIS [29] whose laboratory models are
shown in Fig. 2. The test cells that can generate PD due to the free
particles in oil and a needle electrode in oil are shown in Fig. 3.
The same setup as that shown in Fig. 2c (but filled with air at 100 
kPa) was employed to generate PD due to the corona in the air. 

4 PRPD patterns of test cells
The PRPD patterns of the six PD test cells are shown in Fig. 4. For
the floating electrode in SF6 (see Figs. 2a and 4a), an inception
voltage of ∼15 kV was measured at 400 kPa. It was observed that
the inception voltage and discharge magnitudes both increased with
an increase in SF6 pressure. It was also observed that both the
inception voltage and PD magnitudes are strongly related to the

Fig. 1  Experimental test setup consisting of a 60-Hz HV source, a
capacitive divider to measure the AC voltage, the test cell, and the Omicron
MPD 600 PD measurement system

 

Fig. 2  SF6 test cells
(a) Floating electrode, (b) Free particle, (c) Point-plane electrodes. Each cell consists
of a Perspex tube clamped by nylon screws between the top and bottom aluminium
caps that can withstand a pressure of up to 500 kPa
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gap size between the energised electrode and the floating electrode,
but not much sensitivity to the distance between the sphere and the
ground electrode (5 mm in this experiment) was noticed. 

The PRPD pattern shown in Fig. 4b is related to a free particle
in SF6 at 400 kPa. This setup includes a small bearing with a
diameter of 3.17 mm located on a concave dish ground electrode.
The HV electrode is a 25.4-mm diameter sphere fixed at 10 mm
from the ground electrode. As the voltage is increased to 10.5 kV,
the small bearing starts to move across the plate towards the edge
and back. This movement generates PDs between the bearing and
ground dish. PDs occur because of the charges that are transferred
from the bearing to the ground electrode [29]. This experiment was
repeated for different sizes of the bearing. When the size of the
bearing increases, the inception voltage decreases and the PD
magnitude increases. However, if the size of the bearing increases
to almost half of the gap distance, the movement will be a mix of
swinging and bouncing when the bearing reaches the point right
under the HV electrode. This is observable in the PRPD pattern
too.

The PRPD pattern of a point-plane electrode in SF6 at 400 kPa
is shown in Fig. 4c. To generate a PD in this setup a tungsten
needle with a tip radius of 10 μm, located at a distance of 15 mm

from the ground plate, has been used. This corona pattern is, in
fact, the PRPD pattern of namely positive corona in SF6, i.e. it
happens as the applied voltage increases somewhat higher than the
negative corona inception voltage in SF6. The typical PD
magnitude of the negative corona in SF6 is in the range of −3 pC to
−1 pC, which happens in the negative half cycle of the applied
voltage. Since the low level of discharge of negative corona, in this
work, we have considered positive corona only. Positive corona
inception voltage was measured at ∼15 kV for this setup. However,
the discharge magnitude remains almost the same while the applied
voltage is in the range of the inception voltage and approximately
twice the inception voltage. Once the applied voltage is more than
twice the inception voltage, the PRPD pattern and PD magnitudes
start to show changes. There is no significant variation of the
PRPD pattern features with a variation in the SF6 pressure.

The PRPD pattern of a free particle in oil is shown in Fig. 4d.
This setup and the electrodes and distances are the same as the
setup of Fig. 2b (except for the diameter of the bearing that is 2.77 
mm). At a voltage of about 12.5 kV, the bearing is held right under
the HV electrode with (almost) visible PD activities between the
bearing and the ground plane. The PD leads to the release of gas
bubbles which move from the PD location towards the HV
electrode. Sometimes, bearing starts to bounce for a short period of
time that is visible to naked eyes. PD magnitude will increase as
the size of bearing increases. The larger bearing can store and
transfer more charge to the ground electrode so PD magnitude
becomes higher. Bouncing of the free particle under the HV
electrode will also be more for bigger bearings. Comparing this
pattern to the same source of PD in SF6, the spread of discharge in
SF6 can be explained by the movement of bearing on the ground
electrode surface which leads to a bigger volume of the discharge
region.

To model corona discharge in oil, another source of PD in oil, a
10 μm tungsten needle electrode configuration is used (Fig. 3b).
The HV is connected to the needle with its tip located 10 mm away
from the grounded electrode. To avoid flashover, a grounded
electrode is covered with a piece of insulating paper. The PRPD
pattern of the needle electrode is shown in Fig. 4e. The inception
voltage of this test cell was 20 kV. It is observed that the PD effects
in this pattern are more vigorous in the positive half cycle with a
large dispersion.

The last PRPD pattern shown in Fig. 4f is related to the corona
in the air. This setup is similar to that used for the generation of
corona in SF6 but this experiment is done in air at 100 kPa. The
inception voltage of this test cell was 6 kV.

5 Feature extraction techniques for PRPD
patterns
For datasets such as the PD dataset with a large number of features
and a limited number of observations, feature extraction should be
applied [23, 24]. Having more information about a PRPD pattern
seems to be useful; however, having many features compared with
the number of observations is not efficient for producing the
desired learning performance. Feature extraction techniques
(interchangeably called dimensionality reduction) remove
redundant and ineffective information and decrease the number of
features while still the geometry of the data manifold is retained. In
this work, various computer codes are developed to employ
modern feature extraction techniques which are suitable for online
monitoring of PD sources.

5.1 Dimension reduction algorithms

A dimension reduction technique is a transformation method that
transforms the data from the high-dimensional feature space to a
new informative space with lower dimensionality [30]. In other
words, such transformation transforms the matrix X3M × NP to a
matrix YK × NP, where K is the number of features in the reduced
(new) space, M is the number of windows in phase, and N is the
number of classes.

In previous studies, a very limited number of dimension
reduction techniques have been applied for PD recognition.

Fig. 3  Oil test cells
(a) Free particle, (b) Point-plane electrodes where the tip of the needle is 20 μm in
diameter and the ground plane is covered with insulation paper to avoid flashover

 

Fig. 4  PRPD patterns of
(a) Floating electrode in SF6, (b) Free particle in SF6, (c) Point-plane electrodes in
SF6, (d) Free particle in oil, (e) Point-plane electrodes in oil, (f) Point-plane electrodes
in air
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However, improved PD source identification requires more modern
and powerful techniques. In this work, all of the well-developed
dimension reduction techniques were investigated, of which, 11 of
them were found to be efficiently applicable to PRPD datasets.
These techniques are divided into two main groups:

i. linear techniques that include PCA [23], FDA [31], and
ii. nonlinear techniques such as kernel PCA (KPCA) [32], kernel

FDA (KFDA) [33], metric multidimensional scaling (MDS)
[34], stochastic proximity embedding (SPE) [35], isomap [36],
stochastic neighbour embedding (SNE) [37], and local linear
embedding (LLE) [38].

A third group can also be identified under the linear group that
is linear algorithms derived based on the linear approximation of
some local nonlinear algorithms. These algorithms include linearity
preserving projection (LPP) [39] and neighbourhood preserving
embedding (NPE) [40]. A summary of the dimensionality
reduction techniques is shown in Fig. 5. 

The application of all these algorithms on the dataset that is
generated from the PRPD patterns of the different sources of the
PD has been performed and the results are fed to the next step of
the machine learning algorithm after passing them through a pre-
processing stage.

5.2 Statistical operators

Another approach to extract features which are capable of
differentiating between the discharge patterns of different PD
sources is to use statistical parameters which can be applied on the
univariate distributions. Statistical operators that have been widely
used in the literature (e.g. [5, 11]) for PRPD classification include
mean, variance, skewness, Kurtosis, number of local peaks,
discharge asymmetry, phase asymmetry, cross-correlation factor,
and modified cross-correlation factor. Some of these statistical
operators, such as mean and variance, should be computed for both
halves of the power cycle. Skewness and Kurtosis, on the other
hand, are operators that should be computed with respect to a
reference normal distribution [23]. One other feature is the number
of local peaks in the univariate distributions in both positive and

negative half cycles. Some operators have been used to evaluate
the differences between the distributions in the half cycles of the
power frequency. Discharge asymmetry, phase asymmetry, cross-
correlation factor, and a modified cross-correlation factor are in
this group [23].

In this study, a novel approach with the discriminatory
capability to separate different PD classes is implemented using the
q-quantiles [23] in addition to the other statistical operators. In this
approach, we divide the PD distribution into q + 1 groups with
equal numbers of data points (in this work, q = 3 is assumed, i.e.
PD distribution is divided into 0–25, 25–50, 50–75 and 75–100%
of the total number of data points). By adding the extracted
features using the q-quantiles to those obtained using the operators
in the literature applied to Hqmax(φ), Hqmean(φ), and Hn(φ), a
fingerprint of each discharge pattern is generated. This approach
considerably increases the discriminatory power of commonly-
used statistical operators [6,11,15].

The results of the classifiers using statistical operators will be
compared with classifiers that use dimension reduction techniques.
A comparison of the overall classification success rate related to
the specific feature extraction/classification algorithms will help in
finding the more efficient combination of algorithms in different
insulation media.

6 Pattern classification algorithms for PRPD
patterns
Neural networks and SVM are the commonly-used classifier
algorithms in PRPD recognition. However, we show that there are
other techniques that have more superior performance, and in
addition, are capable of estimating posterior probabilities. In this
work, ten well-known algorithms for the classification of the PD
sources have been used. These algorithms are: SVM [23], kernel
SVM (KSVM) [23], fuzzy SVM (FSVM) [41], fuzzy kNN (FkNN)
[42], multi-layer perceptron (MLP) [43], radial bases function
networks (RBFN) [24, 43], probabilistic neural networks (PNN)
[23, 44], Bayesian [23, 24], Naïve Bayes [23], and AdaBoost [45].
Some of these algorithms including fuzzy classifiers are not only
capable of showing high classification accuracy rate, but they also
calculate the ‘degree of membership’ of a sample to a class of data
beside assigning a class label. This enables probabilistic
interpretation of a new PRPD pattern that is classified. The
availability of this degree of membership for future PRPD samples
would allow safer decision making based on the risk associated
with different sources of the PD in HV apparatus. The fuzzy
algorithms which have been used in this study are FkNN [42] and
FSVM [41]. A summary of the classifier algorithms is shown in
Fig. 5. Various computer codes are developed to employ the
proposed feature extraction/classifier algorithms for online
monitoring of PD sources. The performance evaluation of all
classifier algorithms integrated with different feature extraction
algorithms on PD source identification is presented in the
following sections.

7 Results and discussions
7.1 Classification procedure

Using the experimental setups, a total of 300 data points are
generated for each of the six different classes of the PD source. For
each type of defect, the data points form the dataset matrix X3M × NP
whose dimension is 300 × 1800 (i.e. M = 100, P = 300, N = 6).
The application of the dimension reduction algorithms listed in
Section 5.1 (except for FDA and KFDA) on matrix X results in a
dimension reduction from 300 in the original space to nine in the
new informative space, i.e. K = 9. The new dimension K = 9 is the
appropriate dimensionality of the reduced feature space that
corresponds to the intrinsic dimensionality of the data determined
by maximum-likelihood estimation [23]. However, for FDA and
KFDA, the new dimension is equal to K = 5. This number is
selected based on FDA and KFDA algorithms which require the
dimension be (at most) one less than the number of classes. In
summary, the dimension reduction techniques (other than FDA and

Fig. 5  PRPD feature extraction and classifier algorithms
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KFDA), FDA (including KFDA), and statistical operators reduce
the dimension of the original datasets from 300 to 9, 5, and 55,
respectively. (Applying the five operators of mean, variance,
skewness, Kurtosis, and number of peaks to both positive and
negative cycles of Hqmax(φ), Hqmean(φ), and Hn(φ) results in 30
features for each PRPD pattern. Furthermore, applying additional
operators of discharge asymmetry, phase asymmetry, cross-
correlation factor, and modified cross-correlation factors will
generate extra seven features [6]. In addition, the application of the
three quantiles on both cycles leads to the generation of 18 more
features. In total, a feature vector with 55 (=30 + 7 + 18) entries is
constructed for each PRPD pattern. This vector can be used as the
fingerprint of each discharge pattern for discrimination of different
patterns.).

To perform the PD source classification, the dimension-reduced
dataset Y is fed to the classifier algorithms for both training and
testing purposes. To do a performance evaluation of each classifier
algorithm, the classification error rate needs to be calculated. The
classifier at first should be trained using training samples. Then, it
has to be evaluated based on its classification performance on the
test samples. The percentage of misclassified test samples is
considered as an estimate of the error rate. To do so, and to also
optimise the different classifier parameters, first the data in Y is
split into two subsets: 80% for training and 20% for testing. The
80/20 ratio for testing and training is selected as a trade-off; if the
training set becomes small, the classifier will not be very robust
and if the test subset becomes small then the confidence in the
estimated error rate will be low [25]. To run the optimisation
procedure for different classifier parameters, a ten-fold cross
validation (rotation method) is applied to the 80% training set. The
n-fold cross-validation algorithm has been selected over leave-one-
out or holdout methods because of its higher efficiency and better
performance on the PD subset [25]. This method divides the
training set into n subsets of equal size and uses n − 1 subsets for
training and one for testing. This procedure is repeated n times
until all the training samples have been used for the training and
exactly once for testing. In this study, this cross-validation process
has been repeated ten times and ten error rates have been averaged
to produce a single classification accuracy rate of the algorithms on
the training set. The optimal values for different parameters of
classifiers will be found based on this classification accuracy.

After optimisation, the classifier is trained using the whole
training subset with the optimal value of parameters. In the end, to
measure the performance evaluation of each classifier algorithm,
the classification error rate is calculated by assigning a class label
to the testing samples (i.e. the 20% that did not contribute in
training and optimisation process). To calculate a more accurate
error rate for each classifier, the training/testing procedure of data
splitting, cross validation, and testing has been repeated five times.
Classification accuracy is averaged over the five trials and
represents the success rate of each feature extraction/classifier
algorithm. Data samples for the six different classes of PD sources
are captured under two levels of voltage =20 and 50% higher than
the inception voltage and two different noise levels. The
classification accuracy rate evaluated for the combination of each
classifier integrated with different feature extraction algorithms are

listed in Table 1. This table presents the overall classification
success rate related to the specific pairs of feature extraction/
classification algorithms for each individual source of the PD. 

7.2 Performance analysis of classifiers

The results show that not only the nonlinear feature extraction
algorithms work properly when applied on PD datasets, but also
some of them outperform the linear algorithms and statistical
operators. This advantage is because nonlinear feature extraction
algorithms are capable of dealing with complex nonlinear data
manifold and work better with higher discriminatory that leads to
better performance of the classifier. Since different data samples
from different sources are somehow mixed up with each other,
better performance of nonlinear algorithms is expected.

As is seen in Table 1, almost all algorithms result in a desirable
classification accuracy; however, FSVM, KSVM, and AdaBoost
outperform the other seven algorithms. Among these classifiers,
Naïve Bayes shows less accuracy that is due to the basic
assumption in this algorithm which is to assume different features
are statistically independent [23]. Also, SVM attains lower
classification accuracy compared with KSVM and FSVM because
it is a linear classification algorithm and may not be able to deal
with the nonlinearity of data samples. Despite its simple
architecture, kNN shows a good performance along with different
feature extraction algorithms. These tables show that classifier
algorithms work with high accuracy when integrated with MDS,
KPCA, Isomap, SNE, and LPP.

The results also show FSVM and KSVM integrated with MDS
outperform other feature extraction/classification algorithms with a
classification rate of 99.4 and 99.1%, respectively. FSVM and
KSVM start by mapping the dataset onto a higher-dimensional
feature space where in that space the classes can be classified by a
hyperplane [23, 41]. The advantage of the FSVM over KSVM is
that the importance of some training points can be considered in
the training process. This leads to making the classifier less
sensitive to the effects of noise and outliers [41]. Classifier
algorithms integrated with PCA and FDA from the linear group
work with higher-classification accuracy compared with statistical
operators. However, classification using SPE as the feature
extraction method does not show any desirable accuracy compared
with other feature extraction algorithms.

7.3 Probabilistic classification

Table 1 only shows the overall classification accuracy rate of
different algorithms. However, in the specific area of PD source
identification, knowledge of the ‘degree of membership’ of a test
sample to a class of data would be beneficial rather than just a class
label. Such knowledge enables probabilistic interpretation of an
unknown PRPD pattern that is being classified.

Of the algorithms studied in this study, FKNN [42], FSVM
[41], and Bayesian [23, 24] have the capability to calculate the
posterior probability of a test sample belonging to each class of
data. Besides, as shown in Table 1, these algorithms also have a
higher classification accuracy rate. To demonstrate the posterior
probability calculated by these algorithms, seven data samples

Table 1 Overall classification accuracy rate of classifiers on data output of different feature extraction techniques
Statistical operators PCA FDA KFDA Kernel PCA MDS SPE Isomap SNE LLE NPE LPP

SVM 92.1 95.7 96.1 91.9 94.7 95.5 84.2 97.2 95.8 95.5 88.3 93.3
KSVM 94.5 97.5 98.1 95.2 98.1 99.1 88.9 98.6 97.5 97.5 96.1 96.9
FSVM 95.6 97.8 98.1 96.7 98.9 99.4 90.5 98.6 98.3 97.8 96.7 98.1
FkNN 91.9 93.6 95.8 96.1 97.6 98.6 79.7 96.4 98.8 83.6 95.5 93.1
MLP 91.4 93.3 97.5 91.7 97.7 97.7 88.6 96.9 95.2 81.4 90.5 93.1
RBFN 95.3 96.9 97.7 95.8 98.6 96.9 89.3 92.8 93.1 95.0 90.8 97.8
PNN 93.6 95.3 98.1 92.8 96.1 96.4 85.0 96.1 93.6 82.7 88.1 96.1
Bayesian 94.7 96.1 97.2 96.4 96.4 97.8 90.2 96.9 94.4 96.1 91.1 95.8
Naïve-B 88.6 89.2 95.0 91.7 90.3 94.2 76.1 89.2 92.2 94.7 78.6 91.9
AdaBoost 95.8 97.5 98.6 97.8 97.8 97.5 89.7 97.5 97.8 98.1 94.4 96.9
Bold values indicate the largest and second largest values.
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were randomly selected. The first six samples were from the
samples that were correctly classified. The seventh sample was
from those that were misclassified. The probabilistic classification
results for these seven samples are shown in Tables 2–4 where we
have used the classifiers above. In Table 2, for example, FSVM/
KPCA has been employed. Each of the seven samples has a
different posterior probability that shows its ‘degree of
membership’ to different sources of PD. In this table, the first
sample, which is originally from class 1, is determined to belong to
classes 1–6 with probabilities of 84.2, 2.4, 0.4, 0.1, 12.9, and 0.0%,
respectively. The seventh sample, which originally belongs to class
3, however, is misclassified to class 2 with a posterior probability
of 36.5%. Its ‘degree of membership’ to class 3 (the correct class)
is only 30.8%. 

The determination of the ‘degree of membership’ for PRPD test
samples would allow safer decision making by considering the risk
associated with different sources of PD in HV apparatus. The
posterior probability level of a sample belonging to a class of data
has some other advantages. One of these advantages is mostly
important for the class prediction of a new unknown PRPD sample
which is generated from the same type of defect but does not
originally belong to the original dataset. This probability shows
when this sample is classified into one class, how similar this
sample is to that class, and also how much is the probability of this
sample belonging to other classes of data. Based on this
probability, it is even possible to reject a sample from classification
by setting a threshold for an acceptable ‘degree of membership.’
This also allows taking the risk of different PD sources into
account. Such ability will, for example, require a marginal
classification to be referred to an expert operator. The threshold for
different classes of PD would be defined based on the risk imposed

by a specific source of the PD for the safe operation of HV
apparatus under test.

8 Conclusions
In this study, the application of an enhanced automated
classification system on different sources of PD in different HV
insulation media was investigated. The results are useful to
increase the automated classification accuracy rate of the PD
source identification in a non-time consuming way. The
determination of the ‘degree of membership’ for the PRPD test
samples was presented which allows safer decision making by
considering the risk associated with different sources of the PD in
HV apparatus. Based on this probability, it is even possible to
reject a sample from classification by setting a threshold for an
acceptable ‘degree of membership.’ This also allows taking the risk
associated with different PD sources into account. To collect
necessary information for making a thorough dataset, laboratory
experiments were performed. The laboratory measurement tests
were performed on test sets that are built to model PD activities
with different mechanisms in the air, oil, or SF6. Data samples for
six different classes of PD sources are captured under two levels of
voltage equal to 20 and 50% higher than the inception voltage and
two different noise levels. Eventually, the results of the automated
classification system on insulation PD sources based on different
feature extraction and classification algorithms were demonstrated.

These results show that FSVM and KSVM integrated with
MDS outperform other feature extraction-classification algorithms
with a classification rate of 99.4 and 99.1%, respectively. However,
the application of classifier algorithms on MDS, KPCA, Isomap,
SNE, and LPP show a high-accuracy classification rate. From these

Table 2 FSVM classification posterior probability rate for seven PD test samples on data output of KPCA. C: sample classified;
M: misclassified; Class 1: floating electrode in SF6; Class 2: point-plane electrodes in SF6; Class 3: free aluminium particle in SF6;
Class 4: free aluminium particle in oil; Class 5: point-plane electrodes in oil; Class 6: point-plane electrodes in air
Data point True class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 C/M
1 1 84.2 2.4 0.4 0.1 12.9 0.0 C
2 2 0.0 74.0 10.1 0.0 15.9 0.0 C
3 3 1.1 3.0 79.6 4.8 9.5 1.9 C
4 4 10.4 1.8 13.6 66.3 6.1 1.7 C
5 5 1.6 12.8 8.5 0.5 75.9 0.6 C
6 6 0.0 0.0 0.3 0.0 0.0 99.7 C
7 3 1.6 36.5 30.8 2.4 27.2 1.5 M
Bold values indicate the largest values.

 

Table 3 Bayesian classification posterior probability rate for seven PD test samples on data output of PCA
Data point True class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 C/M
1 1 100 0.0 0.0 0.0 0.0 0.0 C
2 2 0.0 69.5 0.0 0.0 30.5 0.0 C
3 3 0.0 31.6 60.6 0.0 7.8 0.0 C
4 4 0.0 0.0 0.0 50.9 49.0 0.1 C
5 5 0.0 14.2 11.2 0.2 74.5 0.0 C
6 6 0.0 11.0 17.7 0.2 7.2 64.0 C
7 4 0.0 0.1 0.0 38.7 61.1 0.0 M
Bold values indicate the largest values.

 

Table 4 FkNN classification posterior probability rate for seven PD test samples on data output of LPP
Data point True class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 C/M
1 1 86.3 0.0 0.0 2.9 10.8 0.0 C
2 2 0.0 77.0 16.6 0.7 5.8 0.0 C
3 3 0.0 31.7 62.6 0.0 5.8 0.0 C
4 4 0.0 0.0 0.0 86.3 13.7 0.0 C
5 5 0.0 18.0 5.8 2.2 74.1 0.0 C
6 6 0.0 13.7 3.6 0.0 1.4 81.3 C
7 2 0.0 38.1 43.9 0.0 18.0 0.0 M
Bold values indicate the largest values.
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results, it could be concluded that not only the nonlinear feature
extraction algorithms work properly when applied on PD datasets,
but also some of them outperform the classification results by
linear algorithms and statistical operators. Classifier algorithms
integrated with PCA and FDA from the traditional linear group
show acceptable performance and they even work with higher-
classification accuracy compared with statistical operators.

The probabilistic interpretation of an unknown PRPD pattern
that is to be classified was presented using some of the applied
classifier algorithms. These classifier algorithms, including Fuzzy
classifiers (FSVM, FkNN) and Bayesian, are able to show a high-
accuracy rate of classification further to providing knowledge of
the ‘degree of membership’ of a test sample to a class of data. This
could be more beneficial rather than a class label assignment. Such
knowledge enables probabilistic interpretation of an unknown
PRPD pattern that is being classified. Overall, these classification
results and availability of posterior probability show prosperous
performance in this area of studies and to some extent indicate the
promising possibility of online and offline automatic classification
of PD sources in HV apparatus.
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