73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The CREB Coactivator CRTC2 Links Hepatic ER Stress and Fasting Gluconeogenesis

      research-article
      , , ,
      Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In fasted mammals, circulating pancreatic glucagon stimulates hepatic gluconeogenesis in part through the CREB Regulated Transcription Coactivator 2 (CRTC2; also referred to as TORC2) 1, 2. Hepatic glucose production is elevated in obesity, reflecting chronic increases in endoplasmic reticulum (ER) stress that promote insulin resistance 3. Whether ER stress also modulates the gluconeogenic program directly, however, is unclear. Here we show that CRTC2 functions as a dual sensor for ER stress and fasting signals in liver. Acute increases in ER stress triggered the dephosphorylation and nuclear entry of CRTC2, which in turn promoted the expression of ER quality control genes through an association with Activating Transcription Factor 6 alpha (ATF6α), an integral branch of the unfolded protein response 49. In addition to mediating CRTC2 recruitment to ER stress inducible promoters, ATF6α also reduced hepatic glucose output by disrupting the CREB:CRTC2 interaction and thereby inhibiting CRTC2 occupancy over gluconeogenic genes. Conversely, hepatic glucose output was upregulated when hepatic ATF6α protein amounts were reduced, either by RNAi-mediated knockdown or as a result of persistent stress in obesity. As ATF6α over-expression in livers of obese mice reversed CRTC2 effects on the gluconeogenic program and lowered hepatic glucose output, our results demonstrate how cross-talk between ER stress and fasting pathways at the level of a transcriptional coactivator contributes to glucose homeostasis.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1.

          Metazoans express three unfolded protein response transducers (IRE1, PERK, and ATF6) ubiquitously to cope with endoplasmic reticulum (ER) stress. ATF6 is an ER membrane-bound transcription factor activated by ER stress-induced proteolysis and has been duplicated in mammals. Here, we generated ATF6alpha- and ATF6beta-knockout mice, which developed normally, and then found that their double knockout caused embryonic lethality. Analysis of mouse embryonic fibroblasts (MEFs) deficient in ATF6alpha or ATF6beta revealed that ATF6alpha is solely responsible for transcriptional induction of ER chaperones and that ATF6alpha heterodimerizes with XBP1 for the induction of ER-associated degradation components. ATF6alpha(-/-) MEFs are sensitive to ER stress. Unaltered responses observed in ATF6beta(-/-) MEFs indicate that ATF6beta is not a negative regulator of ATF6alpha. These results demonstrate that ATF6alpha functions as a critical regulator of ER quality control proteins in mammalian cells, in marked contrast to worm and fly cells in which IRE1 is responsible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response.

            Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the mammalian transcription factor CHOP (also called GADD153) is induced by ER stress. We report here that the transcription factor XBP-1 (also called TREB5) is also induced by ER stress and that induction of CHOP and XBP-1 is mediated by ERSE. The ERSE consensus sequence is CCAAT-N(9)-CCACG. As the general transcription factor NF-Y (also known as CBF) binds to CCAAT, CCACG is considered to provide specificity in the mammalian UPR. We recently found that the basic leucine zipper protein ATF6 isolated as a CCACG-binding protein is synthesized as a transmembrane protein in the ER, and ER stress-induced proteolysis produces a soluble form of ATF6 that translocates into the nucleus. We report here that overexpression of soluble ATF6 activates transcription of the CHOP and XBP-1 genes as well as of ER chaperone genes constitutively, whereas overexpression of a dominant negative mutant of ATF6 blocks the induction by ER stress. Furthermore, we demonstrated that soluble ATF6 binds directly to CCACG only when CCAAT exactly 9 bp upstream of CCACG is bound to NF-Y. Based on these and other findings, we concluded that specific and direct interactions between ATF6 and ERSE are critical for transcriptional induction not only of ER chaperones but also of CHOP and XBP-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress.

              In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                12 May 2009
                21 June 2009
                23 July 2009
                23 January 2010
                : 460
                : 7254
                : 534-537
                Affiliations
                Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla CA, 92037
                Author notes
                Corresponding Author: Marc Montminy MD., Ph.D., The Salk Institute, Phone: 858-453-4100, e-mail: montminy@ 123456salk.edu

                Author Contributions: YW and LV performed in vivo imaging studies; YW performed in vitro and biochemical studies; WF carried out mass spectrometry analysis. YW and MM designed the study, analyzed the data, and wrote the paper. All authors reviewed and commented on the manuscript.

                Article
                nihpa116149
                10.1038/nature08111
                2730924
                19543265
                fff3ee33-738c-4ba9-9175-0d0da387bdfc
                History
                Funding
                Funded by: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
                Award ID: R01 DK083834-25 ||DK
                Funded by: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
                Award ID: R01 DK064142-06 ||DK
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article