61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetically encoded fluorescent ribonucleic acids (RNAs) have diverse applications, including imaging RNA trafficking and as a component of RNA-based sensors that exhibit fluorescence upon binding small molecules in live cells. These RNAs include the Spinach and Spinach2 aptamers, which bind and activate the fluorescence of fluorophores similar to that found in green fluorescent protein. Although additional highly fluorescent RNA–fluorophore complexes would extend the utility of this technology, the identification of novel RNA–fluorophore complexes is difficult. Current approaches select aptamers on the basis of their ability to bind fluorophores, even though fluorophore binding alone is not sufficient to activate fluorescence. Additionally, aptamers require extensive mutagenesis to efficiently fold and exhibit fluorescence in living cells. Here we describe a platform for rapid generation of highly fluorescent RNA–fluorophore complexes that are optimized for function in cells. This procedure involves selection of aptamers on the basis of their binding to fluorophores, coupled with fluorescence-activated cell sorting (FACS) of millions of aptamers expressed in Escherichia coli. Promising aptamers are then further optimized using a FACS-based directed evolution approach. Using this approach, we identified several novel aptamers, including a 49-nt aptamer, Broccoli. Broccoli binds and activates the fluorescence of ( Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1 H-imidazol-5(4 H)-one. Broccoli shows robust folding and green fluorescence in cells, and increased fluorescence relative to Spinach2. This reflects, in part, improved folding in the presence of low cytosolic magnesium concentrations. Thus, this novel fluorescence-based selection approach simplifies the generation of aptamers that are optimized for expression and performance in living cells.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA

          Fluorescent imaging of RNA in living cells is a technically challenging problem in cell biology. One strategy for genetically encoding fluorescent RNAs is to express them as fusions with ‘RNA mimics of GFP’. These are short aptamer tags that exhibit fluorescence upon binding otherwise nonfluorescent fluorophores that resemble those found in GFP. We find that the brightest of these aptamers, Spinach, often exhibits reduced fluorescence after it is fused to RNAs of interest. We show that a combination of thermal instability and a propensity for misfolding account for the low fluorescence of various Spinach-RNA fusions. Using systematic mutagenesis, we identified nucleotides that account for the poor folding of Spinach, and generated Spinach2, which exhibits markedly improved thermal stability and folding in cells. Furthermore, we show that Spinach2 largely retains its fluorescence when fused to various RNAs. Using Spinach2, we detail the cellular dynamics of the CGG trinucleotide-repeat containing “toxic RNA” associated with Fragile-X tremor/ataxia syndrome, and show that these RNAs form nuclear foci with unexpected morphological plasticity that is regulated by the cell cycle and by small molecules. Together, these data demonstrate that Spinach2 exhibits improved versatility for fluorescently labeling RNAs in living cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition.

            Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved, but their constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a neuronal silencing tool, mouse RC::FPDi (based on the synthetic G protein-coupled receptor Di), designed for cell type-specific, ligand-inducible, and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, administration of the ligand clozapine-N-oxide (CNO) by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue carbon dioxide (CO(2)) elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO(2) acidosis. Body thermoregulation at room temperature was also disrupted after CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Probing the SELEX Process with Next-Generation Sequencing

              Background SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. Methodology We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. Conclusions High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                22 October 2015
                22 October 2014
                19 November 2014
                : 136
                : 46
                : 16299-16308
                Affiliations
                [1]Department of Pharmacology, Weill Cornell Medical College , New York, New York 10065, United States
                Author notes
                Article
                10.1021/ja508478x
                4244833
                25337688
                fffc9b9f-7f36-4f9e-9649-b34dafcb39fe
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 18 August 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ja508478x
                ja-2014-08478x

                Chemistry
                Chemistry

                Comments

                Comment on this article