6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan

      , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This research delves into the crucial role of groundwater in underpinning ecosystems and human resilience amidst drastic and unpredictable climate change, particularly as water resources face increasing sustainability concerns due to population surges and climate change. Utilizing a combined approach of SWAT-MODFLOW models, we estimate the streamflow discharge and groundwater recharge in the Choushui River Alluvial Fan, Taiwan. These models allow evaluation of the distribution and proportion of recharge areas as well as the accuracy and the potential influence of future climate change scenarios on groundwater recharge. The findings show a strong correlation between the simulation and actual observations, evidenced by the Nash–Sutcliffe model efficiency coefficients (NSE) of 0.920 and 0.846 for calibration and validation in the Choushui River, and 0.549 and 0.548 for the Pei-Kang River, respectively. The model demonstrates a reliable representation of the watershed response, supported by robust statistical performance. The analysis reveals the variable impacts of climate change on groundwater recharge, dependent on the chosen scenario and period. Some scenarios indicate that the maximum observed increase in groundwater recharge is 66.36% under the RCP2.6 scenario in the long-term period (2061–2080), while the minimum observed increase is 29.67% under the RCP4.5 scenario in the initial time frame; however, all demonstrate a decrease ranging from 23.05% to 41.92% across different RCPs in the impact of climate change over time, suggesting a potential long-term decrease in the impact of climate change on groundwater recharge. This study provides indispensable insights into the spatial hotspots in the top fan and the potential range of impact rates of climate change on groundwater recharge, underscoring the importance of continuous research and the thorough evaluation of multiple scenarios. Moreover, we establish a primary framework for using a top-ranked MIROC5 projection of general circulation models (GCMs) to delineate an essential premise that facilitates the advanced exploration of alternative scenario augmentations, bolstering the comprehensive investigation of climate change impacts on groundwater recharge. It is proposed that these findings serve as a guidepost for sustainable water resource management and policy-making in the face of climate change and escalating water demand.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Global water resources: vulnerability from climate change and population growth.

          The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global hydrological cycles and world water resources.

            Water is a naturally circulating resource that is constantly recharged. Therefore, even though the stocks of water in natural and artificial reservoirs are helpful to increase the available water resources for human society, the flow of water should be the main focus in water resources assessments. The climate system puts an upper limit on the circulation rate of available renewable freshwater resources (RFWR). Although current global withdrawals are well below the upper limit, more than two billion people live in highly water-stressed areas because of the uneven distribution of RFWR in time and space. Climate change is expected to accelerate water cycles and thereby increase the available RFWR. This would slow down the increase of people living under water stress; however, changes in seasonal patterns and increasing probability of extreme events may offset this effect. Reducing current vulnerability will be the first step to prepare for such anticipated changes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Human Appropriation of Renewable Fresh Water

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                February 2024
                January 27 2024
                : 16
                : 3
                : 419
                Article
                10.3390/w16030419
                fec2df07-f1cb-4f64-8a08-032400832b18
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content135

                Cited by1

                Most referenced authors414