231
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamic urea bond for the design of reversible and self-healing polymers

      research-article
      , ,
      Nature communications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-ureas) capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Autonomic healing of polymer composites.

          Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A thermally re-mendable cross-linked polymeric material.

            We have developed a transparent organic polymeric material that can repeatedly mend or "re-mend" itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120 degrees C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of "intermonomer" linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder.

              With the world's focus on reducing our dependency on fossil-fuel energy, the scientific community can investigate new plastic materials that are much less dependent on petroleum than are conventional plastics. Given increasing environmental issues, the idea of replacing plastics with water-based gels, so-called hydrogels, seems reasonable. Here we report that water and clay (2-3 per cent by mass), when mixed with a very small proportion (<0.4 per cent by mass) of organic components, quickly form a transparent hydrogel. This material can be moulded into shape-persistent, free-standing objects owing to its exceptionally great mechanical strength, and rapidly and completely self-heals when damaged. Furthermore, it preserves biologically active proteins for catalysis. So far no other hydrogels, including conventional ones formed by mixing polymeric cations and anions or polysaccharides and borax, have been reported to possess all these features. Notably, this material is formed only by non-covalent forces resulting from the specific design of a telechelic dendritic macromolecule with multiple adhesive termini for binding to clay.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                18 November 2014
                2014
                20 May 2015
                : 5
                : 3218
                Affiliations
                Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 West Green Street, Urbana, Illinois, 61801, USA
                Author notes
                [* ]To whom correspondence should be addressed: jianjunc@ 123456illinois.edu
                Article
                NIHMS554614
                10.1038/ncomms4218
                4438999
                24492620
                ff00694d-f0e4-4805-9881-005bf7af22bf

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article