37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA CRNDE promotes cell proliferation, invasion and migration by competitively binding miR-384 in papillary thyroid cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thyroid cancer is one of the most prevalent endocrine neoplasm. The present study examined the effects of Colorectal Neoplasia Differentially Expressed (CRNDE) on the progression of papillary thyroid cancer (PTC), and explored the underlying molecular mechanisms. Quantitative real-time PCR was used to detect CRNDE, miR-384 and pleiotrophin (PTN) mRNA expression. Western blot was used to measure PTN protein levels. Cell proliferation, cell growth, cell invasion and migration of PTC cells were determined by CCK-8, colony formation, transwell invasion and migration assays, respectively. CRNDE was up-regulated in PTC tissues and cell lines. Overexpression of CRNDE promoted BCPAP cell proliferation, invasion and migration, while knock-down of CRNDE suppressed K1 cell proliferation, invasion and migration. CRNDE negatively regulated the expression of miR-384 in PTC cells, which was further confirmed by luciferase reporter assay. MiR-384 was down-regulated and inversely correlated with CRNDE expression in PTC tissues. MiR-384 suppressed cell proliferation, invasion and migration in PTC cells, and enforced expression of miR-384 attenuated the oncogenic effects of CRNDE in PTC cells. PTN was predicted as a downstream target of miR-384, which was confirmed by luciferase reporter assay, and PTN was up-regulated in PTC tissues, and was negatively correlated with miR-384 expression and positively correlated with CRNDE expression in PTC tissues. In summary, our results suggested that the CRNDE/miR-384/PTN axis may play an important role in the regulation of PTC progression, which provides us with new insights into understanding the PTC.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas.

          An uncharacterized gene locus (Chr16:hCG_1815491), now named colorectal neoplasia differentially expressed (gene symbol CRNDE), is activated early in colorectal neoplasia. The locus is unrelated to any known protein-coding gene. Microarray analysis of 454 tissue specimens (discovery) and 68 previously untested specimens (validation) showed elevated expression of CRNDE in >90% of colorectal adenomas and adenocarcinomas. These findings were confirmed and extended by exon microarray studies and RT-PCR assays. CRNDE transcription start sites were identified in CaCo2 and HCT116 cells by 5'-RACE. The major transcript isoforms in colorectal cancer (CRC) cell lines and colorectal tissue are CRNDE-a, -b, -d, -e, -f, -h, and -j. Except for CRNDE-d, the known CRNDE splice variants are upregulated in neoplastic colorectal tissue; expression levels for CRNDE-h alone demonstrate a sensitivity of 95% and specificity of 96% for adenoma versus normal tissue. A quantitative RT-PCR assay measuring CRNDE-h RNA levels in plasma was (with a threshold of 2(-ΔCt) = 2.8) positive for 13 of 15 CRC patients (87%) but only 1 of 15 healthy individuals (7%). We conclude that individual CRNDE transcripts show promise as tissue and plasma biomarkers, potentially exhibiting high sensitivity and specificity for colorectal adenomas and cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling.

            The transcripts of the gene Colorectal Neoplasia Differentially Expressed (CRNDE) are recognized as long-noncoding RNAs (lncRNAs), which are expressed in specific regions within the human brain, and are the most upregulated lncRNA in gliomas. However, the underlying regulation and function of CRNDE in gliomas are largely unknown. In this study, the upregulation of CRNDE was confirmed in both primary specimens from glioma patients and in vitro with cell lines. Overexpression of specific CRNDE transcript promotes cell growth and migration in vitro while knockdown of CRNDE expression manifests a repressive function during these cellular processes. The growth promoting effect of CRNDE was also demonstrated in a xenograft mouse model. Mechanistic studies further revealed that histone acetylation in the promoter region might account for the upregulation of CRNDE, and the level of CRNDE expression could be modulated by mammalian Target of Rapamycin (mTOR) signaling in glioma. Thus, our results shed a light on utilizing CRNDE as a potential novel therapeutic target for the treatment of glioma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis.

              Colorectal neoplasia differentially expressed (CRNDE) is the most upregulated long noncoding RNA (lncRNA) in glioma. Herein, the function and potential molecular mechanisms of CRNDE and miR-384 were illustrated in glioma cells. CRNDE overexpression facilitated cell proliferation, migration, and invasion, while inhibited glioma cells apoptosis. Quantitative real-time polymerase chain reaction (PCR) demonstrated that miR-384 was downregulated in human glioma tissues and glioma cell lines. Moreover, restoration of miR-384 exerted tumor-suppressive functions. In addition, the expression of miR-384 was negatively correlated with CRNDE expression. A binding region between CRNDE and miR-384 was confirmed using luciferase assays. Moreover, CRNDE promoted cell malignant behavior by decreasing miR-384 expression. At the molecular level, treatment by CRNDE knockdown or miR-384 overexpression resulted in a decrease of piwi-like RNA-mediated gene silencing 4 (PIWIL4) protein. Besides, PIWIL4 was identified as a target of miR-384 and plays an oncogenic role in glioma. Similarly, downstream proteins of PIWIL4 such as STAT3, cyclin D1, VEGFA, SLUG, MMP-9, caspase 3, Bcl-2, and bcl-xL were modulated when treated with miR-384 and PIWIL4. Remarkably, CRNDE knockdown combined with miR-384 overexpression led to tumor regression in vivo. Overall, these results depicted a novel pathway mediated by CRNDE in glioma, which may be a potential application for glioma therapy.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 December 2017
                30 November 2017
                : 8
                : 66
                : 110552-110565
                Affiliations
                1 Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang Province, China
                2 Department of Rehabilitation, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang Province, China
                3 Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang Province, China
                Author notes
                Correspondence to: Xingmu Wang, wxmu666@ 123456163.com
                Article
                22819
                10.18632/oncotarget.22819
                5746403
                29299168
                ff937dfa-2a9b-43ab-b0e7-d2cb74f2e94d
                Copyright: © 2017 Sun et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 10 October 2017
                : 13 November 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                crnde,papillary thyroid cancer,mir-384,pleiotrophin,progression
                Oncology & Radiotherapy
                crnde, papillary thyroid cancer, mir-384, pleiotrophin, progression

                Comments

                Comment on this article