60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pyrin Inflammasome Activation and RhoA Signaling in the Autoinflammatory Diseases FMF and HIDS

      research-article
      , , ,
      Nature immunology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations of pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases, familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutated or in response to bacterial modification of the GTPase RhoA. Here we show that RhoA activates the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin binds 14-3-3 proteins, which block the pyrin inflammasome. The binding of 14-3-3 and PKN proteins to FMF-associated mutant pyrin is substantially decreased, and the constitutive IL-1β release from FMF or HIDS patients’ peripheral blood mononuclear cells is attenuated by activating PKN1 and PKN2. Defects in prenylation, seen in HIDS, lead to RhoA inactivation and consequent pyrin inflammasome activation. These data indicate a previously unsuspected fundamental molecular connection between two seemingly distinct autoinflammatory disorders.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.

          NLRP3 forms an inflammasome with its adaptor ASC, and its excessive activation can cause inflammatory diseases. However, little is known about the mechanisms that control assembly of the inflammasome complex. Here we show that microtubules mediated assembly of the NLRP3 inflammasome. Inducers of the NLRP3 inflammasome caused aberrant mitochondrial homeostasis to diminish the concentration of the coenzyme NAD(+), which in turn inactivated the NAD(+)-dependent α-tubulin deacetylase sirtuin 2; this resulted in the accumulation of acetylated α-tubulin. Acetylated α-tubulin mediated the dynein-dependent transport of mitochondria and subsequent apposition of ASC on mitochondria to NLRP3 on the endoplasmic reticulum. Therefore, in addition to direct activation of NLRP3, the creation of optimal sites for signal transduction by microtubules is required for activation of the entire NLRP3 inflammasome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton.

            Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium.

              Familial Mediterranean fever (FMF) is a recessively inherited disorder characterized by dramatic episodes of fever and serosal inflammation. This report describes the cloning of the gene likely to cause FMF from a 115-kb candidate interval on chromosome 16p. Three different missense mutations were identified in affected individuals, but not in normals. Haplotype and mutational analyses disclosed ancestral relationships among carrier chromosomes in populations that have been separated for centuries. The novel gene encodes a 3.7-kb transcript that is almost exclusively expressed in granulocytes. The predicted protein, pyrin, is a member of a family of nuclear factors homologous to the Ro52 autoantigen. The cloning of the FMF gene promises to shed light on the regulation of acute inflammatory responses.
                Bookmark

                Author and article information

                Journal
                100941354
                21750
                Nat Immunol
                Nat. Immunol.
                Nature immunology
                1529-2908
                1529-2916
                7 April 2016
                06 June 2016
                August 2016
                06 December 2016
                : 17
                : 8
                : 914-921
                Affiliations
                Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Maryland 20892 USA
                Author notes
                Article
                NIHMS774451
                10.1038/ni.3457
                4955684
                27270401
                ffb69120-40a6-413f-a5f2-58a716a61584

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article