18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Coral Reef Fish Stocks From the Nansha Islands, South China Sea, Using Length-Based Bayesian Biomass Estimation

      , , ,
      Frontiers in Marine Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The South China Sea (SCS) is one of the world’s main centers for coral reef diversity, with more than one-third of all reef fish species being found in this area. Some indications of overfishing have appeared in typical coral reefs of the SCS, as fish diversities have declined and the average body lengths of dominant fish species have decreased. However, only few assessments of coral reef fish stocks have been conducted, due to insufficient available data. In this study, we applied a newly developed length-based Bayesian biomass (LBB) estimation method to assess 10 dominant coral reef fish species from three main reefs (Yongshu Reef, Zhubi Reef, and Meiji Reef) of the Nansha Islands, SCS. Simulations indicated the estimated parameters were not sensitive to sample sizes (more than 100) using the LBB method. Our results showed that the relative biomass levels ( B/ B MS Y ) of Cephalopholis spiloparaea, Cephalopholis urodeta, Lutjanus gibbus, Gnathodentex aureolineatus, Pentapodus caninus, and Cheilinus fasciatus were between 0.16 and 0.45, suggesting an overfishing status; the relative biomass levels of Epinephelus merra, and Parupeneus crassilabris were 0.98 and 1.1, respectively, indicating that they were fully exploited; and the relative biomass levels of Lutjanus kasmira and Melichthys vidua were 1.3 and 2.5, respectively, indicating the populations were in good conditions. The estimates of L c /L c _ opt were less than one for seven stocks, suggesting that the stocks were suffering from growth overfishing. Therefore, we emphasize the need to reduce fishing mortality and increase the mesh size of the coral reef fishery in the Nansha Islands, to achieve a sustainable yield and biomass.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Inference from Iterative Simulation Using Multiple Sequences

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change, human impacts, and the resilience of coral reefs.

            The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Status and solutions for the world's unassessed fisheries.

              Recent reports suggest that many well-assessed fisheries in developed countries are moving toward sustainability. We examined whether the same conclusion holds for fisheries lacking formal assessment, which comprise >80% of global catch. We developed a method using species' life-history, catch, and fishery development data to estimate the status of thousands of unassessed fisheries worldwide. We found that small unassessed fisheries are in substantially worse condition than assessed fisheries, but that large unassessed fisheries may be performing nearly as well as their assessed counterparts. Both small and large stocks, however, continue to decline; 64% of unassessed stocks could provide increased sustainable harvest if rebuilt. Our results suggest that global fishery recovery would simultaneously create increases in abundance (56%) and fishery yields (8 to 40%).
                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                January 13 2021
                January 13 2021
                : 7
                Article
                10.3389/fmars.2020.610707
                ff31f432-24d4-4c96-ac7f-a921745ab9c5
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article