180
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most represented group of resistance genes are those of the nucleotide binding site–leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Plant pathogens and integrated defence responses to infection.

          Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin, biogenesis, and activity of plant microRNAs.

            MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA silencing in plants.

              There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                April 2013
                02 April 2013
                : 14
                : 4
                : 7302-7326
                Affiliations
                Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Agricultural Research Council-Cereal Research Centre (CRA-CER), SS 16 km 675, 71122 Foggia, Italy; E-Mails: danielamarone@ 123456hotmail.com (D.M.); marianna_fg@ 123456libero.it (M.A.R.); giovanni.lai79@ 123456libero.it (G.L.); annamariadeleonardis@ 123456libero.it (A.M.D.L.)
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: annamaria.mastrangelo@ 123456entecra.it ; Tel.: +39-0881-742-972; Fax: +39-0881-713-150.
                Article
                ijms-14-07302
                10.3390/ijms14047302
                3645687
                23549266
                ff7d9c32-ae69-4c05-9fb5-61dcbcd8c827
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 26 February 2013
                : 21 March 2013
                : 26 March 2013
                Categories
                Review

                Molecular biology
                nbs-lrr genes,gene evolution,plant breeding
                Molecular biology
                nbs-lrr genes, gene evolution, plant breeding

                Comments

                Comment on this article