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ABSTRACT

Gesture recognition for visually impaired persons (VIPs) is a useful technology for enhancing their communications and increasing accessibility. It is 
vital to understand the specific needs and challenges faced by VIPs when planning a gesture recognition model. But, typical gesture recognition meth-
ods frequently depend on the visual input (for instance, cameras); it can be vital to discover other sensory modalities for input. The deep learning (DL)-
based gesture recognition method is effective for the interaction of VIPs with their devices. It offers a further intuitive and natural way of relating with 
technology, creating it more available for everybody. Therefore, this study presents an African Vulture Optimization with Deep Learning-based Gesture 
Recognition for Visually Impaired People on Sensory Modality Data (AVODL-GRSMD) technique. The AVODL-GRSMD technique mainly focuses 
on the utilization of the DL model with hyperparameter tuning strategy for a productive and accurate gesture detection and classification process. The 
AVODL-GRSMD technique utilizes the primary data preprocessing stage to normalize the input sensor data. The AVODL-GRSMD technique uses a 
multi-head attention-based bidirectional gated recurrent unit (MHA-BGRU) method for accurate gesture recognition. Finally, the hyperparameter opti-
mization of the MHA-BGRU method can be performed by the use of African Vulture Optimization with Deep  Learning (AVO) approach. A series of 
simulation analyses were performed to demonstrate the superior performance of the AVODL-GRSMD technique. The experimental values demonstrate 
the better recognition rate of the AVODL-GRSMD technique compared to that of the state-of-the-art models.
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INTRODUCTION

Human–computer interaction (HCI) refers to a regulated 
loop process where data sent by devices and humans should 
be considered whole (Padmavathi, 2021). This interac-
tion loop is an integration of feedforwards and feedback. 
Meeting the challenges of blind persons in accessing con-
textual and graphical data is challenging (Agarwal and Das, 
2023). Gesture detection has a considerable amount of real-
istic applications that include remote teaching guidance, vir-
tual reality/augmented reality (VR/AR) games, and interac-
tion with remote automation equipment operations, remote 
health care, and intelligent vehicles (Gorobets et al., 2022). 
Moreover, gesture detection grabs special interest to under-
stand the ways to enhance the standard of life of people with 
hearing disorders, and gesture detection is utilized in trans-
lation tasks and sign language recognition for deaf persons 

(Gangrade and Bharti, 2023). Several research studies on 
gesture detection were carried out, and remarkable progres-
sion has been made in this field.

Gesture detection is classified into dynamic gesture detec-
tion and static gesture detection (Li et al., 2022). Static ges-
ture detection needs organizing and learning the gestures’ 
spatial features without concerning the temporal features 
(Ryumin et al., 2023). Conversely, dynamic gesture detec-
tion needs to consider both the temporal and spatial features 
of the gesture since it varies over period. Hence, dynamic 
gesture detection is highly sophisticated compared to static 
gesture detection; however, the utilization of dynamic ges-
tures is broader (Sahana et al., 2022). This study offers a 
lightweight gesture action detection network for real-time 
HCI and control. However, the potentiality of potential 
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gesture detection remains an unsolved issue because of 
the variances in the syntactic and semantic framework of 
gestures (Pandey, 2023). At present, fully automatic meth-
ods for detecting various dynamic gestures do not exist 
(Gangrade and Bharti, 2023). Devising these methods needs 
deep semantic analyses that can be conducted at a superficial 
level owing to the limitation of text analysis approaches and 
knowledge bases and can attain word level detection. Thus 
the presented approach has few reference important for the 
sign language detection of persons with hearing disorders 
(Varsha and Nair, 2021).

This study presents an African Vulture Optimization with 
Deep Learning-based Gesture Recognition for Visually 
Impaired People on Sensory Modality Data (AVODL-
GRSMD) technique. The AVODL-GRSMD technique uti-
lizes the primary data preprocessing stage to normalize the 
input sensor data. The AVODL-GRSMD technique uses a 
multi-head attention-based bidirectional gated recurrent unit 
(MHA-BGRU) method for accurate gesture recognition. 
Finally, the hyperparameter optimization of the MHA-BGRU 
technique is performed by the use of the AVO method. A 
series of simulation analyses were conducted to validate the 
improved performance of the AVODL-GRSMD technique.

RELATED STUDIES

The authors in Adeel et al. (2022) define a gesture-based con-
fidence assessment (GCA) method for hand gesture recog-
nition (HGR) for identifying the state of mind based on the 
hand actions in an interview as a context. This method is also 
valuable for visually impaired persons (VIPs) when conduct-
ing or performing an interview. Previously, there was without 
work completed to identify a person’s state of mind utilizing 
HGR. This method was dependent upon a conventional neu-
ral network (CNN) with long short-term memory networks 
(LSTM) for capturing the temporal data. In Zhang and Zeng 
(2022), touch gestures were predictable by a trained radial 
basis function (RBF) network, but integrated gestures can be 
demonstrated by Petrinet, which establishes a logic, timing, 
and spatial relationship model. As a result, the Braille input 
regarding multi-touch gesture recognition was executed.

Deepa et al. (2023) presented a structure that utilizes CNN 
for HGR. The gesture sign has been verified and exposed to 
binarization, but the image was divided into background and 
foreground. Contours can be identified in the binarized image. 
Feature extraction has been completed utilizing the SIFT tech-
nique. The feature extraction can be used by the CNN tech-
nique for recognizing the HGR. The HGR was provided as 
an outcome from the text format. Can et al. (2021) proposed 
a DL-CNN approach which categorizes hand gestures effi-
ciently in the investigation of near-infrared and color natural 
images. This paper presents a novel deep learning (DL) tech-
nique dependent upon CNN for recognizing hand gestures, 
enhancing the rate of recognition, testing, and training time.

Al-Hammadi et al. (2020) presented an effective 
 diffusion-convolutional neural networks (DCNN) algorithm 
for HGR. The presented technique utilized transfer learning 
(TL) to beat the lack of huge labeled hand gesture database. 

Kraljević et al. (2020) examined a smart home automatiza-
tion method specially planned for providing real-time sign 
language recognition. A new hierarchical system can be 
projected comprising resource-and-time-aware elements—a 
wake-up element and better performance sign recognition 
element dependent upon the Conv3D network. Lahiani 
and Neji (2018) proposed a static HGR method for mobile 
devices by integrating the histogram of orientated gradients 
(HOG) and local binary pattern (LBP) features that correctly 
identify hand poses.

THE PROPOSED MODEL

This study concentrates on the development of an automated 
gesture recognition tool named the AVODL-GRSMD tech-
nique for visually impaired people based on sensory modal-
ity data. The AVODL-GRSMD technique exploits the DL 
model with hyperparameter tuning strategy for effectual and 
accurate gesture detection and classification process. The 
AVODL-GRSMD technique follows three major processes, 
namely data preprocessing, MHA-BGRU recognition, and 
AVO-based hyperparameter tuning. Figure 1 demonstrates 
the workflow of the AVODL-GRSMD system.

Data preprocessing

To preprocess the input data, data normalization is adopted. 
The data recorded by wearable sensors were normalized and 
cleaned for achieving suitable and consistent data for train-
ing a recognition element. Primarily, the imputation process 
can set the missing values of sensor databases with the linear 
interpolation method. Next, the noises can be removed with 
median filtering and a third-order low-pass Butterworth fil-
ter with a 20 Hz cutoff frequency. A normalized model con-
verts all the sensor data with mean and standard derivation.

Gesture recognition using the MHA-BGRU 
technique

At this stage, the preprocessed input can be passed into the 
MHA-BGRU method for gesture recognition. Recurrent 
neural network (RNN) is specialized to process sequence 
data, namely audio, time series, and text, different from 
CNN, focusing on the spatial features of the input (Bao et al., 
2022). In general, RNN conducts a similar computation pro-
cess cyclically on all the segments of the sequence, and the 
subsequent output depends on prior calculation. From the 
network architecture, it involves memory for storing the hid-
den internal state h

t
 that is evaluated by the input x

t
 and prior 

hidden layer (HL) h
t−1

, such that

 ( )1 .t W xh t hh t hh f W x W h b−= + +  (1)

In Eq. (1), W
hh

 denotes the weight of the hidden-to-HL, 
and W

yh
 indicates the weight of hidden-to-output; f

w
 denotes 

the HL function, namely tanh activation function with W 
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parameter shared across time (viz., W
xh

 specifies the weight 
of the input-HL); b represents the corresponding bias vector, 
and the predicted output is as follows:

 .t yh t yy W h b= +  (2)

But this typical architecture faces problems of vanishing 
gradients and exploding weights on long-term sequences.

The bidirectional RNN structure allows the output layer 
to receive future and past data for all the points in the input 
series. More accurately, a forward RNN learns from prior 
information, whereas reverse RNN learns from future infor-
mation in such a way that all the time steps make optimum 
usage of lower- and upper-relevant data. In addition, both 
outputs are spliced together as the concluding output of bidi-
rectional recurrent neural network (BiRNN).

Given that, BiGRU is a BiRNN that exploits the GRU 
for all the hidden nodes. BiGRU splits GRU neurons into 
backward and forward layers that match with negative and 
positive time directions, correspondingly.

The existing statement of the HL of BiGRU can be defined 
by the existing input x

t
, the HL statement output of backward 

layer 1,th −

����
 and the forward layer 1.th −

����
 Meanwhile, BiGRU 

is considered as two single GRUs, the HL state of BiGRU at 
t time is attained by the weighted amount of 1th −

����
 and 1th −

����
 

that is expressed below:

 ( )1,t t th GRU x h −=
�� ����

 (3)

 ( )1,,  t t th GRU x h b−=
�����

 (4)

 .t t t th wh v h b= + +
� �

 (5)

Briefly, BiGRU allows modeling the possible relationship 
between future and historical ship trajectory status with the 
existing state, thus raising prediction accuracy.

The attention-based mechanism was devised in the field 
of image detection, and now it is utilized instead of RNN in 
the field of machine translation. The attention-based mod-
ule highlighted the curial influencing factors. By allocat-
ing a weight to all the elements in the input sequence, thus 
increasing accuracy of the model:

 1 2( ) ( * * )i if x y W x W y′ ′=  (6)

 
1

 ( ( , )) ,*
n

i ii
Attention softmax f x y x

=
= ∑  (7)

Figure 1: Workflow of the AVODL-GRSMD system. Abbreviation: AVODL-GRSM, African Vulture Optimization with Deep 
Learning based Gesture Recognition for Visually Impaired People on Sensory Modality Data.
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where x
i
 signifies the input series. It can be mapped in the 

[0,1] interval by the normalized exponential function that 
can be “weight.” Moreover, Dot product attention refers to 
the weighted combination of x

i
.

The multi-head attention (MHA) module emerges as the 
situation requires, with the attention-related module being 
extensively utilized in image and natural language processing 
(NLP) tasks. Furthermore, all the iteration’s linear conversion 
parameters W for, K, and V seems to be unique; they are not 
shared. MHA can be utilized for processing the information 
from the BiGRU output layer instead of applying average or 
maximum pooling, as follows:

 
 ( , , )    

T

k

QK
Attention Q K V softmax V

d

 
=      

(8)

 0
1 2 3

 ( , , )

( .)h

Multi Head Q K V

head head head head W

−
= ⊕ ⊕ ⊕ ⊕�  (9)

Therefore, the MHA module, a fusion of multi-atten-
tion-based mechanisms, is considered a weighting system 
for information that could allocate weight to the HL of 
BiGRU so that they effectively apply data sources while 
making predictions.

Hyperparameter tuning using the AVO 
algorithm

Finally, the AVO algorithm can be applied for the optimal 
hyperparameter adjustment of the MHA-BGRU model. The 
process involved in the AVO algorithm is elaborated as fol-
lows (Liu et al., 2023). The fitness value for every answer 
was evaluated after forming the initial population, the better 
answer of the initial Vulture group and the better answer of 
the second Vulture group is defined, and the following equa-
tion can choose other answers.

 
1 1

2 2

  
( )  .

  
i

j

BestVulture if p L
R i

BestVulture if p L

==  =  
(10)

In Eq. (10), the parameters L
1
 and L

2
 should be initialized 

with values within [0,1] before the search process, and the 
sum of both variables was equivalent to one as follows:

 
1

  i
i n

i i

F
p

F=

=
Σ  

(11)

Equation (13) is used for mathematical modeling of these 
behaviors. It is used for transition from ERP to ETp that is 
stimulated by the satiety speed or hunger of Vultures.

cos 1  
2 max 2 max

w i iiter iter
T h sin

iter iter
π π

− −

    
= × × + × −          

(12)

 1(2 1) 1   
max

iiter
F rand z t

iter−

 
= × + × × − + 

   
(13)

In Eqs. (12) and (13), F denotes that the agent is satis-
fied, iter

i
 shows the existing amount of iteration, max_iter 

represents the overall amount of iterations, and z represents 
the randomly generated value within [−1,1] which changes 
all the iterations, h denotes the random integer within 
[−2, 2]. rand

1
 represents the random integer within [0,1], 

and w denotes the parameter with constant number. If |F| > 
1 the agent looks for food in dissimilar regions, and AVO 
algorithm entered the ERP. If |F| < 1 AVO algorithm enters 
the ETp, and agent forage in the neighborhood of solution.

Here, the variable P
1
, which ranges from 0 to 1, is used for 

choosing two dissimilar approaches. Before the search oper-
ation, these parameters should be valued. A random integer 
within [0,1] is generated for selecting every strategy in the 
ERP rand. If ≥P

1
, Eq. (15) is exploited. If 

1 1,prand P<  Eq. 
(16) is applied:

 
1

1

1

1

. (15)  
1( 1)

. (16)  

p

p

Eq if p rand
P i

Eq if p rand

≥+  ≥
 (14)

 1( 1) ( ) ( )P i R i D i F+ = − ×  (15)

 ( ) ( ) 1( ) .D i X R i P i= × −  (16)

In Eq. (14), P1(i+1) denotes the agent’s position vector in 
the following iteration, and F indicates the agent’s satiation 
rate. In Eq. (16), R(i) denotes the better agent. Moreover, 
X denotes the agent randomly moving to secure food from 
other agents and can be provided by X = 2×rand, where rand 
denotes the random integer within [0, 1]. P1(i) denotes the 
existing position vector of the Vultures.

 2 31( 1) ( ) ( ) ),P i R i F rand UB LB rand LB+ = − + × − × +  (17)

where rand
2
 has a random integer within [0,1], and rand

3
 has 

taken a number closer to 1.

The fourth stage: exploitation

If |F| < 1, AVO algorithm entered the ETp that also has stages 
where dual dissimilar strategies are applied. The selection 
degree of all the strategies in every internal stage is defined 
by two parameters, such as P

2
 and P

3
. In the first stage, the 

P
2
 variable is used for selecting the strategy; in the second 

stage, the P
3
 parameter is used for selecting the strategy. 

Both parameters should be set to 0 and 1 before carrying out 
the searching process.

The AVO algorithm enters the initial phase in the ETp if |F| 
is between 1 and 0.5. Initially, two dissimilar approaches of 
turn flight and siege combat are implemented. P

2
 represents 

the selection of all the strategies that should be estimated 
beforehand by implementing the search process, and the value 
should be between 0 and 1. Initially, rand, a random integer 
within [0,1], is produced. If the number is ≥P

2
, the Siegefight 

approach is gradually implemented. But if this random num-
ber is <P

2
, then rotary flight strategy is implemented.

 
2

2

2

2

. (20)  
1( 1) .

. (23)  

p

p

Eq if p rand
P i

Eq if p rand

≥+ =  ≥  
(18)

If |F| ≥ 0.5, then the agent was comparatively full and had 
sufficient energy. If the agent congregates on a food source, 
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then it causes intense conflict over food. The weak agent 
tries to take and exhaust food from healthy agents by col-
lecting around the healthy agent.

 41( 1) ( ) ( ) ( ) P i D i F rand d t+ = × + −  (19)

 ( ) ( ) 1( ),d t R i P i= −  (20)

where D(i) is evaluated using Eq. (16), and F denotes the 
satiety of the agent; rand

4
 denotes the random integer within 

[0,1], which is used for increasing the randomness factor. R(i) 
is the better agent of the second category chosen by means of 
Eq. (10). In the existing iteration, P1(i) indicates the agent’s 
existing position vector, where the distance between agent 
and better agent in the second category is attained.

Agent frequently implements a circling flight. A spiral is 
generated between each agent and top two agents, and it can 
be discussed as follows:

( ) ( )5
1

1
( ) cos 1( ) ,

2π
× 

= × ×  
rand P i

S R i P i

 ( )6
2

1( )
( )  sin 1( )

2

rand P i
S R i P i

π
× = × ×    (21)

 1 21( 1) ( ) ( ).P i R i S S+ = − +  (22)

R(i) indicates the position vector of the two better agents 
in the existing iteration. Cos and sin represent the sin and cos 
functions correspondingly. rand

5
 and rand

6
 show randomly 

generated numbers between 0 and 1. S
1
 and S

2
 are attained 

using Eq. (22).

Exploitation (second stage)

Here, ETp, the movement of two agents, collects different 
kinds of agents over the food sources, and aggressive and 
encirclement fighting is performed for finding food. If |F| 
< 0.5, this step of the method was implemented. Initially, 

3prand  is produced that is randomly generated within [0,1]. 
If 

3 3 ,prand P≥  the strategy was to collect different kinds of 
agents on the food source. Or else, if the value is <P

3
, then 

siege fight offensive strategy was implemented.

 
3

3

3

3

.(26)  
1( 1)  

. (27)  

p

p

Eq if p rand
P i

Eq if p rand

≥+ =  ≥  
(23)

( )1
1 2

1

( )
( )

1
 —

((
,

1 ))
 
BestVulture i p i

A BestVulture i F
BestVulture i p i

×
= ×

−

 
2

2 2
2

( 1
( ) —

) ( )

( ) )
,

1(
 
BestVulture i p i

A BestVulture i F
BestVulture i p i

×= ×
−  (24)

where BestVulture
1
 (i) and BestVulture

2
 (i) denote the better 

agent from initial and second category in the existing itera-
tion, whereas F denotes the agent’s satiety, and P1(i) shows 
the existing vector position of the agent.

 
1 21( 1) .

2
A A

P i
++ =  (25)

Lastly, the aggregation of each agent is performed using 
Eq. (26), where A

1
 and A

2
 are attained using Eq. (24), and 

P1(i+1) indicates agent position vector in the following itera-
tion. Figure 2 represents the flowchart of the AVO algorithm.

If |F| < 5, head agent becomes hungry and weaker and 
doesn’t have sufficient energy to fight other agents. At the 
same time, other agents turn out to be aggressive while find-
ing food. They move in dissimilar directions toward the head 
of agent.

 1( 1) ( ) ( ) ( ),P i R i d t F Levy d+ = − × ×  (26)

where d(t) characterizes the distance of the agent to the bet-
ter agent of the second category that is evaluated using Eq. 
(20). Levy flight (LF) designs are employed for higher per-
formance of african-vulture optimization algorithm (AVOA) 
in Eq. (26), and LF was recognized and utilized in several 
MH approaches. LF is computed utilizing Eq. (27).

1

1

(1 ) sin
2( ) 0.01 ,

1
(1 2) 2

2

.

p

p

u
LF x

v

πββσ σ
ββ β

  Γ + ×   ×  = × =  
−  Γ + × ×      

(27)

Fitness choice is a critical aspect of the AV system. An 
encoded result can be utilized to evaluate the aptitude of can-
didate results. Recently, the accuracy value is key condition 
employed for scheming a fitness function.

Figure 2: Flowchart of the AVO algorithm.
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   max ( )Fitness P=  (28)

  ,
TP

P
TP FP

=
+  (29)

in which TP demonstrates the true positive and FP signifies 
the false positive values.

Table 1: Details on two databases.

Class  Labels  
 
 

Dataset
UCI HAR  USC HAD
No. of samples

Walking  C-1  1722  8476

Walking upstairs  C-2  1544  4709

Walking downstairs  C-3  1406  4382

Sitting  C-4  1777  5810

Standing  C-5  1906  5240

Laying/sleeping  C-6  1944  8331

Total number of samples  10299  36948

Figure 3: Classifier result on the UCI HAR dataset. (a and b) Confusion matrices, (c) PR curve, and (d) ROC curve.

RESULTS AND DISCUSSION

In this section, the gesture recognition results of the AVODL-
GRSM technique are validated on two datasets: UCI HAR 
dataset (UCI HAR) and USC HAD dataset (USC HAD), as 
illustrated in Table 1.

Figure 3 demonstrates the classifier results of the AVODL-
GRSM technique on the UCI HAR dataset. Figure 3a and b 
portray the confusion matrix rendered by the AVODL-GRSM 
method on 70:30 of TRP/TSP. The figure specifies that the 
AVODL-GRSM technique has identified and classified all 
six class labels accurately. Likewise, Figure 3c shows the PR 
analysis of the AVODL-GRSM approach. The figures pointed 
out that the AVODL-GRSM approach has acquired maxi-
mum PR performance under six classes. Eventually, Figure 
3d illustrates the receiver operating characteristic (ROC) 
investigation of the AVODL-GRSM model. The results por-
trayed that the AVODL-GRSM approach has proficient out-
comes with maximum ROC values under six class labels.
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Figure 4: Accuracy curve of the AVODL-GRSM system on the UCI HAR dataset. Abbreviation: AVODL-GRSM, African Vul-
ture Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data.

Table 2: Gesture recognition outcome of the AVODL-GRSM system on the UCI HAR dataset.

UCI HAR dataset
Class  Accuracy  Precision  Recall  F-score  MCC
Training phase (70%)
 Walking (C-1)  99.35  97.81  98.37  98.09  97.69

 Walking upstairs (C-2)  99.46  98.07  98.34  98.20  97.88

 Walking downstairs (C-3)  99.50  98.95  97.30  98.12  97.83

 Sitting (C-4)  99.51  98.95  98.24  98.59  98.30

 Standing (C-5)  99.53  99.62  97.85  98.73  98.45

 Laying/sleeping (C-6)  99.21  96.51  99.33  97.90  97.43

 Average  99.43  98.32  98.24  98.27  97.93

Testing phase (30%)
 Walking (C-1)  99.68  98.80  99.20  99.00  98.81

 Walking upstairs (C-2)  99.68  98.49  99.35  98.92  98.73

 Walking downstairs (C-3)  99.68  99.32  98.42  98.86  98.68

 Sitting (C-4)  99.64  98.68  99.24  98.96  98.75

 Standing (C-5)  99.68  99.82  98.38  99.09  98.90

 Laying/sleeping (C-6)  99.51  98.52  99.01  98.77  98.47

 Average  99.64  98.94  98.93  98.93  98.72

Abbreviation: AVODL-GRSM, African Vulture Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on 
Sensory Modality Data.

In Table 2, a brief recognition result of the AVODL-GRSM 
technique is clearly portrayed on the UCI HAR dataset. The 
results identified that the AVODL-GRSM technique accurately 
recognizes six activities. For instance, on 70% of TRP, the 
AVODL-GRSM technique obtains average accu

y
 of 99.43%, 

prec
n
 of 98.32%, reca

l
 of 98.24%, F

score
 of 98.27%, and MCC 

of 97.93%. In addition, on 30% of TSP, the AVODL-GRSM 
technique gains average accu

y
 of 99.64%, prec

n
 of 98.94%, 

reca
l
 of 98.93%, F

score
 of 98.93%, and MCC of 98.72%.

Figure 4 inspects the accuracy of the AVODL-GRSM 
method in the training and validation on the UCI HAR data-
base. The result notifies that the AVODL-GRSM technique 
has greater accuracy values over higher epochs. Also, the 
greater validation accuracy over training accuracy depicted 
that the AVODL-GRSM method learns productively on the 
UCI HAR database.

The loss analysis of the AVODL-GRSM method in the 
training and validation is pointed out on UCI HAR database 
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Figure 5: Loss curve of the AVODL-GRSM system on the UCI HAR dataset. Abbreviation: AVODL-GRSM, African Vulture 
Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data.

Figure 6: Classifier result on the USC HAD dataset. (a and b) Confusion matrices, (c) PR curve, and (d) ROC curve.
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in Figure 5. The results indicate that the AVODL-GRSM 
method has adjacent values of training and validation loss. 
The AVODL-GRSM technique learns productively on the 
UCI HAR database.

Figure 6 shows the classifier results of the AVODL-GRSM 
method on the USC HAD dataset. Figure 6a and b illus-
trates the confusion matrix rendered by the AVODL-GRSM 
approach on 70:30 of TRP/TSP. The result specifies that the 

AVODL-GRSM approach has identified and classified all 
six class labels accurately. Likewise, Figure 6c shows the PR 
analysis of the AVODL-GRSM method. The result stated that 
the AVODL-GRSM algorithm has acquired higher PR perfor-
mance under six classes. Eventually, Figure 6d presents the 
ROC investigation of the AVODL-GRSM model. The figure 
portrays that the AVODL-GRSM approach has productive 
outcomes with maximum ROC values under six class labels.

Table 3: Gesture recognition outcome of AVODL-GRSM system on USC HAD dataset.

USC HAD dataset
Class  Accuracy  Precision  Recall  F-score  MCC
Training phase (70%)
 Walking (C-1)  99.10  97.50  98.62  98.06  97.48

 Walking upstairs (C-2)  99.66  98.59  98.74  98.67  98.47

 Walking downstairs (C-3)  99.52  97.88  98.13  98.00  97.73

 Sitting (C-4)  99.30  98.39  97.17  97.78  97.36

 Standing (C-5)  99.41  97.20  98.62  97.90  97.56

 Laying/sleeping (C-6)  99.31  99.17  97.76  98.46  98.02

 Average  99.38  98.12  98.17  98.14  97.77

Testing phase (30%)
 Walking (C-1)  99.28  98.12  98.74  98.43  97.96

 Walking upstairs (C-2)  99.60  98.69  98.28  98.48  98.25

 Walking downstairs (C-3)  99.51  97.67  98.13  97.90  97.63

 Sitting (C-4)  99.33  98.81  96.85  97.82  97.43

 Standing (C-5)  99.35  96.90  98.70  97.79  97.42

 Laying/sleeping (C-6)  99.33  98.74  98.27  98.50  98.07

 Average  99.40  98.16  98.16  98.15  97.79

Abbreviation: AVODL-GRSM, African Vulture Optimization with Deep Learning based Gesture Recognition for Visually Impaired People on 
Sensory Modality Data.

Figure 7: Accuracy curve of the AVODL-GRSM system on the USC HAD dataset. Abbreviation: AVODL-GRSM, African 
Vulture Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data.
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Figure 8: Loss curve of the AVODL-GRSM system on the USC HAD dataset. Abbreviation: AVODL-GRSM, African Vulture 
Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data.

Table 4: Comparative outcome of AVODL-GRSM approach 
with other systems on two datasets.

Accuracy (%)
Methods  UCI HAR dataset  USC HAD dataset
AVODL-GRSM  99.64  99.40

MWHODL-SHAR  99.09  99.03

CNN-RF  96.27  97.84

Residual network  95.45  95.86

Deep CNN  94.20  94.06

CAE  97.94  94.73

HARSI  95.86  95.76

LSTM  97.38  96.74

Abbreviation: AVODL-GRSM, African Vulture Optimization with 
Deep Learning based Gesture Recognition for Visually Impaired 
People on Sensory Modality Data.

In Table 3, a brief recognition result of the AVODL-GRSM 
technique is clearly portrayed on the USC HAD dataset. The 
results identified that the AVODL-GRSM technique accurately 
recognizes six activities. For instance, on 70% of TRP, the 
AVODL-GRSM technique obtains average accu

y
 of 99.43%, 

prec
n
 of 98.32%, reca

l
 of 98.24%, F

score
 of 98.27%, and MCC 

of 97.93%. In addition, on 30% of TSP, the AVODL-GRSM 
technique obtains average accu

y
 of 99.64%, prec

n
 of 98.94%, 

reca
l
 of 98.93%, F

score
 of 98.93%, and MCC of 98.72%.

Figure 7 examines the accuracy of the AVODL-GRSM 
approach in training and validation on the USC HAD data-
base. The figure notifies that the AVODL-GRSM technique 
has greater accuracy values over higher epochs. Moreover, 
the greater validation accuracy over training accuracy por-
trayed that the AVODL-GRSM approach learns efficiently 
on the USC HAD database.

The loss analysis of the AVODL-GRSM method in train-
ing and validation is shown on the USC HAD database 
in Figure 8. The results indicate that the AVODL-GRSM 
approach has adjacent values of training and validation loss. 
The AVODL-GRSM technique learns efficiently on the USC 
HAD database.

In Table 4 and Figure 9, the comparative outcomes of 
the AVODL-GRSM technique on two datasets are provided 
(Tahir et al., 2023). The results exhibited that the AVODL-
GRSM technique reaches effective recognition results on 
both datasets. For instance, on the UCI HAR dataset, the 
AVODL-GRSM technique provides increasing accu

y
 of 

99.64% while the existing MWHODL-SHAR, convolutional 

neural network-random forest (CNN-RF), residual network, 
Deep CNN, CAE, human activity recognition on signal 
images (HARSI), and LSTM models provide decreas-
ing accu

y
 of 99.09, 96.27, 95.45, 94.20, 97.94, 95.86, and 

97.38%, respectively. Also, on the USC HAD dataset, the 
AVODL-GRSM technique provides increasing accu

y
 of 

99.40% while the existing MWHODL-SHAR, CNN-RF, 
Residual network, Deep CNN, CAE, HARSI, and LSTM 
methods provide decreasing accu

y
 of 99.03, 97.84, 95.86, 

94.06, 94.73, 95.76, and 96.74%, correspondingly.
These outcomes ensured the better performance of the 

AVODL-GRSM technique over other current methods.
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CONCLUSION

This study has focused on the development of an automated 
gesture recognition tool named the AVODL-GRSMD tech-
nique for visually impaired people on sensory modality data 
technique. The AVODL-GRSMD technique exploits the DL 
model with hyperparameter tuning strategy for effectual and 
accurate gesture detection and classification process. The 
AVODL-GRSMD technique follows three major processes, 
namely data preprocessing, MHA-BGRU recognition, 
and AVO-based hyperparameter tuning. In this work, the 
hyperparameter optimization of the MHA-BGRU method 
is performed using the AVO algorithm. A series of simula-
tion analyses were effectuated to demonstrate the improved 
performance of the AVODL-GRSMD technique. The exper-
imental values demonstrate the better recognition rate of the 
AVODL-GRSMD technique compared to that of the state-
of-the-art models.
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