77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Ridge-based vessel segmentation in color images of the retina.

          A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kappaNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. The results show that our method is significantly better than the two rule-based methods (p < 0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Wavelets and signal processing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of blood vessels in retinal images using two-dimensional matched filters.

              Blood vessels usually have poor local contrast, and the application of existing edge detection algorithms yield results which are not satisfactory. An operator for feature extraction based on the optical and spatial properties of objects to be recognized is introduced. The gray-level profile of the cross section of a blood vessel is approximated by a Gaussian-shaped curve. The concept of matched filter detection of signals is used to detect piecewise linear segments of blood vessels in these images. Twelve different templates that are used to search for vessel segments along all possible directions are constructed. Various issues related to the implementation of these matched filters are discussed. The results are compared to those obtained with other methods.
                Bookmark

                Author and article information

                Journal
                2005-09-30
                2006-05-11
                Article
                10.1109/TMI.2006.879967
                cs/0510001
                ffb4bfc7-79a1-401c-b0eb-ae1b00f32eb7
                History
                Custom metadata
                IEEE Trans Med Imag, Vol. 25, no. 9, pp. 1214- 1222, Sep. 2006.
                9 pages, 7 figures and 1 table. Accepted for publication in IEEE Trans Med Imag; added copyright notice
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article