31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the success of antiretroviral therapy (ART), a dramatic decrease in viral burden and opportunistic infections and an increase in life expectancy has been observed in human immunodeficiency virus (HIV) infected individuals. However, it is now clear that HIV- infected individuals have enhanced susceptibility to non-AIDS (Acquired immunodeficiency syndrome)-related complications such as cardiovascular disease (CVD). CVDs such as atherosclerosis have become a significant cause of morbidity and mortality in individuals with HIV infection. Though studies indicate that ART itself may increase the risk to develop CVD, recent studies suggest a more important role for HIV infection in contributing to CVD independently of the traditional risk factors. Endothelial dysfunction triggered by HIV infection has been identified as a critical link between infection, inflammation/immune activation, and atherosclerosis. Considering the inability of HIV to actively replicate in endothelial cells, endothelial dysfunction depends on both HIV-encoded proteins as well as inflammatory mediators released in the microenvironment by HIV-infected cells. Indeed, the HIV proteins, gp120 (envelope glycoprotein) and Tat (transactivator of transcription), are actively secreted into the endothelial cell micro-environment during HIV infection, while Nef can be actively transferred onto endothelial cells during HIV infection. These proteins can have significant direct effects on the endothelium. These include a range of responses that contribute to endothelial dysfunction, including enhanced adhesiveness, permeability, cell proliferation, apoptosis, oxidative stress as well as activation of cytokine secretion. This review summarizes the current understanding of the interactions of HIV, specifically its proteins with endothelial cells and its implications in cardiovascular disease. We analyze recent in vitro and in vivo studies examining endothelial dysfunction in response to HIV proteins. Furthermore, we discuss the multiple mechanisms by which these viral proteins damage the vascular endothelium in HIV patients. A better understanding of the molecular mechanisms of HIV protein associated endothelial dysfunction leading to cardiovascular disease is likely to be pivotal in devising new strategies to treat and prevent cardiovascular disease in HIV-infected patients.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.

          Coronary endothelial dysfunction is characterized by vasoconstrictive response to the endothelium-dependent vasodilator acetylcholine. Although endothelial dysfunction is considered an early phase of coronary atherosclerosis, there is a paucity of information regarding the outcome of these patients. Thus, this study was designed to evaluate the outcome of patients with mild coronary artery disease on the basis of their endothelial function. Follow-up was obtained in 157 patients with mildly diseased coronary arteries who had undergone coronary vascular reactivity evaluation by graded administration of intracoronary acetylcholine, adenosine, and nitroglycerin and intracoronary ultrasound at the time of diagnostic study. Patients were divided on the basis of their response to acetylcholine into 3 groups: group 1 (n=83), patients with normal endothelial function; group 2 (n=32), patients with mild endothelial dysfunction; and group 3 (n=42), patients with severe endothelial dysfunction. Over an average 28-month follow-up (range, 11 to 52 months), none of the patients from group 1 or 2 had cardiac events. However, 6 (14%) with severe endothelial dysfunction had 10 cardiac events (P<0.05 versus groups 1 and 2). Cardiac events included myocardial infarction, percutaneous or surgical coronary revascularization, and/or cardiac death. Severe endothelial dysfunction in the absence of obstructive coronary artery disease is associated with increased cardiac events. This study supports the concept that coronary endothelial dysfunction may play a role in the progression of coronary atherosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Importance of the nef gene for maintenance of high virus loads and for development of AIDS.

            When rhesus monkeys were infected with a form of cloned SIVmac239 having a premature stop signal at the 93rd codon of nef, revertants with a coding codon at this position quickly and universally came to predominate in the infected animals. This suggests that there are strong selective forces for open functional forms of nef in vivo. Although deletion of nef sequences had no detectable effect on virus replication in cultured cells, deletion of nef sequences dramatically altered the properties of virus in infected rhesus monkeys. Our results indicate that nef is required for maintaining high virus loads during the course of persistent infection in vivo and for full pathologic potential. Thus, nef should become a target for antiviral drug development. Furthermore, the properties of virus with a deletion in nef suggest a means for making live-attenuated strains of virus for experimental vaccine testing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets

              Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                19 December 2018
                2018
                : 5
                : 185
                Affiliations
                [1] 1L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya , Chennai, India
                [2] 2Department of HIV/AIDS, National Institute for Research in Tuberculosis , Chennai, India
                Author notes

                Edited by: Mohamed Boutjdir, Veterans Affairs New York Harbor Healthcare System, United States

                Reviewed by: Keigi Fujiwara, University of Texas MD Anderson Cancer Center, United States; Plinio Cirillo, University of Naples Federico II, Italy

                *Correspondence: Appakkudal R. Anand aranand@ 123456gmail.com

                This article was submitted to Atherosclerosis and Vascular Medicine, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2018.00185
                6305718
                30619892
                fe958bf5-afb9-4f12-a2c9-f17547067e69
                Copyright © 2018 Anand, Rachel and Parthasarathy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 September 2018
                : 06 December 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 130, Pages: 10, Words: 8128
                Categories
                Cardiovascular Medicine
                Mini Review

                hiv proteins,endothelial dysfunction,cardiovascular disease,gp120,nef,tat,atherosclerosis

                Comments

                Comment on this article