165
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variation in alternative splicing across human tissues

      research-article
      1 , 2 , 1 , 2 , 1 ,
      Genome Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of the alternative splicing patterns of genomically aligned ESTs revealed that human brain, testis and liver have unusually high levels of alternative splicing and identified candidate cis-acting factors likely to play important roles in tissue-specific alternative splicing in human cells.

          Abstract

          Background

          Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues.

          Results

          Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues.

          Conclusions

          This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          CLIP identifies Nova-regulated RNA networks in the brain.

          Nova proteins are neuron-specific antigens targeted in paraneoplastic opsoclonus myoclonus ataxia (POMA), an autoimmune neurologic disease characterized by abnormal motor inhibition. Nova proteins regulate neuronal pre-messenger RNA splicing by directly binding to RNA. To identify Nova RNA targets, we developed a method to purify protein-RNA complexes from mouse brain with the use of ultraviolet cross-linking and immunoprecipitation (CLIP).Thirty-four transcripts were identified multiple times by Nova CLIP.Three-quarters of these encode proteins that function at the neuronal synapse, and one-third are involved in neuronal inhibition.Splicing targets confirmed in Nova-/- mice include c-Jun N-terminal kinase 2, neogenin, and gephyrin; the latter encodes a protein that clusters inhibitory gamma-aminobutyric acid and glycine receptors, two previously identified Nova splicing targets.Thus, CLIP reveals that Nova coordinately regulates a biologically coherent set of RNAs encoding multiple components of the inhibitory synapse, an observation that may relate to the cause of abnormal motor inhibition in POMA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive identification of exonic splicing enhancers in human genes.

            Specific short oligonucleotide sequences that enhance pre-mRNA splicing when present in exons, termed exonic splicing enhancers (ESEs), play important roles in constitutive and alternative splicing. A computational method, RESCUE-ESE, was developed that predicts which sequences have ESE activity by statistical analysis of exon-intron and splice site composition. When large data sets of human gene sequences were used, this method identified 10 predicted ESE motifs. Representatives of all 10 motifs were found to display enhancer activity in vivo, whereas point mutants of these sequences exhibited sharply reduced activity. The motifs identified enable prediction of the splicing phenotypes of exonic mutations in human genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative splicing: increasing diversity in the proteomic world.

              How can the genome of Drosophila melanogaster contain fewer genes than the undoubtedly simpler organism Caenorhabditis elegans? The answer must lie within their proteomes. It is becoming clear that alternative splicing has an extremely important role in expanding protein diversity and might therefore partially underlie the apparent discrepancy between gene number and organismal complexity. Alternative splicing can generate more transcripts from a single gene than the number of genes in an entire genome. However, for the vast majority of alternative splicing events, the functional significance is unknown. Developing a full catalog of alternatively spliced transcripts and determining each of their functions will be a major challenge of the upcoming proteomic era.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2004
                13 September 2004
                : 5
                : 10
                : R74
                Affiliations
                [1 ]Department of Biology, Center for Biological and Computational Learning, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
                [2 ]Department of Brain and Cognitive Sciences, Center for Biological and Computational Learning, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
                Article
                gb-2004-5-10-r74
                10.1186/gb-2004-5-10-r74
                545594
                15461793
                ffa14130-90a4-4f61-9980-c96910759874
                Copyright © 2004 Yeo et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 April 2004
                : 1 June 2004
                : 27 July 2004
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article